Skip to main content

DNA Technologies in Precision Medicine and Pharmacogenetics

  • Chapter
  • First Online:
Precision Medicine in Clinical Practice

Abstract

Pharmacogenes in the human genome include extensive functional genetic variations. Some individuals might show unpredictable side effects and even drug resistance. DNA technologies are allowed to clarify the profile of the human genome, which could result in enhanced drug treatments. Complete genomic variants (including PGx-related markers) for an individual would be available by utilizing the WGS technique. Improving WES accuracy and its cost makes it a usable molecular diagnostic tool for assessing genetic disorders and pharmacogenetic tests. Panel-based testing has a strong position in precision medicine. A comprehensive study of variation in the transcriptome profiles of pharmacologically relevant tissues promises to yield an essential understanding of the molecular basis of variation in drug response. Target-enrichment approaches provide rapid detection and analysis of common and rare genetic variations that affect response to therapeutic drugs or adverse effects. Single-cell sequencing translation applications in precision cancer treatment can improve cancer diagnosis, prognosis, targeted therapy, early detection, and noninvasive monitoring. DNA microarrays are commonly used to analyze changes in gene expression patterns across the genome to link genes or proteins to drug responses. In summary, DNA technologies provide possibilities for more pertinent genotype-based treatment modifications and a promising future for pharmacogenomics-guided medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madian AG, et al. Relating human genetic variation to variation in drug responses. Trends Genet. 2012;28(10):487–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guchelaar H-J. Pharmacogenomics, a novel section in the European Journal of Human Genetics. Berlin: Nature Publishing Group; 2018. p. 1399–400.

    Google Scholar 

  3. Suarez-Kurtz G, Parra EJ. Population diversity in pharmacogenetics: a Latin American perspective. Adv Pharmacol. 2018;83:133–54.

    Article  CAS  PubMed  Google Scholar 

  4. Evans WE, Johnson JA. Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu Rev Genomics Hum Genet. 2001;2(1):9–39.

    Article  CAS  PubMed  Google Scholar 

  5. Schärfe CPI, et al. Genetic variation in human drug-related genes. Genome Med. 2017;9(1):1–15.

    Article  Google Scholar 

  6. Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome sequencing in medical genetics. J Hum Genet. 2014;59(1):5–15.

    Article  CAS  PubMed  Google Scholar 

  7. Rabbani B, et al. Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders. J Hum Genet. 2012;57(10):621–32.

    Article  CAS  PubMed  Google Scholar 

  8. Diaz-Horta O, et al. Whole-exome sequencing efficiently detects rare mutations in autosomal recessive nonsyndromic hearing loss. PLoS One. 2012;7(11):e50628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kingsmore S, Saunders C. Deep sequencing of patient genomes for disease diagnosis: when will it become routine? Sci Transl Med. 2011;3:87ps23.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bamshad MJ, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12(11):745–55.

    Article  CAS  PubMed  Google Scholar 

  11. Metzker M. Sequencing technologies-the next generation. Nat Rev Genet. 2010;11(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  12. Bielinski SJ, et al. Preemptive genotyping for personalized medicine: design of the right drug, right dose, right time—using genomic data to individualize treatment protocol. In: Mayo clinic proceedings. Elsevier; 2014.

    Google Scholar 

  13. Gabrovska P, et al. Gene expression profiling in human breast cancer-toward personalised therapeutics? Open Breast Cancer J. 2010;2:46–59.

    Article  CAS  Google Scholar 

  14. Rabbani B, et al. Next generation sequencing: implications in personalized medicine and pharmacogenomics. Mol Biosyst. 2016;12(6):1818–30.

    Google Scholar 

  15. Hintzsche JD, Robinson WA, Tan AC. A survey of computational tools to analyze and interpret whole exome sequencing data. Int J Genomics. 2016;2016:7983236.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Slatko BE, Gardner AF, Ausubel FM. Overview of next-generation sequencing technologies. Curr Protoc Mol Biol. 2018;122(1):e59.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dhawan D. Chapter 2 – Clinical next-generation sequencing: enabling precision medicine. In: Verma M, Barh D, editors. Progress and challenges in precision medicine. Academic Press: New York; 2017. p. 35–54.

