Skip to main content

Precision Medicine in Infectious Disease

  • Chapter
  • First Online:
Precision Medicine in Clinical Practice

Abstract

The conception that several infectious diseases were linked to an inherited disorder has been discussed, and every day, substantial evidence now is supported by the human genetic contribution to susceptibility to infectious diseases. Despite being a forerunner, personalized medicine (PM) is not yet routinely applied in infectious patient care.

For this scope, education is a crucial step for the successful implementation of PM in the clinic, and with this part, we would like to encourage learning about PM in the communicable disease field.

The information in this section will drive you through the concept of personalized infectious diseases and a piece of basic knowledge about the possibility of identifying determinants of clinical outcomes, looking at the host face through selected infectious diseases which are considered a global health issue such as HIV (human immunodeficiency virus) infection and related AIDS (acquired immunodeficiency syndrome), infections caused by Mycobacterium tuberculosis, malaria, and COVID-19 infection. It is especially important, as it can enable the development of one’s own thoughts and ideas to be able to understand and implement this rapidly developing field of science.

A brief overview of the genetic identification of more vulnerable individuals is expected to inform personalized treatment and perhaps vaccination strategies. Additionally, new technologies are supporting the rapid identification of infective agents and targeted approaches based on the genetic resistance of pathogens to antibiotics. This information can lead to revising the data that can be used for personalized predicting diseases, improving personalized treatment, and also personalized prevention strategies specific to infectious pathogens.

The last subchapter is dedicated to a deeper revision of the COVID-19 infection from a personalized medicine perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Meiro-Lorenzo M, et al. Climate change and health approach and action plan. Investing in climate change and health series. World Bank Group, 2017. http://documents.worldbank.org/curated/en/421451495428198858/Climate-change-and-healthapproach-and-action-plan

  2. 2.

    WHO. 2013a. Global TB report https://apps.who.int/iris/handle/10665/91355

  3. 3.

    https://www.cdc.gov/tb/topic/treatment/decideltbi.htm

  4. 4.

    https://www.immunopaedia.org.za/online-courses/previous-iuis-courses/immunocolombia/overview-of-t-cell-subsets/section-2-cytokines-determine-subsets-of-cd4-and-cd8-t-cells/

  5. 5.

    WHO Director-General Summarizes the Outcome of the Emergency Committee Regarding Clusters of Microcephaly and Guillain-Barré Syndrome. 2016. Available online: https://www.who.int/news/item/01-02-2016-who-director-general-summarizes-the-outcome-of-the-emergency-committee-regarding-clusters-ofmicrocephaly-and-guillain-barr%C3%A9-syndrome

  6. 6.

    https://www.cdc.gov/zika/laboratories/types-of-tests.html

  7. 7.

    Joint United Nations Programme on HIV/AIDS (UNAIDS). (2014). Fast-Track: ending the AIDS epidemic by 2030. https://www.unaids.org/sites/default/files/media_asset/JC2686_WAD2014report_en.pdf

  8. 8.

    https://www.globenewswire.com/news-release/2021/09/15/2297456/0/en/Excision-Receives-FDA-Clearance-of-IND-for-Phase-1-2-Trial-of-EBT-101-CRISPR-Based-Therapeutic-for-Treatment-of-HIV.html

  9. 9.

    https://www.who.int/neglected_diseases/zoonoses/en/

  10. 10.

    World Health Organization. (2018). World malaria report 2018.

    https://www.who.int/malaria/publications/world_malaria_report/en/

References

  1. Bissonnette LBM. Infectious disease management through point-of-care personalized medicine molecular diagnostic technologies. J Pers Med. 2012;2(2):50–70. https://doi.org/10.3390/jpm2020050.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chan IS, Ginsburg GS. Personalized medicine: progress and promise. Annu Rev Genomics Hum Genet. 2011;12:217–44. https://doi.org/10.1146/annurev-genom-082410-101446.

    Article  CAS  PubMed  Google Scholar 

  3. Al-Mozaini MA, Mansour MK. Personalized medicine: is it time for infectious diseases? Saudi Med J. 2016;37(12):1309–11. https://doi.org/10.15537/smj.2016.12.16837.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ehrmeyer SS, Laessig RH. Point-of-care testing, medical error, and patient safety: a 2007 assessment. Clin Chem Lab Med. 2007;45(6):766–73. https://doi.org/10.1515/CCLM.2007.164.

    Article  CAS  PubMed  Google Scholar 

  5. Kosack CS, Pageb AL, Klatser PR. A guide to aid the selection of diagnostic tests. Bull World Health Organ. 2017;95:639–45. https://doi.org/10.2471/BLT.16.187468.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis. 2004;4(6):337–48. https://doi.org/10.1016/S1473-3099(04)01044-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mahmud I, Garrett TJ. Mass spectrometry techniques in emerging pathogens studies: COVID-19 perspectives. J Am Soc Mass Spectrom. 2020;31(10):2013–24. https://doi.org/10.1021/jasms.0c00238.

    Article  CAS  PubMed  Google Scholar 

  8. Shuren JST. COVID-19 molecular diagnostic testing-lessons learned Covid-19. N Engl J Med. 2020;383:e97. https://doi.org/10.1056/NEJMp2023830.

    Article  CAS  PubMed  Google Scholar 

  9. Pierce S, Bell R, Hallberg R, Cheng CM, Chen KS, Williams-Hill D, Martin W, Allard M. Detection and Identification of Salmonella enterica, Escherichia coli, and Shigella spp. via PCR-electrospray ionization mass spectrometry: isolate testing and analysis of food samples. Appl Environ Microbiol. 2012;78 https://doi.org/10.1128/AEM.02272-12.

  10. Bibi A, Basharat N. Procalcitonin as a biomarker of bacterial infection in critically ill patients admitted with suspected Sepsis in Intensive Care Unit of a tertiary care hospital. Pak J Med Sci. 2021;37(7):1999–2003. https://doi.org/10.12669/pjmss.37.7.4183.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Poplin V, Boulware DR, Bahr NC. Methods for rapid diagnosis of meningitis etiology in adults. Biomark Med. 2020;14(6):459–79. https://doi.org/10.2217/bmm-2019-0333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hao MHY. CRISPR-Cas9-mediated carbapenemase gene and plasmid curing in carbapenem resistant. Antimicrob Agents Chemother. 2020:e00843–20. https://doi.org/10.1128/AAC.00843-20.

  13. Kasas S, Malovichko A. Nanomotion detection-based rapid antibiotic susceptibility testing. Antibiotics. 2021;10(3):287. https://doi.org/10.3390/antibiotics10030287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bergeron M, Ke D, Ménard C, Picard F, Gagnon M, Bernier M, Ouellette M, Roy PH, Marcoux S, Fraser W. Rapid detection of group B streptococci in pregnant women at delivery. N Engl J Med. 2000;343(3):175–9. https://doi.org/10.1056/NEJM200007203430303.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng X, Dou Z. Highly sensitive and rapid identification of streptococcus agalactiae based on multiple cross displacement amplification coupled with lateral flow biosensor assay. Front Microbiol. 2020;11:1926. https://doi.org/10.3389/fmicb.2020.01926.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Palavecino EL. Rapid methods for detection of MRSA in clinical specimens. Methods Mol Biol. 2014;1085:71–83. https://doi.org/10.1007/978-1-62703-664-1_3.

    Article  CAS  PubMed  Google Scholar 

  17. Chow SK, Arbefeville S. Multicenter performance evaluation of the Simplexa Bordetella Direct kit in nasopharyngeal swab specimens. J Clin Microbiol. 2021;59:e01041–20. https://doi.org/10.1128/JCM.01041-20.

    Article  CAS  Google Scholar 

  18. Pichon M, Pichard B. Diagnostic accuracy of a noninvasive test for detection of Helicobacter pylori and resistance to clarithromycin in stool by the Amplidiag H. pylori+ClariR real-time PCR assay. J Clin Microbiol. 2020;58:e01787–19. https://doi.org/10.1128/JCM.01787-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Walzl G, McNerney R, du Plessis N, et al. Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. Lancet Infect Dis. 2018;18(7):e199–210. https://doi.org/10.1016/S1473-3099(18)30111-7.

    Article  CAS  PubMed  Google Scholar 

  20. Tiberi S, du Plessis N, Walzl G, et al. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies [published correction appears in Lancet Infect Dis. 2018 Apr 27]. Lancet Infect Dis. 2018;18(7):e183–98. https://doi.org/10.1016/S1473-3099(18)30110-5.

    Article  PubMed  Google Scholar 

  21. Voss G, Casimiro D, Neyrolles O, et al. Progress and challenges in TB vaccine development. F1000Res. 2018;7:199. https://doi.org/10.12688/f1000research.13588.1. Published 2018 Feb 16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krishnan N, Malaga W, Constant P, Caws M, Thi Hoang Chau T, Salmons J, et al. Mycobacterium tuberculosis lineage influences innate immune response and virulence and is associated with distinct cell envelope lipid profiles. PLoS One. 2011;6(9):e23870. https://doi.org/10.1371/journal.pone.0023870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alcaïs A, Abel L. Application of genetic epidemiology to dissecting host susceptibility/resistance to infection illustrated with the study of common mycobacterial infection. 2004 In Bellam, & Cambridge University Press., Susceptibility to Infectious Diseases: The Importance of Host Genetics (p. 7–44). Cambridge: Bellamy R. https://doi.org/10.1017/CBO9780511546235.002

  24. Al-Muhsen S, Casanova JL. The genetic heterogeneity of mendelian susceptibility to mycobacterial diseases. J Allergy Clin Immunol. 2008;122(6):1043–53. https://doi.org/10.1016/j.jaci.2008.10.037.

    Article  CAS  PubMed  Google Scholar 

  25. Aravindan PP. Host genetics and tuberculosis: Theory of genetic polymorphism and tuberculosis. Lung India. 2019;36(3):244–52. https://doi.org/10.4103/lungindia.lungindia_146_15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krishnan S, Queiroz ATL, Gupta A, Gupte N, Bisson GP, Kumwenda J, Naidoo K, Mohapi L, Mave V, Mngqibisa R, Lama JR, Hosseinipour MC, Andrade BB, Karakousis PC. Integrative multi-omics reveals serum markers of tuberculosis in advanced HIV. Front Immunol. 2021;12:676980. https://doi.org/10.3389/fimmu.2021.676980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shah NS, Auld SC, Brust JCM, Mathema B, Ismail N, Moodley P, et al. Transmission of extensively drug-resistant tuberculosis in South Africa. N Engl J Med. 2017 Jan 19;376(3):243–53. https://doi.org/10.1056/NEJMoa1604544.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gausi K, Wiesner L. Pharmacokinetics and drug-drug interactions of isoniazid and efavirenz in pregnant women living with HIV in high TB incidence settings: importance of genotyping. Clin Pharmacol Ther. 2021;109(4):1034–44. https://doi.org/10.1002/cpt.2044.

    Article  CAS  PubMed  Google Scholar 

  29. Glaziou PSC. Global epidemiology of tuberculosis. Cold Spring Harb Perspect Med. 2014;5(2):a017798. https://doi.org/10.1101/cshperspect.a017798.

    Article  CAS  PubMed  Google Scholar 

  30. Fauci AS, Morens DM. Zika virus in the Americas — yet another arbovirus threat. N Engl J Med. 2016;374:601–4. https://doi.org/10.1056/NEJMp1600297.

    Article  PubMed  Google Scholar 

  31. Pardy RD, Richer MJ. Protective to a T: the role of T cells during Zika Virus infection. Cells. 2019;8(8):820. https://doi.org/10.3390/cells8080820. Published 2019 Aug 3

    Article  CAS  PubMed Central  Google Scholar 

  32. Manabe YC, Andrade BB, Gupte N, et al. A parsimonious host inflammatory biomarker signature predicts incident tuberculosis and mortality in advanced human immunodeficiency virus. Clin Infect Dis. 2020;71(10):2645–54. https://doi.org/10.1093/cid/ciz1147.

    Article  CAS  PubMed  Google Scholar 

  33. Du Bruyn E, Fukutani FK. Inflammatory profile of patients with tuberculosis with or without HIV-1 co-infection: a prospective cohort study and immunological network analysis. Lancet Microbe. 2021;2(8):375–E385. https://doi.org/10.1016/S2666-5247(21)00037-9.

    Article  Google Scholar 

  34. Deschamps M, Laval G, Fagny M, Itan Y, Abel L, Casanova JL, et al. Genomic signatures of selective pressures and introgression from archaic hominins at human innate immunity genes. Am J Hum Genet. 2016;98(1):5–21. https://doi.org/10.1016/j.ajhg.2015.11.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Golubeva VA, Nepomuceno TC, de Gregoriis G, Mesquita RD, Li X, Dash S, Garcez PP, Suarez-Kurtz G, Izumi V, Koomen J, Carvalho MA, Monteiro ANA. Network of interactions between ZIKA virus non-structural proteins and human host proteins. Cell. 2020;9(1):153. https://doi.org/10.3390/cells9010153.

    Article  CAS  Google Scholar 

  36. German Advisory Committee Blood (Arbeitskreis Blut), Subgroup ‘Assessment of Pathogens Transmissible by Blood’. Human Immunodeficiency Virus (HIV). Transfus Med Hemother. 2016;43(3):203–22. https://doi.org/10.1159/000445852.

    Article  Google Scholar 

  37. Wichit S, Gumpangseth N, Hamel R, et al. Chikungunya and zika viruses: co-circulation and the interplay between viral proteins and host factors. Pathogens. 2021;10(4):448. https://doi.org/10.3390/pathogens10040448. Published 2021 Apr 9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ávila-Ríos S, Parkin N. Next-generation sequencing for HIV drug resistance testing: laboratory, clinical, and implementation considerations. Viruses. 2020;12(6):617. https://doi.org/10.3390/v12060617.

    Article  CAS  PubMed Central  Google Scholar 

  39. Joint United Nations Programme on HIV/AIDS (UNAIDS). The youth bulge and HIV; 2018. https://www.unaids.org/sites/default/files/media_asset/the-youth-bulge-and-hiv_en.pdf

  40. Levy JA. HIV pathogenesis: 25 years of progress and persistent challenges. AIDS. 2009;23(2):147–60. https://doi.org/10.1097/QAD.0b013e3283217f9f.

    Article  PubMed  Google Scholar 

  41. Gingras SN, Tang D, Tuff J, McLaren PJ. Minding the gap in HIV host genetics: opportunities and challenges. Hum Genet. 2020;139(67):865–75. https://doi.org/10.1007/s00439-020-02177-9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Goulder PJ, Walker BD. HIV and HLA class I: an evolving relationship. Immunity. 2012;37(3):426–40. https://doi.org/10.1016/j.immuni.2012.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Munung NS, Mayosi BM, de Vries J. Genomics research in Africa and its impact on global health: insights from African researchers. Glob Health Epidemiol Genom. 2018;3:e12. https://doi.org/10.1017/gheg.2018.3. Published 2018 Jun 8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yin L, Hu S, Mei S, et al. CRISPR/Cas9 inhibits multiple steps of HIV-1 infection. Hum Gene Ther. 2018;29(11):1264–76. https://doi.org/10.1089/hum.2018.018.

    Article  CAS  PubMed  Google Scholar 

  45. Qi J, Ding C, Jiang X, Gao Y. Advances in developing CAR T-cell therapy for HIV cure. Front Immunol. 2020;11:361. https://doi.org/10.3389/fimmu.2020.00361. Published 2020 Mar 10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Longoni SS, Tiberti N. Monoclonal antibodies for protozoan infections: a future reality or a utopic idea? Front Med (Lausanne). 2021;8:745665. https://doi.org/10.3389/fmed.2021.74566.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Saracino MP, Vila CC. Searching for the one(s): using probiotics as anthelmintic treatments. Front Pharmacol. 2021;12:714198. https://doi.org/10.3389/fphar.2021.714198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. González R, Sevene E, Jagoe G, Slutsker L, Menéndez C. A public health paradox: the women most vulnerable to malaria are the least protected. PLoS Med. 2016;13(5):e1002014. https://doi.org/10.1371/journal.pmed.1002014. Published 2016 May 3

    Article  PubMed  PubMed Central  Google Scholar 

  49. WHO Strategic Advisory Group on Malaria Eradication. Malaria eradication: benefits, future scenarios and feasibility. Geneva: World Health Organization; 2019. https://malariaworld.org/sites/default/files/WHOCDS-GMP-2019.10-eng.pdf

    Google Scholar 

  50. Feachem RGA, Chen I, Akbari O, et al. Malaria eradication within a generation: ambitious, achievable, and necessary. Lancet. 2019;394(10203):1056–112. https://doi.org/10.1016/S0140-6736(19)31139-0.

    Article  PubMed  Google Scholar 

  51. Murmu LK, S. A. Diagnosing the drug resistance signature in Plasmodium falciparum: a review from contemporary methods to novel approaches. J Parasit Dis. 2021;45(3):869–76. https://doi.org/10.1007/s12639-020-01333-2.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Runtuwene LR, Tuda JSB. Nanopore sequencing of drug-resistance-associated genes in malaria parasites, Plasmodium falciparum. Sci Rep. 2018;8:8286. https://doi.org/10.1038/s41598-018-26334-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rabinovich RN, Drakeley C, Djimde AA, Hall BF, Hay SI, Hemingway J, et al. malERA: an updated research agenda for malaria elimination and eradication. PLoS Med. 2017;14(11):e1002456. https://doi.org/10.1371/journal.pmed.100245.

    Article  PubMed  PubMed Central  Google Scholar 

  54. O’Neill. Tackling drug-resistant infections globally: final report and recommendations. Government of the United Kingdom, 2016. https://apo.org.au/sites/default/files/resource-files/2016/05/apo-nid63983-1203771.pdf

  55. Ndihokubwayo JB, et al. Antimicrobial resistance in the African Region: Issues, challenges and actions proposed. Brazzaville: WHO, Regional Office for Africa; 2013. http://apps.who.int/medicinedocs/documents/s22169en/s22169en.pdf

    Google Scholar 

  56. Akerlund A, Jonasson E. EUCAST rapid antimicrobial susceptibility testing (RAST) in blood cultures:validation in 55 European laboratories. J Antimicrob Chemother. 2020;75:3230–8. https://doi.org/10.1093/jac/dkaa333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Van Belkum A, Bachmann T. Developmental roadmap for antimicrobial susceptibility testing systems. Nat Rev Microbiol. 2019;17:51–62. https://doi.org/10.1038/s41579-018-0098-9.

    Article  CAS  PubMed  Google Scholar 

  58. Ellington MJ. E. O. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST subcommittee. Clin. Microbiol. Infect. 2017;23(1):2–22. https://doi.org/10.1016/j.cmi.2016.11.012.

    Article  CAS  Google Scholar 

  59. Ladner JT, Grubaugh ND, Pybus OG, et al. Precision epidemiology for infectious disease control. Nat Med. 2019;25:206–11. https://doi.org/10.1038/s41591-019-0345-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Odlum M, Yoon S. What can we learn about the Ebola outbreak from tweets? Am J Infect Control. 2015;3(6):563–71. https://doi.org/10.1016/j.ajic.2015.02.023.

    Article  Google Scholar 

  61. Wójcik OP, Brownstein JS. Public health for the people: participatory infectious diseases surveillance in the digital age. Emerg Themes Epidemiol. 2014;11:7. https://doi.org/10.1186/1742-7622-11-7.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dion M, AbdelMalik P. Big data and the global public health intelligence network (GPHIN). Can Commun Dis Rep. 2015;41(9):209–14. https://doi.org/10.14745/ccdr.v41i09a02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Susumpow P. Participatory disease detection through digital volunteerism: how the doctorme application aims to capture data for faster disease detection in Thailand. In: I. W. (IW3C2). 2014; pp. 663–666. https://doi.org/10.1145/2567948.2579273.

  64. Bonanni PBG. Focusing on the implementation of 21st century vaccines for adults. Vaccine. 2018;36(36):5358–65. https://doi.org/10.1016/j.vaccine.2017.07.100.

    Article  PubMed  Google Scholar 

  65. Doherty T, Di Pasquale A. Precision medicine and vaccination of older adults: from reactive to proactive (a mini-review). Gerontology. 2020;66:238–48. https://doi.org/10.1159/000503141.

    Article  PubMed  Google Scholar 

  66. Teresa Aguado M, Barratt J. Report on WHO meeting on immunization in older adults: Geneva, Switzerland. Vaccine. 2017;37(7):921–31. https://doi.org/10.1016/j.vaccine.2017.12.029.

    Article  Google Scholar 

  67. H3Africa Consortium, R. C. Research. capacity. Enabling the genomic revolution in Africa. Science. 2014;344(6190):1346–8. https://doi.org/10.1126/science.1251546.

    Article  Google Scholar 

  68. Cani P. Human gut microbiome: hopes, threats and promises. Gut. 2018;67:1716–25. https://doi.org/10.1136/gutjnl-2018-316723.

    Article  CAS  PubMed  Google Scholar 

  69. Banerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and coronaviruses. Viruses. 2019;11(1):41.

    Article  PubMed Central  Google Scholar 

  70. Carlos WG, Dela Cruz CS, Cao B, Pasnick S, Jamil S. Novel Wuhan (2019-nCoV) Coronavirus. Am J Respir Crit Care Med. 2020;201(4):P7–8.

    Article  PubMed  Google Scholar 

  71. Peiris J, Lai S, Poon L, Guan Y, Yam L, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361(9366):1319–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1953–66.

    Article  CAS  PubMed  Google Scholar 

  73. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–69. https://doi.org/10.1038/s41586-020-2008-3.

  75. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25(3):2000045.

    Article  PubMed Central  Google Scholar 

  76. Phelan AL, Katz R, Gostin LO. The novel coronavirus originating in Wuhan, China: challenges for global health governance. JAMA. 2020;323(8):709–10.

    Article  CAS  PubMed  Google Scholar 

  77. Gorbalenya AE. Severe acute respiratory syndrome-related coronavirus–The species and its viruses, a statement of the Coronavirus Study Group. BioRxiv. 2020.

    Google Scholar 

  78. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–92.

    Article  CAS  PubMed  Google Scholar 

  79. Donnelly CA, Malik MR, Elkholy A, Cauchemez S, Van Kerkhove MD. Worldwide reduction in MERS cases and deaths since 2016. Emerg Infect Dis. 2019;25(9):1758.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Poon L, Guan Y, Nicholls J, Yuen K, Peiris J. The aetiology, origins, and diagnosis of severe acute respiratory syndrome. Lancet Infect Dis. 2004;4(11):663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. World. Estimating mortality from COVID-19. https://www.whoint/news-room/commentaries/detail/estimating-mortality-from-covid-19.

  82. Chen J. Pathogenicity and transmissibility of 2019-nCoV—a quick overview and comparison with other emerging viruses. Microbes Infect. 2020; https://doi.org/10.1016/j.micinf.2020.01.004.

  83. Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppelli A, Del Prato S. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020; https://doi.org/10.1016/S2213-8587(20)30238-2.

  84. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; https://doi.org/10.1016/S0140-6736(20)30566-3.

  85. Joseph T, Ashkan M. E-book “International Pulmonologist’s consensus on COVID-19” 2nd edition, April 2020, India, p 92 https://www.saudedafamilia.org/coronavirus/artigos/international_pulmonologists_consensus.pdf.

  86. World. Coronavirus disease (COVID-19) pandemic. https://www.whoint/emergencies/diseases/novel-coronavirus-2019

  87. Lescure F-X, Bouadma L, Nguyen D, Parisey M, Wicky P-H, Behillil S, et al. Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infect Dis. 2020; https://doi.org/10.1016/S1473-3099(20)30200-0.

  88. Thompson R. Pandemic potential of 2019-nCoV. Lancet Infect Dis. 2020;20(3):280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Weiss SR, Leibowitz JL. Coronavirus pathogenesis. In: Advances in virus research, vol. 81. Amsterdam: Elsevier; 2011. p. 85–164.

    Chapter  Google Scholar 

  90. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3:237–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Knoops K, Kikkert M, van den Worm SH, Zevenhoven-Dobbe JC, van der Meer Y, Koster AJ, et al. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol. 2008;6(9):e226.

    Article  PubMed  PubMed Central  Google Scholar 

  92. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio. 2012;3(6):e00473–12.

    PubMed  PubMed Central  Google Scholar 

  93. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020; https://doi.org/10.1016/j.chom.2020.02.001.

  94. Hu D, Zhu C, Ai L, He T, Wang Y, Ye F, et al. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg Microbes Infect. 2018;7(1):1–10.

    Article  Google Scholar 

  95. Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Global Chall. 2017;1(1):33–46.

    Article  Google Scholar 

  96. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance. 2017;22(13):30494.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol. 2020;79:104212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Malik YS, Sircar S, Bhat S, Sharun K, Dhama K, Dadar M, et al. Emerging novel Coronavirus (2019-nCoV)-Current scenario, evolutionary perspective based on genome analysis and recent developments. Veterinary quarterly 2020;40(1):68–76.

    Google Scholar 

  100. Ceraolo C, Giorgi FM. Genomic variance of the 2019-nCoV coronavirus. J Med Virol. 2020; https://doi.org/10.1002/jmv.25700.

  101. Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020;6(1):1–4.

    Article  Google Scholar 

  102. Zhao W, Song S, Chen M, Zou D, Ma L, Ma Y, et al. The 2019 novel coronavirus resource. Yi Chuan. 2020;42(2):212.

    PubMed  Google Scholar 

  103. China. 2019 Novel Coronavirus Resource (2019nCoVR). https://bigdbigaccn/ncov/?lang=en.

    Google Scholar 

  104. Song S, Ma L, Zou D, Tian D, Li C, Zhu J, et al. The global landscape of SARS-CoV-2 genomes, variants, and haplotypes in 2019nCoVR. BioRxiv. 2020.

    Google Scholar 

  105. Dowd JB, Andriano L, Brazel DM, Rotondi V, Block P, Ding X, et al. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proc Natl Acad Sci. 2020;117(18):9696–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur J Hum Genet. 2020;28(6):715–8.

    Article  Google Scholar 

  107. Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell. 2020;182(5):1284–94.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci U S A. 2020;117(17):9241–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Guan Q, Sadykov M, Mfarrej S, Hala S, Naeem R, Nugmanova R, et al. A genetic barcode of SARS-CoV-2 for monitoring global distribution of different clades during the COVID-19 pandemic. Int J infect Dis. 2020;100:216–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Eden JS, Rockett R, Carter I, Rahman H, de Ligt J, Hadfield J, et al. An emergent clade of SARS-CoV-2 linked to returned travellers from Iran. Virus Evol. 2020;6(1):veaa 027.

    Article  Google Scholar 

  111. Mercatelli D, Giorgi FM. Geographic and genomic distribution of SARS-CoV-2 mutations. Front Microbiol. 2020;11:1800.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Korber B, Fischer W, Gnanakaran SG, Yoon H, Theiler J, Abfalterer W, et al. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv. 2020.

    Google Scholar 

  113. Elena SF, Sanjuán R. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J Virol. 2005;79(18):11555–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tao K, Tzou PL, Nouhin J, Gupta RK, de Oliveira T, Kosakovsky Pond SL, et al. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet. 2021;22(12):757–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. who. Tracking SARS-CoV-2 variants. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.

  116. Initiative C-HG. Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472–7.

    Article  Google Scholar 

  117. Velavan TP, Pallerla SR, Ruter J, Augustin Y, Kremsner PG, Krishna S, et al. Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine. 2021;72:103629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; https://doi.org/10.1016/j.cell.2020.02.052.

  119. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 2020; https://doi.org/10.5582/bst.2020.01020.

  120. Hammond E. Genetic engineering and biological weapons. New technologies, desires and threats from biological research. EMBO Rep. 2003;4(Suppl 1):S57–60.

    PubMed  PubMed Central  Google Scholar 

  121. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):1–5.

    Article  Google Scholar 

  122. Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24(8):1634–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hussain M, Jabeen N, Raza F, Shabbir S, Baig AA, Amanullah A, et al. Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J Med Virol. 2020; https://doi.org/10.1002/jmv.25832.

  124. Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, et al. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020; https://doi.org/10.1056/NEJMoa2020283.

  125. Daniloski Z, Jordan TX, Wessels H-H, Hoagland DA, Kasela S, Legut M, et al. Identification of required host factors for SARS-CoV-2 infection in human cells. Cell. 2020; https://doi.org/10.1016/j.cell.2020.10.030.

  126. Chen Y, Liu QY, Guo DY. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Coronaviruses. Cham: Springer; 2015. p. 1–23.

    Book  Google Scholar 

  128. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect. 2020; https://doi.org/10.1016/j.jinf.2020.03.037.

  129. Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect. 2017;5(1):e00293.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Li G, Hu R, Zhang X. Antihypertensive treatment with ACEI/ARB of patients with COVID-19 complicated by hypertension. Hypertens Res. 2020;43(6):588-590. https://doi.org/10.1038/s41440-020-0433-1.

  131. National Institutes of Health (US); Biological Sciences Curriculum Study. NIH Curriculum Supplement Series [Internet]. Bethesda (MD): National Institutes of Health (US); 2007. Available from: https://www.ncbinlmnihgov/books/NBK20364/.

  132. Fierz W. Challenge of personalized health care: to what extent is medicine already individualized and what are the future trends? Med Sci Monit. 2004;10(5):Ra111–23.

    PubMed  Google Scholar 

  133. National Institutes of Health (US); Biological Sciences Curriculum Study. NIH Curriculum Supplement Series [Internet]. Bethesda (MD): National Institutes of Health (US); 2007. Understanding Human Genetic Variation. Available from: https://www.ncbinlmnihgov/books/NBK20363/.

  134. Mini E, Nobili S. Pharmacogenetics: implementing personalized medicine. Clin Cases Mine Bone Metab. 2009;6(1):17–24.

    Google Scholar 

  135. Agyeman AA, Ofori-Asenso R. Perspective: does personalized medicine hold the future for medicine? J Pharm Bioallied Sci. 2015;7(3):239–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ramaswami R, Bayer R, Galea S. Precision medicine from a public health perspective. Annu Rev Public Health. 2018;39:153–68.

    Article  PubMed  Google Scholar 

  137. Channappanavar R, Perlman S, editors. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in immunopathology. Cham: Springer; 2017.

    Google Scholar 

  138. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pacific J allergy Immunol. 2020;38(1):1–9. https://doi.org/10.12932/AP-200220-0772.

  139. Cheng PK, Wong DA, Tong LK, Ip S-M, Lo AC, Lau C-S, et al. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet. 2004;363(9422):1699–700.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Valenzuela-Sánchez F, Valenzuela-Méndez B, Rodríguez-Gutiérrez J, Rello J. Personalized medicine in severe influenza. Eur J Clin Microbiol Infect Dis. 2016;35(6):893–7.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Meybodi HRA, Hasanzad M, Larijani B. Path to personalized medicine for type 2 diabetes mellitus: reality and hope. Acta Med Iran. 2017;55:166–74.

    Google Scholar 

  142. Hasanzad M, Sarhangi N, Meybodi HRA, Nikfar S, Khatami F, Larijani B. Precision medicine in non communicable diseases. Int J Mol Cell Med. 2019;8(Suppl1):1.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. DeMerle K, Angus DC, Seymour CW. Precision medicine for COVID-19: phenotype anarchy or promise realized? JAMA. 2021;325(20):2041–2.

    Article  CAS  PubMed  Google Scholar 

  144. Lauring AS, Hodcroft EB. Genetic variants of SARS-CoV-2-what do they mean? JAMA. 2021;325(6):529–31.

    Article  CAS  PubMed  Google Scholar 

  145. Challen R, Brooks-Pollock E, Read JM, Dyson L, Tsaneva-Atanasova K, Danon L. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ (Clinical research ed). 2021;372:n579.

    PubMed Central  Google Scholar 

  146. Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science (New York, NY). 2012;335(6071):936–41.

    Article  CAS  Google Scholar 

  147. Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020; https://doi.org/10.1016/S2213-2600(20)30079-5.

  148. Whirl-Carrillo M, McDonagh EM, Hebert J, Gong L, Sangkuhl K, Thorn C, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414–7.

    Article  CAS  PubMed  Google Scholar 

  149. Takahashi T, Luzum JA, Nicol MR, Jacobson PA. Pharmacogenomics of COVID-19 therapies. NPJ Genom Med. 2020;5(1):35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fricke-Galindo I, Falfán-Valencia R. Pharmacogenetics Approach for the Improvement of COVID-19 Treatment. Viruses. 2021;13(3):413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases. Lancet Infect Dis. 2003;3(11):722–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Devaux CA, Rolain J-M, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;55:105938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020; https://doi.org/10.1001/jama.2020.6019.

  154. Chan KS, Lai ST, Chu CM, Tsui E, Tam CY, Wong MM, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J. 2003;9(6):399–406.

    CAS  PubMed  Google Scholar 

  155. Lee JY, Vinayagamoorthy N, Han K, Kwok SK, Ju JH, Park KS, et al. Association of polymorphisms of cytochrome P450 2D6 with blood hydroxychloroquine levels in patients with systemic lupus erythematosus. Arthritis Rheumatol (Hoboken, NJ). 2016;68(1):184–90.

    Article  CAS  Google Scholar 

  156. Wahie S, Daly AK, Cordell HJ, Goodfield MJ, Jones SK, Lovell CR, et al. Clinical and pharmacogenetic influences on response to hydroxychloroquine in discoid lupus erythematosus: a retrospective cohort study. J Invest Dermatol. 2011;131(10):1981–6.

    Article  CAS  PubMed  Google Scholar 

  157. Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 2008;371(9606):64–74.

    Article  CAS  PubMed  Google Scholar 

  158. Mason PJ, Bautista JM, Gilsanz F. G6PD deficiency: the genotype-phenotype association. Blood Rev. 2007;21(5):267–83.

    Article  CAS  PubMed  Google Scholar 

  159. Beutler E. G6PD deficiency. Blood. 1994;84(11):3613–36.

    Article  CAS  PubMed  Google Scholar 

  160. Beutler E, Vulliamy TJ. Hematologically important mutations: glucose-6-phosphate dehydrogenase. Blood Cell Mol Dis. 2002;28(2):93–103.

    Article  Google Scholar 

  161. Vulliamy T, Beutler E, Luzzatto L. Variants of glucose-6-phosphate dehydrogenase are due to missense mutations spread throughout the coding region of the gene. Hum Mutat. 1993;2(3):159–67.

    Article  CAS  PubMed  Google Scholar 

  162. Paterson AD. HbA1c for type 2 diabetes diagnosis in Africans and African Americans: personalized medicine NOW! PLoS Med. 2017;14(9):e1002384.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Vulliamy TJ, D’Urso M, Battistuzzi G, Estrada M, Foulkes NS, Martini G, et al. Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia. Proc Natl Acad Sci U S A. 1988;85(14):5171–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mitcheson JS. hERG potassium channels and the structural basis of drug-induced arrhythmias. Chem Res Toxicol. 2008;21(5):1005–10.

    Article  CAS  PubMed  Google Scholar 

  165. Kannankeril PJ, Roden DM. Drug-induced long QT and torsade de pointes: recent advances. Curr Opin Cardiol. 2007;22(1):39–43.

    Article  PubMed  Google Scholar 

  166. Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006;440(7083):463–9.

    Article  CAS  PubMed  Google Scholar 

  167. Pearlstein R, Vaz R, Rampe D. Understanding the structure-activity relationship of the human ether-a-go-go-related gene cardiac K+ channel. A model for bad behavior. J Med Chem. 2003;46(11):2017–22.

    Article  CAS  PubMed  Google Scholar 

  168. Irwin. Some aspects of the history of biometric method in the twentieth century with a special reference to Prof. Linder’s work. Experientia Suppl. 1976;22:11–20.

    Article  CAS  PubMed  Google Scholar 

  169. de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci U S A. 2020;117(12):6771–6.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Arabi YM, Asiri AY, Assiri AM, Jokhdar HAA, Alothman A, Balkhy HH, et al. Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-β1b (MIRACLE trial): statistical analysis plan for a recursive two-stage group sequential randomized controlled trial. Trials. 2020;21(1):1–8.

    Article  Google Scholar 

  171. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020; https://doi.org/10.1056/NEJMoa2001282.

  172. Ehmann F, Caneva L, Papaluca M. European Medicines Agency initiatives and perspectives on pharmacogenomics. Br J Clin Pharmacol. 2014;77(4):612–7.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Tarkiainen EK, Backman JT, Neuvonen M, Neuvonen PJ, Schwab M, Niemi M. Carboxylesterase 1 polymorphism impairs oseltamivir bioactivation in humans. Clin Pharmacol Ther. 2012;92(1):68–71.

    Article  CAS  PubMed  Google Scholar 

  174. Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF, Whaley R, et al. An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2021;110(3):563–72.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B. 2017;93(7):449–63.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Josefina Ruiz Alvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alvarez, M.J.R., Hasanzad, M., Meybodi, H.R.A., Sarhangi, N. (2022). Precision Medicine in Infectious Disease. In: Hasanzad, M. (eds) Precision Medicine in Clinical Practice. Springer, Singapore. https://doi.org/10.1007/978-981-19-5082-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5082-7_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5081-0

  • Online ISBN: 978-981-19-5082-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics