Skip to main content

A Fuzzy Decision Making Inventory Model for Deteriorating Items Under Discounted Partial Advance-Partial Delayed Payment Strategy

  • Chapter
  • First Online:
Real Life Applications of Multiple Criteria Decision Making Techniques in Fuzzy Domain

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 420))

  • 255 Accesses

Abstract

This article presents a buyer’s EOQ model under discounted partial advance payment and partial delayed payment strategies for a single supplier–single buyer supply chain. The durations of advance payment and delayed payment are set by the supplier. Supplier also offers cash discount to the buyer due to advance payment. The rate of cash discount depends on the amount of advance payment made at the time of placing the order, which seems to be realistic in the present business world. It is often observed in the market that a large pile of goods on the shelf has positive affect on the demand; this model considers demand depending on instantaneous stock level of the commodity. Further, to deal with the uncertainty, several inventory parameters are taken as fuzzy numbers (parabolic-flat fuzzy number). For defuzzification of the total average profit of the system, Graded Mean Integration Representation (GMIR) method is used. The aim of this paper is to determine optimal cycle time and optimal ordering quantity for the buyer under no shortages in order to maximize the profit of the system. The necessary theoretical results have been derived in connection with optimality of the total average profit function. To illustrate the model, numerical examples describing a hypothetical system are considered. The concavity of the profit function is visible from graph. Finally, in order to investigate the effects of changes of different system parameters, post optimality analysis is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abad, P.L., Jaggi, C.K.: A joint approach for setting unit price and the length of the credit period for a seller when end demand is price sensitive. Int. J. Prod. Econ. 83(2), 115–122 (2003)

    Article  Google Scholar 

  2. Aggarwal, P.S., Jaggi, K.C.: Ordering policies of deteriorating items under permissible delay in payment. J. Oper. Res. Soc. 46(5), 658–662 (1995)

    Article  MATH  Google Scholar 

  3. Agrawal, S., Gupta, R., Banerjee, S.: EOQ model under discounted partial advance partial trade credit policy with price-dependent demand. In: Shah, N.H., Mittal, M. (eds.) Optimization and Inventory Management, pp. 219–237. Springer, Singapore (2020)

    Chapter  Google Scholar 

  4. Annadurai, K., Uthayakumar, R.: Decaying inventory model with stock-dependent demand and shortages under two-level trade credit. Int. J. Adv. Manuf. Technol. 77, 525–543 (2015)

    Article  Google Scholar 

  5. Bhunia, A.K., Shaikh, A.A., Cárdenas-Barrón, L.E.: A partially integrated production-inventory model with interval valued inventory costs, variable demand and flexible reliability. Appl. Soft Comput. 55, 491–502 (2017)

    Article  Google Scholar 

  6. Bhunia, A.K., Shaikh, A.A.: A deterministic model for deteriorating items with displayed inventory level dependent demand rate incorporating marketing decisions with transportation cost. Int. J. Ind. Eng. Comput. 2(3), 547–562 (2011)

    Google Scholar 

  7. Bhunia, A.K., Shaikh, A.A.: Investigation of two-warehouse inventory problems in interval environment under inflation via particle swarm optimization. Math. Comput. Model. Dyn. Syst. 22(2), 160–179 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, C.T., Ouyang, L.Y., Teng, J.T., Cheng, M.C.: Optimal ordering policies for deteriorating items using a discounted cash-flow analysis when a trade credit is linked to order quantity. Comput. Ind. Eng. 59(4), 770–777 (2010)

    Article  Google Scholar 

  9. Chang, S.C., Yao, J.S., Lee, H.M.: Economic reorder point for fuzzy backorder quantity. Eur. J. Oper. Res. 109(1), 183–202 (1998)

    Article  MATH  Google Scholar 

  10. Chaudhari, U., Shah, N.H., Jani, M.Y.: Inventory modelling of deteriorating item and preservation technology with advance payment scheme under quadratic demand. In: Shah, N.H., Mittal, M. (eds.) Optimization and Inventory Management, pp. 69–79. Springer, Singapore (2020)

    Chapter  Google Scholar 

  11. Chen, L.H., Kang, F.S.: Integrated inventory models considering the two-level trade credit policy and a price-negotiation scheme. Eur. J. Oper. Res. 205, 47–58 (2010)

    Article  MATH  Google Scholar 

  12. Das, A.K., Roy, T.K.: An imprecise EOQ model for non-instantaneous deteriorating item with imprecise inventory parameters using interval number. Int. J. Appl. Comput. Math. 4(2), 79–94 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Das, S.C., Manna, A.K., Rahman, M.S., Shaikh, A.A., Bhunia, A.K.: An inventory model for non-instantaneous deteriorating items with preservation technology and multiple credit periods-based trade credit financing via particle swarm optimization. Soft Comput. 25(7), 5365–5384 (2021)

    Article  MATH  Google Scholar 

  14. De, S.K., Mahata, G.C.: Decision of a fuzzy inventory with fuzzy backorder model under cloudy fuzzy demand rate. Int. J. Appl. Comput. Math. 3(3), 2593–2609 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Diabat, A., Taleizadeh, A.A., Lashgari, M.: A lot sizing model with partial downstream delayed payment, partial upstream advance payment, and partial backordering for deteriorating items. J. Manuf. Syst. 45, 322–342 (2017)

    Article  Google Scholar 

  16. Duari, N.K., Chakrabarti, T.: Optimal ordering policy for deteriorating items with power-form stock dependent demand and shortages under two-warehouse facility. Int. J. Inf. Res. Rev. 3(12), 3347–3360 (2016)

    Google Scholar 

  17. Dutta, D., Kumar, P.: Fuzzy inventory model without shortages using trapezoidal fuzzy number with sensitivity analysis. IOSR J. Math. 4(3), 32–37 (2012)

    Article  Google Scholar 

  18. Goyal, S.K.: Economic order quantity under conditions of permissible delay in payments. J. Oper. Res. Soc. 36(4), 335–338 (1985)

    Article  MATH  Google Scholar 

  19. Gupta, R.K., Bhunia, A.K., Goyal, S.K.: An application of genetic algorithm in solving an inventory model with advance payment and interval valued inventory costs. Math. Comput. Model. 49(5–6), 893–905 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gupta, R.K., Bhunia, A.K., Goyal, S.K.: An application of genetic algorithm in a marketing oriented inventory model with interval valued inventory costs and three-component demand rate dependent on displayed stock level. Appl. Math. Comput. 192(2), 466–478 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Hemalatha, S., Annadurai, K.: A fuzzy EOQ inventory model with advance payment and various fuzzy numbers. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.10.769

  22. Huang, Y.F.: A note on EOQ model under cash discount and payment delay. Int. J. Inf. Manag. Sci. 16(3), 97–107 (2005)

    MATH  Google Scholar 

  23. Indrajitsingha, S.K., Samanta, P., Raju, L.K., Misra, U.: Two-storage inventory model for deteriorating items with price dependent demand and shortages under partial backlogged in fuzzy approach. LogForum 15(4), 487–499 (2019)

    Article  Google Scholar 

  24. Jaggi, C.K., Cárdenas-Barrón, L.E., Tiwari, S., Shafi, A.A.: Two-warehouse inventory model for deteriorating items with imperfect quality under the conditions of permissible delay in payments. Sci. Iranica 24(1), 390–412 (2017)

    Article  Google Scholar 

  25. Jaggi, C.K., Tiwari, S., Goel, S.K.: Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand and two storage facilities. Ann. Oper. Res. 248(1–2), 253–280 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jain, S., Tiwari, S., Cárdenas-Barrón, L.E., Shaikh, A.A., Singh, S.R.: A fuzzy imperfect production and repair inventory model with time dependent demand, production and repair rates under inflationary conditions. RAIRO-Oper. Res. 52(1), 217–239 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jamal, A.M.M., Sarker, B.R., Wang, S.: An ordering policy for deteriorating items with allowable shortage and permissible delay in payment. J. Oper. Res. Soc. 48(8), 826–833 (1997)

    Article  MATH  Google Scholar 

  28. Kalpakam, S., Sapan, K.P.: Stochastic inventory systems; a perishable inventory model. In: International Conference on Stochastic Process and Their Applications, pp. 246–253. Anna University, India (1996)

    Google Scholar 

  29. Khan, M.A.A., Ahmed, S., Babu, M.S., Sultana, N.: Optimal lot-size decision for deteriorating items with price-sensitive demand, linearly time-dependent holding cost under all-units discount environment. Int. J. Syst. Sci. Oper. Log. 9, 1–14 (2020)

    Google Scholar 

  30. Khan, M.A.A., Shaikh, A.A., Cárdenas-Barrón, L.E.: An inventory model under linked-to-order hybrid partial advance payment, partial credit policy, all-units discount and partial backlogging with capacity constraint. Omega 103, 102418 (2021)

    Article  Google Scholar 

  31. Khan, M.A.A., Shaikh, A.A., Konstantaras, I., Bhunia, A.K., Cárdenas-Barrón, L.E.: Inventory models for perishable items with advanced payment, linearly time-dependent holding cost and demand dependent on advertisement and selling price. Int. J. Prod. Econ. 230, 107804 (2020)

    Article  Google Scholar 

  32. Khan, M.A.A., Shaikh, A.A., Panda, G.C., Bhunia, A.K., Konstantaras, I.: Non-instantaneous deterioration effect in ordering decisions for a two-warehouse inventory system under advance payment and backlogging. Ann. Oper. Res. 289, 243–275 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Khan, M.A.A., Shaikh, A.A., Panda, G.C., Konstantaras, I., Cárdenas-Barrón, L.E.: The effect of advance payment with discount facility on supply decisions of deteriorating products whose demand is both price and stock dependent. Int. Trans. Oper. Res. 27(3), 1343–1367 (2020)

    Article  MathSciNet  Google Scholar 

  34. Khan, M.A.A., Shaikh, A.A., Panda, G.C., Konstantaras, I.: Two-warehouse inventory model for deteriorating items with partial backlogging and advance payment scheme. RAIRO-Oper. Res. 53(5), 1691–1708 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Krommyda, I.P., Skouri, K., Lagodimos, A.G.: A unified EOQ model with financial constraints and market tolerance. Appl. Math. Model. 65, 89–105 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kumar, B.A., Paikray, S.K., Mishra, U.: Two-storage fuzzy inventory model with time dependent demand and holding cost under acceptable delay in payment. Math. Model. Anal. 25(3), 441–460 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kumar, P.: An inventory planning problem for time-varying linear demand and parabolic holding cost with salvage value. Croat. Oper. Res. Rev. 10, 187–199 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lashgari, M., Taleizadeh, A.A., Ahmadi, A.: Partial up-stream advanced payment and partial down-stream delayed payment in a three-level supply chain. Ann. Oper. Res. 238(1–2), 329–354 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, R., Liu, Y., Teng, J.T., Tsao, Y.C.: Optimal pricing, lot-sizing and backordering decisions when a seller demands an advance-cash-credit payment scheme. Eur. J. Oper. Res. 278(1), 283–295 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Maiti, A.K., Maiti, M.K., Maiti, M.: Inventory model with stochastic lead-time and price dependent demand incorporating advance payment. Appl. Math. Model. 33(5), 2433–2443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mashud, A.H.M., Wee, H.M., Huang, C.V.: Preservation technology investment, trade credit and partial backordering model for a non-instantaneous deteriorating inventory. RAIRO-Oper. Res. 55, S51–S77 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mashud, A.H.M., Wee, H.M., Sarkar, B., Li, Y.H.C.: A sustainable inventory system with the advanced payment policy and trade-credit strategy for a two-warehouse inventory system. Kybernetes 50(5), 1321–1348 (2020)

    Article  Google Scholar 

  43. Ouyang, L.Y., Chen, M.S., Chuang, K.W.: Economic order quantity model under cash discount and payment delay. Int. J. Inf. Manag. Sci. 13(1), 1–10 (2002)

    MathSciNet  MATH  Google Scholar 

  44. Ouyang, L.Y., Wu, K.S., Yang, C.T.: A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. Comput. Ind. Eng. 51, 637–651 (2006)

    Article  Google Scholar 

  45. Pando, V., Garca-Lagunaa, J., San-Jos, L.A., Sicilia, J.: Maximizing profits in an inventory model with both demand rate and holding cost per unit time dependent on the stock level. Comput. Ind. Eng. 62(2), 599–608 (2012)

    Article  Google Scholar 

  46. Priyan, S., Palanivel, M., Uthayankumar, R.: Mathematical modeling for EOQ inventory system with advance payment and fuzzy parameters. Int. J. Supply Oper. Manag. 1(3), 260–278 (2014)

    Google Scholar 

  47. Rahman, M.S., Khan, M.A.A., Halim, M.A., Nofal, T.A., Shaikh, A.A., Mahmoud, E.E.: Hybrid price and stock dependent inventory model for perishable goods with advance payment related discount facilities under preservation technology. Alex. Eng. J. 60(3), 3455–3465 (2021)

    Article  Google Scholar 

  48. Roy, A., Maiti, M.K., Kar, S., Maiti, M.: An inventory model for a deteriorating item with displayed stock dependent demand under fuzzy inflation and time discounting over a random planning horizon. Appl. Math. Model. 33(2), 744–759 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Saha, S., Sen, N.: A study on inventory model with negative exponential demand and probabilistic deterioration under backlogging. Uncertain Supply Chain Manag. 5(2), 77–88 (2017)

    Article  Google Scholar 

  50. Sajadieh, M.S., Thorstenson, A., Jokar, M.R.K.: An integrated vendor–buyer model with stock dependent demand. Transp. Res. E Logist. Transp. Rev. 46(6), 963–974 (2010)

    Article  Google Scholar 

  51. Sarkar, B.: An EOQ model with delay in payments and time varying deterioration rate. Math. Comput. Model. 55(3–4), 367–377 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sen, N., Nath, B.K., Saha, S.: A fuzzy inventory model for deteriorating items based on different defuzzification techniques. Am. J. Math. Stat. 6(3), 128–137 (2016)

    Google Scholar 

  53. Shabani, S., Mirzazadeh, A., Sharifi, E.: A two-warehouse inventory model with fuzzy deterioration rate and fuzzy demand rate under conditionally permissible delay in payment. J. Ind. Prod. Eng. 33(2), 134–142 (2016)

    Google Scholar 

  54. Shah, N.H., Shah, Y.K.: A discrete-in-time probabilistic inventory model for deteriorating items under conditions of permissible delay in payment. Int. J. Syst. Sci. 29, 121–126 (1997)

    Article  Google Scholar 

  55. Shaikh, A.A., Bhunia, A.K., Cárdenas-Barrón, L.E., Sahoo, L., Tiwari, S.: A fuzzy inventory model for a deteriorating item with variable demand, permissible delay in payments and partial backlogging with shortage follows inventory (SFI) policy. Int. J. Fuzzy Syst. 20(5), 1606–1623 (2018)

    Article  MathSciNet  Google Scholar 

  56. Shaikh, A.A., Das, S.C., Bhunia, A.K., Panda, G.C., Khan, M.A.A.: A two-warehouse EOQ model with interval-valued inventory cost and advance payment for deteriorating item under particle swarm optimization. Soft Comput. 23(24), 13531–13546 (2019)

    Article  Google Scholar 

  57. Singh, S.R., Khurana, D., Tayal, S.: An economic order quantity model for deteriorating products having stock dependent demand with trade credit period and preservation technology. Uncertain Supply Chain Manag. 4, 29–42 (2016)

    Article  Google Scholar 

  58. Singh, S.R., Rastogi, M., Tayal, S.: An inventory model for deteriorating items having seasonal and stock dependent demand with allowable shortages. In: Pant, M., Deep, K., Bansal, J., Nagar, A., Das, K. (eds.) Proceedings of Fifth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol. 437, pp. 501–513. Springer, Singapore (2016)

    Google Scholar 

  59. Supakar, P., Mahato, S.K.: Fuzzy-stochastic advance payment inventory model having no shortage and with uniform demand using ABC algorithm. Int. J. Appl. Comput. Math. 4(4), 1–19 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  60. Taleizadeh, A.A., Lashgari, M., Akram, R., Heydari, J.: Imperfect economic production quantity model with upstream trade credit periods linked to raw material order quantity and downstream trade credit periods. Appl. Math. Model. 40(19–20), 8777–8793 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Taleizadeh, A.A., Pentico, D.W., Jabalameli, M.S., Aryanezhad, M.: An economic order quantity model with multiple partial prepayments and partial backordering. Math. Comput. Model. 57(3–4), 311–323 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. Taleizadeh, A.A.: An economic order quantity model for deteriorating item in a purchasing system with multiple prepayments. Appl. Math. Model. 38(23), 5357–5366 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Teng, J.T.: On the economic order quantity under conditions of permissible delay in payment. J. Oper. Res. Soc. 53(8), 915–918 (2002)

    Article  MATH  Google Scholar 

  64. Thangam, A.: Optimal price discounting and lot-sizing policies for perishable items in a supply chain under advance payment scheme and two-echelon trade credits. Int. J. Prod. Econ. 139(2), 459–472 (2012)

    Article  Google Scholar 

  65. Tiwari, S., Cárdenas-Barrón, L.E., Khanna, A., Jaggi, C.K.: Impact of trade credit and inflation on retailer’s ordering policies for non-instantaneous deteriorating items in a two-warehouse environment. Int. J. Prod. Econ. 176, 154–169 (2016)

    Article  Google Scholar 

  66. Tripathi, R.P., Chaudhary, S.K.: Inflationary induced EOQ model for Weibull distribution deterioration and trade credits. Int. J. Appl. Comput. Math. 3(4), 3341–3353 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  67. Wu, K.S., Ouyang, L.Y., Yang, C.T.: An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. Int. J. Prod. Econ. 101(2), 369–384 (2006)

    Article  Google Scholar 

  68. Yao, J.S., Chang, S.C., Su, J.S.: Fuzzy inventory without backorder for fuzzy order quantity and fuzzy total demand quantity. Comput. Oper. Res. 27(10), 935–962 (2000)

    Article  MATH  Google Scholar 

  69. Zhang, A.X.: Optimal advance payment scheme involving fixed per-payment costs. Omega 24(5), 577–582 (1996)

    Article  Google Scholar 

  70. Zhang, Q., Tsao, Y.C., Chen, T.H.: Economic order quantity under advance payment. App. Math. Model. 38(24), 5910–5921 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  71. Zhang, Q., Zhang, D., Tsao, Y.C., Luo, J.: Optimal ordering policy in a two-stage supply chain with advance payment for stable supply capacity. Int. J. Prod. Econ. 177, 34–43 (2016)

    Article  Google Scholar 

  72. Zia, N.P., Taleizadeh, A.A.: A lot-sizing model with backordering under hybrid linked-to-order multiple advance payments and delayed payment. Transp. Res. E Logist. Transp. Rev. 82, 19–37 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabendu Sen .

Editor information

Editors and Affiliations

Appendices

Appendix 1

This appendix presents the explicit expressions of Eqs. (5), (8), (12) and (15).

The explicit expression for Eq. (5) is

$$\begin{aligned} & \frac{{{\text{dTPU}}_{1} }}{{{\text{d}}T}} = 0\;{\text{that is,}} \\ & 2A + aT^{2} \left[ \begin{array}{*{20}l} - h - 2xI_{c} - 2xI_{B} m_{1} + 2xI_{c} m_{1} + 2xd_{1} I_{B} m_{1}^{2} \hfill \\ - 2xI_{B} m_{2} + 2xI_{c} m_{2} + I_{e} p \, \hfill \\ + b ( p + x ( - 1 + d_{1} m_{1}^{2} - I_{c} ( - 1 + m_{1} + m_{2} )(M - 2T) ) \hfill \\ + xI_{B} ( Lm_{1} ( - 1 + d_{1} m_{1} ) + Mm_{2} - 2m_{1} T + 2d_{1} m_{1}^{2} T - 2m_{2} T) ) \hfill \\ - 2x\theta + x\eta \theta + xI_{c} M\theta - xI_{B} Lm_{1} \theta - xI_{c} Mm_{1} \theta \hfill \\ + xd_{1} m_{1}^{2} \theta + xd_{1} I_{B} Lm_{1}^{2} \theta + xI_{B} Mm_{2} \theta - xI_{c} Mm_{2} \theta - 2xI_{c} T\theta \hfill \\ - 2xI_{B} m_{1} T\theta + 2xI_{c} m_{1} T\theta + 2xd_{1} I_{B} m_{1}^{2} T\theta \hfill \\ - 2xI_{B} m_{2} T\theta + 2xI_{c} m_{2} T\theta \hfill \\ \end{array} \right] = 0 \\ \end{aligned}$$
(18)

The explicit expression for Eq. (8) is

$$\begin{aligned} & \frac{{{\text{d}}\,d_{F} \widetilde{{{\text{TPU}}}}_{1} }}{{{\text{d}}T}} = 0\;{\text{that is}}, \\ & \left[ \begin{array}{*{20}l} 7T\left( \begin{array}{*{20}l} - 2a_{2} h_{2} T + a_{3} b_{3} pT + 2a_{3} I_{e} pT + a_{3} p(2 + b_{3} T) \hfill \\ - 2a_{2} xT\theta_{2} + a_{2} x( - 1 + d_{1} m_{1}^{2} )T(b_{2} + \theta_{2} ) \hfill \\ + a_{2} x( - 1 + d_{1} m_{1}^{2} )(2 + b_{2} T + T\theta_{2} ) \hfill \\ - 2a_{2} x (I_{c} ( - 1 + m_{1} + m_{2} )(M - T) + I_{B} m_{1} (1 - d_{1} m_{1} )(L_{2} + T) \hfill \\ + I_{B} m_{2 } ( - M + T))(1 + T(b_{2} + \theta_{2} )) \hfill \\ - 2a_{2} x( - I_{c} ( - 1 + m1 + m2) + I_{B} (m_{1} - d_{1} m_{1}^{2} + m_{2} )) \hfill \\ \left( {T + \tfrac{1}{2}T^{2} (b_{2} + \theta_{2} )} \right) + 2a_{3 } x \eta_{3} T\eta_{3} \hfill \\ \end{array} \right) \hfill \\ - 7 \left( \begin{array}{*{20}l} - 2A_{2} - a_{2} h_{2} T^{2} + a_{3} I_{e} pT^{2} + a_{3} pT(2 + b_{3} T) - a_{2} xT\theta_{2} \hfill \\ + a_{2} x( - 1 + d_{1} m_{1}^{2} )T(2 + b_{2} T + T\theta_{2} ) \hfill \\ - 2a_{2} x(I_{c} ( - 1 + m_{1} + m_{2} )(M - T) + I_{B} m_{1} (1 - d_{1} m_{1} )(L_{2} + T) \hfill \\ + I_{B} m_{2} ( - M + T))\left( {T + \tfrac{1}{2}T^{2} (b_{2} + \theta_{2} )} \right) + a3x\eta_{3} T^{2} \theta_{3} \hfill \\ \end{array} \right) \hfill \\ + 7 T\left( \begin{array}{*{20}l} - 2a_{3} h_{3} T + a_{2} b_{2} pT + 2a_{2} I_{e} pT + a_{2} p(2 + b_{2} T) + 2a_{2} x\eta_{2} T\theta_{2} \hfill \\ - 2a_{3} xT\theta_{3} + a3x( - 1 + d_{1} m_{1}^{2} )T(b_{3} + \theta_{3} ) \hfill \\ + a_{3} x( - 1 + d_{1} m_{1}^{2} )(2 + b_{3} T + T\theta_{3} )\hfill \\ - 2a_{3} x(I_{c} ( - 1 + m_{1} + m_{2} )(M - T) + I_{B} m_{1} (1 - d_{1} m_{1} )(L_{3} + T) \hfill \\ + I_{B} m_{2} ( - M + T))(1 + T(b_{3} + \theta_{3} )) - 2a_{3} c( - I_{c} ( - 1 + m_{1} + m_{2} ) \hfill \\ + I_{B} (m_{1} - d_{1} m_{1}^{2} + m_{2} ))\left( {T + \tfrac{1}{2}T^{2} (b_{3} + \theta_{3} )} \right) \hfill \\ \end{array} \right) \hfill \\ - 7\left( \begin{array}{*{20}l} - 2A_{3} - a_{3} h_{3} T^{2} + a_{2} I_{e} pT^{2} + a_{2} pT(2 + b_{2} T) + a_{2} x\eta_{2} T^{2} \theta_{2} \hfill \\ - a_{3} xT^{2} \theta_{3} + a_{3} x( - 1 + d_{1} m_{1}^{2} )T(2 + b_{3} T + T\theta_{3} ) \hfill \\ - 2a_{3} x(I_{c} ( - 1 + m_{1} + m_{2} )(M - T) + I_{B} m_{1} (1 - d_{1} m_{1} )(L_{3} + T) \hfill \\ + I_{B} m_{2} ( - M + T))\left( {T + \tfrac{1}{2}T^{2} (b_{3} + \theta_{3} )} \right) \hfill \\ \end{array} \right) \hfill \\ + 8T\left( \begin{array}{*{20}l} - 2a_{1} h_{1} T + a_{4} b_{4} pT + 2a_{4} I_{e} pT + a_{4} p(2 + b_{4} T) - 2a_{1} xT\theta_{1} \hfill \\ + a_{1} x( - 1 + d_{1} m_{1}^{2} )T(b_{1} + \theta_{1} ) + a_{1} x( - 1 + d_{1} m_{1}^{2} )(2 + b_{1} T + T\theta_{1} ) \hfill \\ - 2a_{1} x(I_{c} ( - 1 + m_{1} + m_{2} )(M - T) + I_{B} m_{1} (1 - d_{1} m_{1} )(L_{1} + T) \hfill \\ + I_{B} m_{2} ( - M + T))(1 + T(b_{1} + \theta_{1} )) \hfill \\ - 2a_{1} x( - I_{c} ( - 1 + m_{1} + m_{2} ) + I_{B} (m_{1} - d_{1} m_{1}^{2} + m_{2} )) \hfill \\ \left( {T + \tfrac{1}{2}T^{2} (b_{1} + \theta_{1} )} \right) + 2a_{4} x\eta_{4} T\theta_{4} \hfill \\ \end{array} \right) \hfill \\ - 8 \left( \begin{array}{*{20}l} - 2A_{1} - a_{1} h_{1} T^{2} + a_{4} I_{e} pT^{2} + a_{4} pT(2 + b_{4} T) - a_{1} xT^{2} \theta_{1} \hfill \\ + a_{1} x( - 1 + d_{1} m_{1}^{2} )T(2 + b_{1} T + T\theta_{1} ) \hfill \\ - 2a_{1} x(I_{c} ( - 1 + m_{1} + m_{2} )(M - T) + I_{B} m_{1} (1 - d_{1} m_{1} )(L_{1} + T) \hfill \\ + I_{B} m_{2} ( - M + T))\left( {T + \tfrac{1}{2}T^{2} (b_{1} + \theta_{1} )} \right) + a_{4} x\eta_{4} T^{2} \theta_{4} \hfill \\ \end{array} \right) \hfill \\ + 8T\left( \begin{array}{*{20}l} - 2a_{4} h_{4} T + a_{1} b_{1} pT + 2a_{1} I_{e} pT + a_{1} p(2 + b_{1} T) + 2a_{1} x\eta_{1} T\theta_{1} \hfill \\ - 2a_{4} xT\theta_{4} + a_{4} x( - 1 + d_{1} m_{1}^{2} )T(b_{4} + \theta_{4} ) \hfill \\ + a_{4} x( - 1 + d_{1} m_{1}^{2} )(2 + b_{4} T + T\theta_{4} ) - 2a_{4} x(I_{c} ( - 1 + m_{1} + m_{2} ) \hfill \\ (M - T) + I_{B} m_{1} (1 - d_{1} m_{1} )(L_{4} + T) \hfill \\ + I_{B} m_{2} ( - M + T))(1 + T(b_{4} + \theta_{4} )) - 2a_{4} x( - I_{c} ( - 1 + m_{1} + m_{2} ) \hfill \\ + I_{B} (m_{1} - d_{1} m_{1}^{2} + m_{2} ))\left( {T + \tfrac{1}{2}T^{2} (b_{4} + \theta_{4} )} \right) \hfill \\ \end{array} \right) \hfill \\ - 8\left( \begin{array}{*{20}l} - 2A_{4} - a_{4} h_{4} T^{2} + a_{1} I_{e} pT^{2} + a_{1} pT(2 + b_{1} T) + a_{1} x\eta_{1} T^{2} \theta_{1} \hfill \\ - a_{4} xT^{2} \theta_{4} + a_{4} x( - 1 + d_{1} m_{1}^{2} )T(2 + b_{4} T + T\theta_{4} ) \hfill \\ - 2a_{4} x(I_{c} ( - 1 + m_{1} + m_{2} )(M - T) + I_{B} m_{1} (1 - d_{1} m_{1} )(L_{4} + T) \hfill \\ + I_{B} m_{2} ( - M + T))\left( {T + \tfrac{1}{2}T^{2} (b_{4} + \theta_{4} )} \right) \hfill \\ \end{array} \right) \hfill \\ \end{array} \right] = 0 \\ \end{aligned}$$
(19)

The explicit expression for Eq. (12) is

$$\begin{aligned} & \frac{{{\text{dTPU}}_{2} (T)}}{{{\text{d}}T}} = 0\;{\text{that is}}, \\ & 2A + aT^{2} \left[ \begin{array}{*{20}l} - h - 2xI_{B} m_{1} + 2xd_{1} I_{B} m_{1}^{2} - I_{e} p + b \left\{ p ( (1 + I_{e} (M - 2T) ) \right. \hfill \\ \left. { + x( - 1 + d_{1} m_{1}^{2} + I_{B} m_{1} ( - 1 + d_{1} m_{1} )(L + 2T))} \right\} \hfill \\ - 2x\theta + x\eta \theta - xI_{B} Lm_{1} \theta + xd_{1} m_{1}^{2} \theta \hfill \\ + xd_{1} I_{B} Lm_{1}^{2} \theta - 2xI_{B} m_{1} T\theta + 2xd_{1} I_{B} m_{1}^{2} T\theta \hfill \\ \end{array} \right] = 0 \\ \end{aligned}$$
(20)

The explicit expression for Eq. (15) is

$$\begin{aligned} & \frac{{{\text{d}}d_{F} \widetilde{{{\text{TPU}}}}_{2} }}{{{\text{d}}T}} = 0\;{\text{that is}}, \\ & \left[ \begin{array}{*{20}l} 16A_{1} + 14A_{2} + 14A_{3} + 16A_{4} - 8a_{1} b_{1} xT^{2} - 7a_{2} b_{2} xT^{2} \hfill \\ - 7a_{3} b_{3} xT^{2} - 8a_{4} b_{4} xT^{2} - 8a_{1} h_{1} T^{2} - 7a_{2} h_{2} T^{2} \hfill \\ - 7a_{3} h{}_{3}T^{2} - 8a_{4} h_{4} T^{2} - 30a_{1} xI_{B} m_{1} T^{2} - 14a_{3} xI_{B} m_{1} T^{2} \hfill \\ - 16a_{4} xI_{B} m_{1} T^{2} - 8a_{1} b_{1} xI_{B} L_{1} m_{1} T^{2} \hfill \\ - 7a_{2} b_{2} xI_{B} L_{2} m_{1} T^{2} - 7a_{3} b_{3} xI_{B} L_{3} m_{1} T^{2} - 8a_{4} b_{4} xI_{B} L_{4} m_{1} T^{2} \hfill \\ + 8a_{1} b_{1} xd_{1} m_{1}^{2} T^{2} + 7a_{2} b_{2} xd_{1} m_{1}^{2} T^{2} \hfill \\ + 7a_{3} b_{3} xd_{1} m_{1}^{2} T^{2} + 8a_{4} b_{4} xd_{1} m_{1}^{2} T^{2} + 30a_{1} xd_{1} I_{B} m_{1}^{2} T^{2} \hfill \\ + 14a_{3} xd_{1} I_{B} m_{1}^{2} T^{2} + 16a_{4} xd_{1} I_{B} m_{1}^{2} T^{2} \hfill \\ + 8a_{1} b_{1} xd_{1} I_{B} L_{1} m_{1}^{2} T^{2} + 7a_{2} b_{2} xd_{1} I_{B} L_{2} m_{1}^{2} T^{2} \hfill \\ + 7a_{3} b_{3} xd_{1} I_{B} L_{3} m_{1}^{2} T^{2} + 8a_{4} b_{4} xd_{1} I_{B} L_{4} m_{1}^{2} T^{2} \hfill \\ + 8a_{1} b_{1} pT^{2} + 7a_{2} b_{2} pT^{2} + 7a_{3} b_{3} pT^{2} + 8a_{4} b_{4} pT^{2} \hfill \\ - 8a_{1} I_{e} \, pT^{2} - 7a_{2} I_{e} \, pT^{2} - 7a_{3} I_{e} pT^{2} \hfill \\ - 8a_{4} I_{e} pT^{2} + 8a_{1} b_{1} I_{e} MpT^{2} + 7a_{2} b_{2} I_{e} MpT^{2} + 7a_{3} b_{3} I_{e} MpT^{2} \hfill \\ + 8a_{4} b_{4} I_{e} MpT^{2} - 16a_{1} b_{1} xI_{B} m_{1} T^{3} \hfill \\ - 14a_{1} b_{2} xIBm_{1} T^{3} - 14a_{3} b_{3} xI_{B} m_{1} T^{3} - 16a_{4} b_{4} xI_{B} m_{1} T^{3} \hfill \\ + 16a_{1} b_{1} xd_{1} I_{B} m_{1}^{2} T^{3} + 14a_{1} b_{2} xd_{1} I_{B} m_{1}^{2} T^{3} \hfill \\ + 14a_{3} b_{3} xd_{1} I_{B} m_{1}^{2} T^{3} + 16a_{4} b_{4} xd_{1} I_{B} m_{1}^{2} T^{3} - 16a_{1} b_{1} I_{e} pT^{3} \hfill \\ - 14a_{2} b_{2} I_{e} pT^{3} - 14a_{3} b_{3} I_{e} pT^{3} \hfill \\ - 16a_{4} b_{4} I_{e} pT^{3} - 16a_{1} xT^{2} \theta_{1} + 8a_{1} x\eta_{1} T^{2} \theta_{1} - 8a_{1} xI_{B} L_{1} m_{1} T^{2} \theta_{1} \hfill \\ + 8a_{1} xd_{1} m_{1}^{2} T^{2} \theta_{1} + 8a_{1} xd_{1} I_{B} L_{1} m_{1}^{2} T^{2} \theta_{1} \hfill \\ - 16a_{1} xI_{B} m_{1} T^{3} \theta_{1} + 16a_{1} xd_{1} I_{B} m_{1}^{2} T^{3} \theta_{1} \hfill \\ - 14a_{2} xT^{2} \theta_{2} + 7a_{2} x\eta_{2} T^{2} \theta_{2} - 7a_{2} xI_{B} L_{2} m_{1} T^{2} \theta_{2} \hfill \\ + 7a_{2} xd_{1} m_{1}^{2} T^{2} \theta_{2} + 7a_{2} xd_{1} I_{B} L2m_{1}^{2} T^{2} \theta_{2} - 14a_{1} xI_{B} m_{1} T^{3} \theta_{2} \hfill \\ + 14a_{1} xd_{1} I_{B} m_{1}^{2} T^{3} \theta_{2} - 14a_{3} xT^{2} \theta_{3} \hfill \\ + 7a_{3} x\eta_{3} T^{2} \theta_{3} - 7a_{3} xI_{B} L_{3} m_{1} T^{2} \theta_{3} + 7a_{3} xd_{1} m_{1}^{2} T^{2} \theta_{3} \hfill \\ + 7a_{3} xd_{1} I_{B} L_{3} m_{1}^{2} \, T^{2} \theta_{3} - 14a_{3} xI_{B} m_{1} T^{3} \theta_{3} \hfill \\ + 14a_{3} xd_{1} I_{B} m_{1}^{2} T^{3} \theta_{3} - 16a_{4} xT^{2} \theta_{4} + 8a_{4} x\eta_{4} T^{2} \theta_{4} \hfill \\ - 8a_{4} xI_{B \, } L_{4} m_{1} T^{2} \theta_{4} + 8a_{4} xd_{1} m_{1}^{2} T^{2} \theta_{4} \hfill \\ + 8a_{4} xd_{1} I_{B} L_{4} m_{1}^{2} T^{2} \theta_{4} - 16a_{4} xI_{B} m_{1} T^{3} \theta_{4} + 16a_{4} xd_{1} I_{B} m_{1}^{2} T^{3} \theta_{4} \hfill \\ \end{array} \right] = 0 \\ \end{aligned}$$
(21)

Appendix 2

This appendix presents some results on optimality of the profit functions.

Lemma 1

If a function \(G(y) = \frac{K(y)}{y}\), where \(K(y)\) is twice differentiable function of y, then maximum value of \(G(y)\) exists at \(y = y^{*}\) obtained by solving \(\frac{{{\text{d}}G}}{{{\text{d}}y}} = 0\) if \(\frac{1}{y}\frac{{{\text{d}}^{2} K}}{{{\text{d}}y^{2} }} < 0\) at \(y = y^{*}\).

Proof

We have \(G(y) = \frac{K(y)}{y}\). For maximum or minimum, the necessary condition is \(\frac{{{\text{d}}G}}{{{\text{d}}y}} = 0\).

Now,

$$\frac{{{\text{d}}G}}{{{\text{d}}y}} = \frac{1}{{y^{2} }}\left[ {y\frac{{{\text{d}}K(y)}}{{{\text{d}}y}} - K(y)} \right],\frac{{{\text{d}}^{2} G}}{{{\text{d}}y^{2} }} = \frac{1}{{y^{3} }}\left[ {y^{2} \frac{{{\text{d}}^{2} K(y)}}{{{\text{d}}y^{2} }} - 2\left\{ {y\frac{{{\text{d}}K(y)}}{{{\text{d}}y}} - K(y)} \right\}} \right].$$
$$\frac{{{\text{d}}G}}{{{\text{d}}y}} = 0 \Rightarrow y\frac{{{\text{d}}K(y)}}{{{\text{d}}y}} - K(y) = 0$$
(22)

Let \(y = y^{*}\) which satisfies Eq. (22). Therefore, at \(y = y^{*}\) we have

$$\frac{{{\text{d}}^{2} G}}{{{\text{d}}y^{2} }} = \frac{1}{{y^{3} }}\left[ {y^{2} \frac{{{\text{d}}^{2} K(y)}}{{{\text{d}}y^{2} }} - 2\left\{ {y\frac{{{\text{d}}K(y)}}{{{\text{d}}y}} - K(y)} \right\}} \right] = \frac{1}{y}\frac{{{\text{d}}^{2} K(y)}}{{{\text{d}}y^{2} }}.$$

using Eq. (22).

Thus, \(G(y)\) is maximum at \(y = y^{*}\) if \(\frac{{{\text{d}}^{2} G}}{{{\text{d}}y^{2} }} < 0\) at \(y = y^{*}\) that is, if \(\frac{1}{y}\frac{{{\text{d}}^{2} K(y)}}{{{\text{d}}y^{2} }} < 0\) at \(y = y^{*}\). Hence the lemma.

Result 1

$${\text{TPU}}_{1} (T)$$

is maximum if

$$\begin{aligned} & a\left[ \begin{array}{*{20}l} - h - 2x\left( { - I_{c} \, ( - 1 + m_{1} + m_{2} ) + I_{B} (m1 - d_{1} m_{1}^{2} + m_{2} )} \right) \hfill \\ + bp + I_{e} p - x\theta + x\eta \theta \hfill \\ - xI_{B} Lm_{1} (1 - d_{1} m_{1} )(b + \theta ) + x( - 1 + \, d_{1} m_{1}^{2} )(b + \theta ) \hfill \\ + xI_{B} Mm_{2} (b + \theta ) - xI_{c} M( - 1 + m_{1} + m_{2} )(b + \theta ) \hfill \\ \end{array} \right] \\ & \quad + a\,T \, \left[ \begin{array}{*{20}l} - xI_{B} m_{1} (1 - d_{1} \, m_{1} )(b + \theta ) - xI_{B} m_{2} (b + \theta ) \hfill \\ + xI_{c} ( - 1 + m_{1} + m_{2} )(b + \theta ) \hfill \\ - 2x\left( { - I_{c} ( - 1 + m_{1} + m_{2} ) + I_{B} (m_{1} - d_{1} \, m_{1}^{2} + \, m_{2} )} \right)(b + \theta ) \hfill \\ \end{array} \right] < 0 \\ \end{aligned}$$

at \(T = T^{*} > 0\) which is obtained by solving the Eq. (18).

Proof

Let \({\text{TPU}}_{1} (T) = \frac{K(T)}{T}\), where

$$K(T) = \frac{1}{2}\left[ \begin{array}{*{20}l} - 2A - ahT^{2} + aI_{e} pT^{2} + apT(2 + bT) - ax\theta T^{2} \hfill \\ + ax\eta \theta T^{2} + ax(d_{1} m_{1}^{2} - 1)(2 + bT + \theta T)T \hfill \\ - 2ax\left\{ {I_{c} (m_{1} + m_{2} - 1)(M - T) + I_{B} m_{1} (1 - d_{1} m_{1} )(L + T)} \right. \hfill \\ \left. {+ I_{B} m_{2} (T - M)} \right\}\left\{ {T + \tfrac{1}{2}T^{2} (b + \theta )} \right\} \hfill \\ \end{array} \right]$$

Let \(T = T^{*} > 0\) be obtained by solving the Eq. (18). Since \(T > 0\), by Lemma 1, it follows that average profit will be optimal if \(\frac{{{\text{d}}^{2} K(T)}}{{{\text{d}}T^{2} }} < 0\) at \(T = T^{*}\). That is if,

$$\begin{aligned} & a\left[ \begin{array}{*{20}l} - h - 2x\left( { - I_{c} \, ( - 1 + m_{1} + m_{2} ) + I_{B} (m1 - d_{1} m_{1}^{2} + m_{2} )} \right) \hfill \\ + bp + I_{e} p - x\theta + x\eta \theta \hfill \\ - xI_{B} Lm_{1} (1 - d_{1} m_{1} )(b + \theta ) + x( - 1 + \, d_{1} m_{1}^{2} )(b + \theta ) \hfil \\ + xI_{B} Mm_{2} (b + \theta ) - xI_{c} M( - 1 + m_{1} + m_{2} )(b + \theta ) \hfill \\ \end{array} \right] \\ & \quad + a\,T \, \left[ \begin{array}{*{20}l} - xI_{B} m_{1} (1 - d_{1} \, m_{1} )(b + \theta ) - xI_{B} m_{2} (b + \theta ) \hfill \\ + xI_{c} \, ( - 1 + m_{1} + m_{2} )(b + \theta ) \hfill \\ - 2x\left( { - I_{c} ( - 1 + m_{1} + m_{2} ) + I_{B} (m_{1} - d_{1} \, m_{1}^{2} { + }m_{2} )} \right)(b + \theta ) \hfill \\ \end{array} \right] < 0 \\ \end{aligned}$$

Result 2

\(d_{F} (\widetilde{{{\text{TPU}}}}_{1} )(T)\) is maximum if

$$\left[ \begin{array}{*{20}l} - 14a_{3} h_{3} - 16a_{4} h_{4} + 14a_{3} b_{3} p + 16a_{4} b_{4} p + 14a_{3} I_{e} p \hfill \\ + 16 a_{4} I_{e} p - 14a_{3} b_{3} x - 16a_{4} b_{4} x - 28a_{3} I_{C} x - 32a_{4} I_{C} x \hfill \\ + 14a_{3} b_{3} I_{C} Mx + 16a_{4} b_{4} I_{C} Mx - 2a_{3} I_{B} m_{1} x - 32a_{4} I_{B} m_{1} x \hfill \\ + 28a_{3} I_{C} m_{1} x + 32a_{4} I_{C} m_{1} x - 14a_{3} b_{3} I_{B} L_{3} m_{1} x \hfill \\ - 16a_{4} b_{4} I_{B} L_{4} m_{1} x - 14a_{3} b_{3} I_{C} Mm_{1} x - 16a_{4} b_{4} I_{C} Mm_{1} x \hfill \\ + 14a_{3} b_{3} d_{1} m_{1}^{2} x + 16a_{4} b_{4} d_{1} m_{1}^{2} x + 28a_{3} d_{1} m_{1}^{2} x \hfill \\ + 32a_{4} I_{B} d_{1} m_{1}^{2} x + 14a_{3} b_{3} I_{B} L_{3} d_{1} m_{1}^{2} x + 16a_{4} b_{4} I_{B} L_{4} d_{1} m_{1}^{2} x \hfill \\ - 28a_{3} I_{B} m_{2} x - 32a_{4} I_{B} m_{2} x + 28a_{3} I_{C} m_{2} x \hfill \\ + 32a_{4} I_{C} m_{2} x + 14a_{3} b_{3} I_{B} Mm_{2} x + 16a_{4} b_{4} I_{B} Mm_{2} x \hfill \\ - 14a_{3} b_{3} I_{C} Mm_{2} x - 16a_{4} b_{4} I_{C} Mm_{2} x - 42a_{3} b_{3} I_{C} Tx \hfill \\ - 48a_{4} b_{4} I_{C} Tx - 42a_{3} b_{3} I_{B} m_{1} Tx - 48a_{4} b_{4} I_{B} m_{1} Tx \hfill \\ + 42a_{3} b_{3} I_{C} m_{1} Tx + 48a_{4} b_{4} I_{C} m_{1} Tx + 42a_{3} b_{3} I_{B} d_{1} m_{{1}}^{2} Tx \hfill \\ + 48a_{4} b_{4} I_{B} d_{1} m_{1}^{2} Tx - 42a_{3} b_{3} I_{B} m_{2} Tx - 48a_{4} b_{4} I_{B} m_{2} Tx \hfill \\ + 42a_{3} b_{3} I_{C} m_{2} Tx + 48a_{4} b_{4} I_{C} m_{2} Tx - 28a_{3} \theta _{3} x \hfill \\ + 14a_{3} \eta _{3} \theta _{3} x + 14a_{3} I_{C} M\theta _{3} x - 14a_{3} I_{B} L_{3} m_{1} \theta _{3} x \hfill \\ - 14a_{3} I_{C} Mm_{1} \theta _{3} x + 14a_{3} d_{1} m_{1}^{2} \theta _{3} x + 14a_{3} I_{B} L_{3} d_{1} m_{{1}}^{2} \theta _{3} x \hfill \\ + 14a_{3} I_{B} Mm_{2} \theta _{3} x - 14a_{3} I_{C} Mm_{2} \theta _{3} x - 42a_{3} I_{C} T\theta _{3} x \hfill \\ - 42a_{3} I_{B} m_{1} T\theta _{3} x + 42a_{3} I_{C} m_{1} T\theta _{3} x + 42a_{3} I_{B} d_{1} m_{{1}}^{2} T\theta _{3} x \hfill \\ - 42a_{3} I_{B} m_{2} T\theta _{3} x + 42a_{3} I_{C} m_{2} T\theta _{3} x - 32a_{4} \theta _{4} x + 16a_{4} \eta _{4} \theta _{4} x \hfill \\ + 16a_{4} I_{C} M\theta _{4} x - 16a_{4} I_{B} L_{4} m_{1} \theta _{4} x - 16a_{4} I_{C} Mm_{1} \theta _{4} x \hfill \\ + 16a_{4} d_{1} m_{1}^{2} \theta _{4} x + 16a_{4} I_{B} L_{4} d_{1} m_{1}^{2} \theta _{4} x + 16a_{4} I_{B} Mm_{2} \theta _{4} x \hfill \\ - 16a_{4} I_{C} Mm_{2} \theta _{4} x - 48a_{4} I_{C} T\theta _{4} x - 48a_{4} I_{B} m_{1} T\theta _{4} x \hfill \\ + 48a_{4} I_{C} m_{1} T\theta _{4} x + 48a_{4} I_{B} d_{1} m_{{1}}^{2} T\theta _{4} x - 48a_{4} I_{B} m_{2} T\theta _{4} x \hfill \\ + 48a_{4} I_{C} m_{2} T\theta _{4} x + 8a_{1} ( - 2h_{1} + 2(b_{1} + I_{e} )p \hfill \\ + ( - 2I_{C} ( - 1 + m_{1} + m_{2} )( - 2 + b_{1} (M - 3T) + M\theta _{1} - 3T\theta _{1} ) \hfill \\ + 2( - b_{1} - 2\theta _{1} + \eta _{1} \theta _{1} + d_{1} m_{1}^{2} (b_{1} + \theta _{1} )) \hfill \\ + I_{B} (2m_{2} ( - 2 + b_{1} (M - 3T) + M\theta _{1} - 3T\theta _{1} ) \hfill \\ - 2m_{1} (2 + b_{1} (L_{1} + 3T) + L_{1} \theta _{1} + 3T\theta _{1} ) + 2d_{1} m_{1}^{2} (2 + b_{1} (L_{1} + 3T) \hfill \\ + L_{1} \theta _{1} + 3T\theta _{1} )))x) + 7a_{2} ( - 2h_{2} + 2(b_{2} + I_{e} )p \hfill \\ + ( - 2I_{C} ( - 1 + m_{1} + m_{2} )( - 2 + b_{2} (M - 3T) + M\theta _{2} - 3T\theta _{2} ) \hfill \\ + 2( - b_{2} - 2\theta _{2} + \eta _{2} \theta _{2} + d_{1} m_{1}^{2} (b_{2} + \theta _{2} )) \hfill \\ + I_{B} (2m_{2} ( - 2 + b_{2} (M - 3T) + M\theta _{2} - 3T\theta _{2} ) \hfill \\ - 2m_{1} (2 + b_{2} (L_{2} + 3T) + L_{2} \theta _{2} + 3T\theta _{2} ) \hfill \\ + 2d_{1} m_{1}^{2} (2 + b_{2} (L_{2} + 3T) + L_{2} \theta _{2} + 3T\theta _{2} )))x) \hfill \\ \end{array} \right] < 0$$

at \(T = T^{*} > 0\) which is obtained by solving the Eq. (19).

Proof

Similar to Result 1.

Result 3

\({\text{TPU}}_{2} (T)\) is maximum if

$$\begin{aligned} & aT\left[ {6bxI_{B} m_{1} ( - 1 + d_{1} m_{1} ) - 6bI_{e} p + 6xI_{B} m_{1} ( - 1 + d_{1} m_{1} )\theta } \right] \\ & \quad + a\left[ \begin{array}{*{20}l} - 2b - x - 2 \, h + 4xI_{B} m_{1} ( - 1 + d_{1} m_{1} ) \hfill \\ + 2bxI_{B} Lm_{1} ( - 1 + d_{1} m_{1} ) + 2bp - 2I_{e} p \hfill \\ + 2bI_{e} Mp - 4c\theta + 2x\eta \theta + 2xI_{B} Lm_{1} ( - 1 + d_{1} m_{1} )\theta \hfill \\ + 2xd_{1} m_{1}^{2} (b + \theta ) \hfill \\ \end{array} \right] < 0 \\ \end{aligned}$$

at \(T = T^{*} > 0\) which is obtained by solving the Eq. (20).

Proof

\({\text{TPU}}_{2} (T) = \frac{K(T)}{T}\), where

$$K(T) = \frac{1}{2}\left[ \begin{array}{*{20}l} - 2A - ahT^{2} - aI_{e} pT^{2} + apT(2 + bT) \hfill \\ + aI_{e} p(M - T)T(2 + bT) - axT^{2} \theta + ax\eta T^{2} \theta \hfill \\ + ax( - 1 + d_{1} m_{1}^{2} )T(2 + bT + T\theta ) \hfill \\ + axI_{B} m_{1} ( - 1 + d_{1} m_{1} )T(L + T)(2 + bT + T\theta ) \hfill \\ \end{array} \right]$$

Let \(T = T^{*} > 0\) be obtained by solving the Eq. (20). Since \(T > 0\), by Lemma 1, it follows that average profit will be optimal if \(\frac{{{\text{d}}^{2} K(T)}}{{{\text{d}}T^{2} }} < 0\) at \(T = T^{*}\). That is if,

$$\begin{aligned} & aT\left[ {6bxI_{B} m_{1} ( - 1 + d_{1} m_{1} ) - 6bI_{e} p + 6xI_{B} m_{1} ( - 1 + d_{1} m_{1} )\theta } \right] \, \\ & + a\left[ \begin{array}{*{20}l} - 2b - x - 2 \, h + 4xI_{B} m_{1} ( - 1 + d_{1} m_{1} ) \hfill \\ + 2bxI_{B} Lm_{1} ( - 1 + d_{1} m_{1} ) + 2bp - 2I_{e} p \hfill \\ + 2bI_{e} Mp - 4c\theta + 2x\eta \theta + 2xI_{B} Lm_{1} ( - 1 + d_{1} m_{1} )\theta \hfill \\ + 2xd_{1} m_{1}^{2} (b + \theta ) \hfill \\ \end{array} \right] < 0 \\ \end{aligned}$$

Result 4

\(d_{F} (\widetilde{{{\text{TPU}}}}_{2} )(T)\) is maximum if

$$\left[ \begin{array}{*{20}l} - 14a_{3} h_{3} - 16a_{4} h_{4} + 14a_{3} b_{3} p + 16a_{4} b_{4} p - 14a_{3} I_{e} p - 16a_{4} I_{e} p \hfill \\ + 14a_{3} b_{3} I_{e} Mp + 16a_{4} b_{4} I_{e} Mp - 42a_{3} b_{3} I_{e} pT - 48a_{4} b_{4} I_{e} pT \hfill \\ - 14a_{3} b_{3} x - 16a_{4} b_{4} x - 28a_{3} I_{B} m_{1} x - 32a_{4} I_{B} m_{1} x - 14a_{3} b_{3} I_{B} L_{3} m_{1} x \hfill \\ - 16a_{4} b_{4} I_{B} L_{4} m_{1} x + 14a_{3} b_{3} d_{1} m_{1}^{2} x + 16a_{4} b_{4} d_{1} m_{1}^{2} x + 28a_{3} I_{B} d_{1} m_{1}^{2} x \hfill \\ + 32a_{4} I_{B} d_{1} m_{1}^{2} x + 14a_{3} b_{3} I_{B} L3d_{1} m_{1}^{2} x + 16a_{4} b_{4} I_{B} L_{4} d_{1} m_{1}^{2} x \hfill \\ - 42a_{3} b_{3} I_{B} m_{1} Tx - 48a_{4} b_{4} I_{B} m_{1} Tx + 42a_{3} b_{3} I_{B} d_{1} m_{1}^{2} Tx \hfill \\ + 48a_{4} b_{4} I_{B} d_{1} m_{1}^{2} Tx - 28a_{3} \theta _{3} x + 14a_{3} \eta _{3} \theta _{3} x - 14a_{3} I_{B} L_{3} m_{1} \theta _{3} x \hfill \\ + 14a_{3} d_{1} m_{1}^{2} \theta _{3} x + 14a_{3} I_{B} L_{3} d_{1} m_{1}^{2} \theta _{3} x - 42a_{3} I_{B} m_{1} T\theta _{3} x \hfill \\ + 42a_{3} I_{B} d_{1} m_{1}^{2} T\theta _{3} x - 32a_{4} \theta _{4} x + 16a_{4} \eta _{4} \theta _{4} x - 16a_{4} I_{B} L_{4} m_{1} \theta _{4} x \hfill \\ + 16a_{4} d_{1} m_{1}^{2} \theta _{4} x + 16a_{4} I_{B} L_{4} d_{1} m_{1}^{2} \theta _{4} x - 48a_{4} I_{B} m_{1} T\theta _{4} x \hfill \\ + 48a_{4} I_{B} d_{1} m_{1}^{2} T\theta _{4} x + 14a_{2} ( - h_{2} + p(b_{2} - I_{e} + b_{2} I_{e} M - 3b_{2} I_{e} T) \hfill \\ + ( - b_{2} - 2\theta _{2} + \eta _{2} \theta _{2} d_{1} m_{1}^{2} (b_{2} + \theta _{2} ) + I_{B} L_{2} m_{1} ( - 1 + d_{1} m_{1} )(b_{2} + \theta _{2} ))x) \hfill \\ + a_{1} ( - 16h_{1} + 16p(b_{1} - I_{e} + b_{1} I_{e} M - 3b_{1} I_{e} T) + (16( - b_{1} - 2\theta _{1} \hfill \\ + \eta _{1} \theta _{1} + d_{1} m_{1}^{2} (b_{1} + \theta _{1} )) + 2I_{B} m_{1} ( - 1 + d_{1} m_{1} )(30 + 21b_{2} T \hfill \\ + 8b_{1} (L_{1} + 3T) + 8L_{1} \theta _{1} + 24T\theta _{1} + 21T\theta _{2} ))x) \hfill \\ \end{array} \right] < 0$$

at \(T = T^{*} > 0\) which is obtained by solving the Eq. (21).

Proof

Similar to Result 3.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nath, B.K., Sen, N. (2023). A Fuzzy Decision Making Inventory Model for Deteriorating Items Under Discounted Partial Advance-Partial Delayed Payment Strategy. In: Sahoo, L., Senapati, T., Yager, R.R. (eds) Real Life Applications of Multiple Criteria Decision Making Techniques in Fuzzy Domain. Studies in Fuzziness and Soft Computing, vol 420. Springer, Singapore. https://doi.org/10.1007/978-981-19-4929-6_12

Download citation

Publish with us

Policies and ethics