    Chapter  Google Scholar 

  18. Health, N.I.o., NCI dictionary of cancer terms. National Institutes of Health, Bethesda, MD, USA; 2018.

    Google Scholar 

  19. Gilissen C, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511(7509):344–7.

    Article  CAS  PubMed  Google Scholar 

  20. Nones K, et al. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun. 2014;5(1):1–9.

    Article  Google Scholar 

  21. van El CG, et al. Whole-genome sequencing in health care: recommendations of the European Society of Human Genetics. Eur J Hum Genet. 2013;21(6):580–4.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Choi J, Tantisira KG, Duan QL. Whole genome sequencing identifies high-impact variants in well-known pharmacogenomic genes. Pharmacogenomics J. 2019;19(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  23. Yang W, et al. Comparison of genome sequencing and clinical genotyping for pharmacogenes. Clin Pharmacol Ther. 2016;100(4):380–8.

    Article  CAS  PubMed  Google Scholar 

  24. He Y, Hoskins JM, McLeod HL. Copy number variants in pharmacogenetic genes. Trends Mol Med. 2011;17(5):244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martis S, et al. Multi-ethnic cytochrome-P450 copy number profiling: novel pharmacogenetic alleles and mechanism of copy number variation formation. Pharmacogenomics J. 2013;13(6):558–66.

    Article  CAS  PubMed  Google Scholar 

  26. Santos M, et al. Novel copy-number variations in pharmacogenes contribute to interindividual differences in drug pharmacokinetics. Genet Med. 2018;20(6):622–9.

    Article  CAS  PubMed  Google Scholar 

  27. Ashley EA, et al. Clinical assessment incorporating a personal genome. Lancet. 2010;375(9725):1525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Daly AK. Genome-wide association studies in pharmacogenomics. Nat Rev Genet. 2010;11(4):241–6.

    Article  CAS  PubMed  Google Scholar 

  29. Welch JS, et al. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA. 2011;305(15):1577–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jorgenson E, Witte JS. A gene-centric approach to genome-wide association studies. Nat Rev Genet. 2006;7(11):885–91.

    Article  CAS  PubMed  Google Scholar 

  31. Badiee A, et al. Evaluation of five different cDNA labeling methods for microarrays using spike controls. BMC Biotechnol. 2003;3(1):1–5.

    Article  Google Scholar 

  32. Lam HY, et al. Performance comparison of whole-genome sequencing platforms. Nat Biotechnol. 2012;30(1):78–82.

    Article  CAS  Google Scholar 

  33. Zook JM, et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat Biotechnol. 2014;32(3):246–51.

    Article  CAS  PubMed  Google Scholar 

  34. Klein H-G, Bauer P, Hambuch T. Whole genome sequencing (WGS), whole exome sequencing (WES) and clinical exome sequencing (CES) in patient care. LaboratoriumsMedizin. 2014;38 https://doi.org/10.1515/labmed-2014-0025.

  35. Suwinski P, et al. Advancing personalized medicine through the application of whole exome sequencing and big data analytics. Front Genet. 2019;10:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang Y, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369(16):1502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McVean GA, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.

    Article  CAS  PubMed  Google Scholar 

  38. Tennessen JA, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337(6090):64–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwarz UI, Gulilat M, Kim RB. The role of next-generation sequencing in pharmacogenetics and pharmacogenomics. Cold Spring Harb Perspect Med. 2019;9(2):a033027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dewey FE, et al. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study. Science. 2016;354(6319):aaf6814.

    Article  PubMed  Google Scholar 

  42. Kozyra M, Ingelman-Sundberg M, Lauschke VM. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet Med. 2017;19(1):20–9.

    Article  CAS  PubMed  Google Scholar 

  43. Katsila T, Patrinos GP. Whole genome sequencing in pharmacogenomics. Front Pharmacol. 2015;6:61.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tafazoli A, et al. Applying next-generation sequencing platforms for Pharmacogenomic testing in clinical practice. Front Pharmacol. 2021;12(2025):693453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chua EW, et al. Cross-comparison of exome analysis, next-generation sequencing of amplicons, and the iPLEX(®) ADME PGx panel for Pharmacogenomic profiling. Front Pharmacol. 2016;7:1.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mueller JJ, et al. Massively parallel sequencing analysis of mucinous ovarian carcinomas: genomic profiling and differential diagnoses. Gynecol Oncol. 2018;150(1):127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pereira M, et al., Application of next-generation sequencing in the era of precision medicine; 2017.

    Google Scholar 

  48. Costain G, et al. Clinical application of targeted next-generation sequencing panels and whole exome sequencing in childhood epilepsy. Neuroscience. 2019;418:291–310.

    Article  CAS  PubMed  Google Scholar 

  49. Raffan E, Semple RK. Next generation sequencing—implications for clinical practice. Br Med Bull. 2011;99(1):53–71.

    Article  CAS  PubMed  Google Scholar 

  50. Khoja L, et al. Pembrolizumab. J Immunother Cancer. 2015;3:36.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Prasad V, Kaestner V, Mailankody SJJO. Cancer drugs approved based on biomarkers and not tumor type—FDA approval of pembrolizumab for mismatch repair-deficient solid cancers. JAMA Oncol. 2018;4(2):157–8.

    Article  PubMed  Google Scholar 

  52. Jørgensen JT. Twenty years with personalized medicine: past, present, and future of individualized pharmacotherapy. Oncologist. 2019;24(7):e432–40.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Demkow U. Chapter 11 - next generation sequencing in pharmacogenomics. In: Demkow U, Płoski R, editors. Clinical applications for next-generation sequencing. Boston: Academic Press; 2016. p. 217–40.

    Chapter  Google Scholar 

  54. Cohn I, et al. Genome sequencing as a platform for pharmacogenetic genotyping: a pediatric cohort study. npj Genomic Med. 2017;2(1):19.

    Article  Google Scholar 

  55. Zhang Q, et al. Clinical application of whole-exome sequencing: a retrospective, single-center study. Exp Ther Med. 2021;22(1):753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carter TC, He MM. Challenges of identifying clinically actionable genetic variants for precision medicine. J Healthc Eng. 2016;2016:3617572.

    Article  PubMed Central  Google Scholar 

  57. van der Lee M, et al. Technologies for pharmacogenomics: a review. Genes (Basel). 2020;11:12.

    Google Scholar 

  58. Cousin MA, et al. Pharmacogenomic findings from clinical whole exome sequencing of diagnostic odyssey patients. Mol Genet Genomic Med. 2017;5(3):269–79.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rennert H, et al. Development and validation of a whole-exome sequencing test for simultaneous detection of point mutations, indels and copy-number alterations for precision cancer care. Npj. Genomic Med. 2016;1(1):16019.

    Article  Google Scholar 

  60. Dong L, et al. Clinical next generation sequencing for precision medicine in cancer. Curr Genomics. 2015;16(4):253–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tilleman L, et al. Pan-cancer pharmacogenetics: targeted sequencing panels or exome sequencing? Pharmacogenomics. 2020;21(15):1073–84.

    Article  CAS  PubMed  Google Scholar 

  62. Guidugli L, et al. Clinical utility of gene panel-based testing for hereditary myelodysplastic syndrome/acute leukemia predisposition syndromes. Leukemia. 2017;31(5):1226–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Conesa A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17(1):1–19.

    Google Scholar 

  64. Hoelzer D, et al. Acute lymphoblastic leukaemia in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27:v69–82.

    Article  CAS  PubMed  Google Scholar 

  65. Wang ET, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Denoeud F, et al. Annotating genomes with massive-scale RNA sequencing. Genome Biol. 2008;9(12):1–12.

    Article  Google Scholar 

  67. Maher CA, et al. Transcriptome sequencing to detect gene fusions in cancer. Nature. 2009;458(7234):97–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carey MF, Peterson CL, Smale ST. Chromatin immunoprecipitation (chip). Cold Spring Harb Protoc. 2009;2009(9):pdb.prot5279.

    Article  PubMed  Google Scholar 

  69. Soldner F, et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 2009;136(5):964–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Matigian N, et al. Disease-specific, neurosphere-derived cells as models for brain disorders. Dis Model Mech. 2010;3(11–12):785–98.

    Article  CAS  PubMed  Google Scholar 

  71. Atz M, et al. Methodological considerations for gene expression profiling of human brain. J Neurosci Methods. 2007;163(2):295–309.

    Article  CAS  PubMed  Google Scholar 

  72. Monoranu CM, et al. pH measurement as quality control on human post mortem brain tissue: a study of the BrainNet Europe consortium. Neuropathol Appl Neurobiol. 2009;35(3):329–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Courtney E, et al. Transcriptome profiling in neurodegenerative disease. J Neurosci Methods. 2010;193(2):189–202.

    Article  CAS  PubMed  Google Scholar 

  74. Janitz M. Next-generation genome sequencing: towards personalized medicine. Hoboken, NJ: John Wiley & Sons; 2011.

    Google Scholar 

  75. Cai J, et al. ATRX mRNA expression combined with IDH1/2 mutational status and Ki-67 expression refines the molecular classification of astrocytic tumors: evidence from the whole transcriptome sequencing of 169 samples. Oncotarget. 2014;5(9):2551.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kridel R, et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood J Am Soc Hematol. 2012;119(9):1963–71.

    CAS  Google Scholar 

  77. Greif P, et al. Identification of recurring tumor-specific somatic mutations in acute myeloid leukemia by transcriptome sequencing. Leukemia. 2011;25(5):821–7.

    Article  CAS  PubMed  Google Scholar 

  78. Creighton CJ, Reid JG, Gunaratne PH. Expression profiling of microRNAs by deep sequencing. Brief Bioinform. 2009;10(5):490–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang L, McLeod HL, R.M.J.N.E.J.o.M. Weinshilboum. Genomics and drug response. N Engl J Med. 2011;364(12):1144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Evans WE, McLeod HL. Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med. 2003;348(6):538–49.

    Article  CAS  PubMed  Google Scholar 

  81. Iyer L, et al. UGT1A1* 28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J. 2002;2(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  82. Tukey RH, Strassburg CP, Mackenzie PI. Pharmacogenomics of human UDP-glucuronosyltransferases and irinotecan toxicity. Mol Pharmacol. 2002;62(3):446–50.

    Article  CAS  PubMed  Google Scholar 

  83. Wang D, et al. Common CYP2D6 polymorphisms affecting alternative splicing and transcription: long-range haplotypes with two regulatory variants modulate CYP2D6 activity. Hum Mol Genet. 2014;23(1):268–78.

    Article  CAS  PubMed  Google Scholar 

  84. Chhibber A, et al. Transcriptomic variation of pharmacogenes in multiple human tissues and lymphoblastoid cell lines. Pharmacogenomics J. 2017;17(2):137–45.

    Article  CAS  PubMed  Google Scholar 

  85. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41.

    Article  CAS  PubMed  Google Scholar 

  86. Gordon AS, et al. PGRNseq: a targeted capture sequencing panel for pharmacogenetic research and implementation. Pharmacogenet Genomics. 2016;26(4):161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gulilat M, et al. Targeted next generation sequencing as a tool for precision medicine. BMC Med Genet. 2019;12(1):81.

    Google Scholar 

  88. Han SM, et al. Targeted next-generation sequencing for comprehensive genetic profiling of pharmacogenes. Clin Pharmacol Ther. 2017;101(3):396–405.

    Article  CAS  PubMed  Google Scholar 

  89. Mamanova L, et al. Target-enrichment strategies for next-generation sequencing. Nat Methods. 2010;7(2):111–8.

    Article  CAS  PubMed  Google Scholar 

  90. Klein K, et al. A new panel-based next-generation sequencing method for ADME genes reveals novel associations of common and rare variants with expression in a human liver cohort. Front Genet. 2019;10:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mardis ERJN. A decade’s perspective on DNA sequencing technology. Nature. 2011;470(7333):198–203.

    Article  CAS  PubMed  Google Scholar 

  92. Navin N, Hicks J. Future medical applications of single-cell sequencing in cancer. Genome Med. 2011;3(5):1–12.

    Article  Google Scholar 

  93. Tang F, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82.

    Article  CAS  PubMed  Google Scholar 

  94. Dean FB, et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci. 2002;99(8):5261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lasken RS. Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol. 2007;10(5):510–6.

    Article  CAS  PubMed  Google Scholar 

  96. Baslan T, et al. Genome-wide copy number analysis of single cells. Nat Protoc. 2012;7(6):1024–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Van Gelder RN, et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci. 1990;87(5):1663–7.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nagano T, et al. Single-cell hi-C reveals cell-to-cell variability in chromosome structure. Nature. 2013;502(7469):59–64.

    Article  CAS  PubMed  Google Scholar 

  99. Guo H, et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 2013;23(12):2126–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tang X, et al. The single-cell sequencing: new developments and medical applications. Cell Biosci. 2019;9(1):1–9.

    Article  Google Scholar 

  101. Qiu S, et al. Single-neuron RNA-Seq: technical feasibility and reproducibility. Front Genet. 2012;3:124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Usoskin D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci. 2015;18(1):145–53.

    Article  CAS  PubMed  Google Scholar 

  103. Wang J, et al. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell. 2012;150(2):402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tang F, et al. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell. 2010;6(5):468–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xue Z, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500(7464):593–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Treutlein B, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509(7500):371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shalek AK, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014;510(7505):363–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Navin NE. Cancer genomics: one cell at a time. Genome Biol. 2014;15(8):1–13.

    Article  Google Scholar 

  109. Van Loo P, Voet T. Single cell analysis of cancer genomes. Curr Opin Genet Dev. 2014;24:82–91.

    Article  PubMed  Google Scholar 

  110. Navin NE. The first five years of single-cell cancer genomics and beyond. Genome Res. 2015;25(10):1499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee M-CW, et al. Single-cell analyses of transcriptional heterogeneity during drug tolerance transition in cancer cells by RNA sequencing. Proc Natl Acad Sci. 2014;111(44):E4726–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xu X, et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell. 2012;148(5):886–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fajriyah R. Paper review: an overview on microarray technologies. Bull Appl Math Math Educ. 2021;1(1):21–30.

    Article  Google Scholar 

  114. Chin K-V, Kong ANT. Application of DNA microarrays in pharmacogenomics and Toxicogenomics. Pharm Res. 2002;19(12):1773–8.

    Article  CAS  PubMed  Google Scholar 

  115. Lemieux Perreault LP, et al. Pharmacogenetic content of commercial genome-wide genotyping arrays. Pharmacogenomics. 2018;19(15):1159–67.

    Article  CAS  PubMed  Google Scholar 

  116. de Leon J, Susce MT, Murray-Carmichael E. The AmpliChip CYP450 genotyping test: integrating a new clinical tool. Mol Diagn Ther. 2006;10(3):135–51.

    Article  PubMed  Google Scholar 

  117. Johnson JA, et al. Implementing personalized medicine: development of a cost-effective customized pharmacogenetics genotyping array. Clin Pharmacol Ther. 2012;92(4):437–9.

    Article  CAS  PubMed  Google Scholar 

  118. Hoffman JM, et al. PG4KDS: a model for the clinical implementation of pre-emptive pharmacogenetics. Am J Med Genet C Semin Med Genet. 2014;166C(1):45–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abedini, S.S., Bazazzadegan, N., Hasanzad, M. (2022). DNA Technologies in Precision Medicine and Pharmacogenetics. In: Hasanzad, M. (eds) Precision Medicine in Clinical Practice. Springer, Singapore. https://doi.org/10.1007/978-981-19-5082-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5082-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5081-0

  • Online ISBN: 978-981-19-5082-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics