Skip to main content

Agroforestry for Climate Change Resilience in Degraded Landscapes

  • Chapter
  • First Online:
Agroforestry for Sustainable Intensification of Agriculture in Asia and Africa

Abstract

Agriculture constitutes the largest economic sector in Asia and Africa; therefore, issues like land degradation, food security, biodiversity loss and climate change are inextricably linked with sustainable agricultural production. Land degradation due to expansion of croplands and grazing lands, deforestation and soil erosion are the most pressing problems across Asia and Africa. Warming trends and increasing climate extremes are of common occurrence threatening food security and human well-being. The UN Decade on Ecosystem Restoration (2021–2030) aims to halt the degradation of ecosystems, and to enhance livelihoods, counteract climate change and biodiversity loss. Land restoration initiatives ranging from small local projects to large-scale programmes are being implemented for restoring degraded landscapes. Agroforestry constitutes as an important approach to restore degraded land by re-establishing ecological processes, structures and ecosystem functions. Agroforestry systems, integrating trees, crops and livestock, involve diverse land management practices like crop diversification, long rotation systems for soil conservation, home gardens, boundary plantings, perennial crops, hedgerow intercropping, live fences and improved fallows for enhancing their resilience to climate change. Agroforestry provides climate resilience through diversification of agricultural production, reducing the risk of crop failure and food shortages, improvement of microclimate, increase intensive silvopastoral systems, facilitating capture and storage of carbon in plant biomass and soil, controlling soil erosion and improving soil fertility. This chapter reviews a number of studies and demonstrates that agroforestry systems can substantially increase C sequestration within tree biomass and soils. In Sub-Saharan Africa, AFS and integrated land use could sequester about 0.50–3.9 Mg C ha−1 year−1 C in the biomass and the total carbon stock in agroforestry systems averaged 15.7–77.9 Mg C ha−1. Total carbon storage potential in Southeast Asian agroforestry systems was in the range of 46.8–209 Mg C ha−1. In addition, agroforestry practices play a key role for adaptation under changing climate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agroforestry Network, Vi-skogen (2018) Scaling up agroforestry potential, challenges and barriers: A review of environmental, social and economic aspects at the farmer, community and landscape levels. Commissioned by the Agroforestry Network and its partners Agroforestry Sverige, Focali, NIRAS, SIANI, SLU Global, SwedBio at Stockholm Resilience Centre and Vi-skogen

    Google Scholar 

  • Altieri MA, Nicholls CI, Henao A, Lana MA (2015) Agroecology and the design of climate change-resilient farming systems. Agron Sustain Dev 35:869–890

    Article  Google Scholar 

  • Anjos LJS, de Toledo PM (2018) Measuring resilience and assessing vulnerability of terrestrial ecosystems to climate change in South America. PLoS ONE 13(3):e0194654. https://doi.org/10.1371/journal.pone.0194654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bado BV, Whitbread A, Laminou M, Manzo S (2020) Improving agricultural productivity using agroforestry systems: performance of millet, cowpea, and Ziziphus-based Ziziphus-based cropping systems in West Africa Sahel. Agric Ecosyst Environ. https://doi.org/10.1016/j.agee.2020.107175

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Global assessment of land degradation and improvement. 1. Identification by remote sensing. ISRIC–World Soil Information, Wageningen

    Google Scholar 

  • Barrios E, Sileshi GW, Shepherd KD, Sinclair F (2012) Agroforestry and soil health: linking trees, soil biota and ecosystem services. In: Wall DH (ed) The Oxford handbook of soil ecology and ecosystem services. Oxford University Press, Oxford, pp 315–330

    Chapter  Google Scholar 

  • Bastin JF, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, Zohner CM, Crowther TW (2019) The global tree restoration potential. Science 365:76–79

    Article  CAS  PubMed  Google Scholar 

  • Batjes NH (1996) The total carbon and nitrogen in soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Bayala J, Heng LK, Ouedraogo SJ, Noordwijk MV (2008) Hydraulic redistribution study in two native tree species of agroforestry parklands of West African dry savanna. Acta Oecol 34(3):370–378

    Article  Google Scholar 

  • Bayala J, Sanou J, Teklehaimanot Z, Kalinganire A, Ouédraogo SJ (2014) Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Curr Opin Environ Sustain 6:28–34

    Article  Google Scholar 

  • Bayala J, Sanou J, Bazié HR, Coe R, Kalinganire A, Sinclair FL (2019) Regenerated trees in farmers’ felds increase soil carbon across the Sahel. Agrofor Syst. https://doi.org/10.1007/s10457-019-00403-6

  • Beckley BD, Callahan PS, Hancock DW, Mitchum GT, Ray RD (2017) On the “cal-mode” correction to TOPEX satellite altimetry and its effect on the global mean sea level time series. J Geophys Res Oceans 122:8371–8384. https://doi.org/10.1002/2017JC013090

    Article  Google Scholar 

  • Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164. https://doi.org/10.1007/978-94-015-9008-2_6

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Besar NA, Suardi H, Phua MH, James D, Mokhtar MB, Ahmed MF (2020) Carbon stock and sequestration potential of an agroforestry system in Sabah, Malaysia. Forests 11(2):210

    Article  Google Scholar 

  • Bhaga TD, Dube T, Shekede MD, Shoko C (2020) Impacts of climate variability and drought on surface water resources in Sub-Saharan Africa using remote sensing: a review. Remote Sens 12:4184

    Article  Google Scholar 

  • Borden KA, Anglaaere LCN, Owusu S, Martin AR, Buchanan SW, Addo-danso SD, Isaac ME (2020) Soil texture moderates root functional traits in agroforestry systems across a climatic gradient. Agric Ecosyst Environ 295:106915

    Article  Google Scholar 

  • Bos MM, Steffan-Dewenter I, Tscharntke T (2007) The contribution of cacao agroforests to the conservation of lower canopy ant and beetle diversity in Indonesia. Biodivers Conserv 16(8):2429–2444

    Article  Google Scholar 

  • Brenner AJ (1996) Microclimate modifications in agroforestry. In: Ong CK, Huxley P (eds) Tree-crop interactions - a physiological approach. CAB International, Wallingford, pp 319–364

    Google Scholar 

  • Bridges EM, Oldeman LR (1999) Global assessment of human induced soil degradation. Arid Soil Res Rehabil 13(4):319–325

    Article  Google Scholar 

  • Cardinael R, Umulisa V, Toudert A, Olivier A, Bockel L, Bernoux M (2018) Revisiting IPCC Tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems. Environ Res Lett 13:124020

    Article  Google Scholar 

  • Cardinael R, Cadisch G, Gosme M, Oelbermann M, van Noordwijk M (2021) Climate change mitigation and adaptation in agriculture: why agroforestry should be part of the solution. Agric Ecosyst Environ 319:107555

    Article  Google Scholar 

  • Carroll SP, Jørgensen PS, Kinnison MT et al (2014) Applying evolutionary biology to address global challenges. Science 346:313–324

    Article  CAS  Google Scholar 

  • Carsan S, Stroebel A, Dawson I, Kindt R, Mbow C, Mowo J, Jamnadass R (2014) Can agroforestry option values improve the functioning of drivers of agricultural intensification in Africa? Curr Opin Environ Sustain 6:35–40

    Article  Google Scholar 

  • Catacutan DC, van Noordwijk M, Nguyen TH, Öborn I, Mercado AR (2017) Agroforestry: contribution to food security and climate-change adaptation and mitigation in Southeast Asia. World Agroforestry Centre (ICRAF), Bogor

    Google Scholar 

  • Catacutan DC, Finlayson RF, Gassner A, Perdana A, Lusiana B, Leimona B, Simelton E, Born I, Galudra G, Roshetko JM, Vaast P, Mulia R, Lasco RL, Dewi S, Borelli S, Yasmi Y (2018) ASEAN guidelines for agroforestry development. Association of South-East Asian Nations. Jakarta, ASEAN Secretariat

    Google Scholar 

  • Chapman M, Walker WS, Peter SCC, Farina M, Griscom BW, Baccini A (2020) Large climate mitigation potential from adding trees to agricultural lands. Glob Chang Biol 26(8):4357–4365. https://doi.org/10.1111/gcb.15121

    Article  PubMed  Google Scholar 

  • Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320:1458–1460

    Article  CAS  PubMed  Google Scholar 

  • Chazdon R, Brancalion P (2019) Restoring forests as a means to many ends. Science 365:24–25

    Article  CAS  PubMed  Google Scholar 

  • Ciais P, Sabine C, Bala G et al (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Crippa M, Solazzo E, Guizzardi D, Monforti- Ferrario F, Tubiello FN, Leip A (2021) Food systems are responsible for a third of global anthropogenic GHG emissions. Nat Food 8:1–12

    Google Scholar 

  • Cyamweshi AR, Kuyah S, Mukuralinda A et al (2021) Potential of Alnus acuminata based agroforestry for carbon sequestration and other ecosystem services in Rwanda. Agrofor Syst 95:1125–1135. https://doi.org/10.1007/s10457-021-00619-5

    Article  Google Scholar 

  • Dagar JC, Gupta SR (2017) Agroforestry: potentials for rehabilitation of degraded lands, constraints and the way forward. In: Dagar JC, Tewari JC (eds) Agroforestry research development. Nova Science, Washington, pp 47–97

    Chapter  Google Scholar 

  • Dagar JC, Gupta SR (2020) Agroforestry interventions for rehabilitating salt-affected and waterlogged marginal landscapes. In: Dagar JC, Gupta SR, Teketay D (eds) Agroforestry for degraded landscapes: recent advances and emerging challenges, vol 2. Springer, Singapore, pp 111–162

    Chapter  Google Scholar 

  • Dagar JC, Minhas PS (eds) (2016) Agroforestry for the management of waterlogged saline soils and poor-quality waters. In: Advances in agroforestry, vol 13. Springer, New Delhi, p 210

    Google Scholar 

  • Dagar JC, Singh AK (eds) (2018) Ravine lands: greening for livelihood and environmental security. Springer, Singapore, p 636

    Google Scholar 

  • Dagar JC, Tewari VP (eds) (2017) Agroforestry: anecdotal to modern science. Springer, Singapore, p 879

    Google Scholar 

  • Dagar JC, Singh G, Singh NT (2001) Evaluation of forest and fruit trees used for rehabilitation of semiarid alkali soils in India. Arid Land Res Manag 15:115–133

    Article  CAS  Google Scholar 

  • Dagar JC, Singh AK, Arunachalam A (eds) (2014a) Agroforestry systems in India: livelihood security and environmental services. In: Agroforestry systems in India: livelihood security and ecosystem services. Springer, New Delhi, p 400

    Google Scholar 

  • Dagar JC, Pandey CB, Chaturvedi CS (2014b) Agroforestry: a way forward for sustaining fragile coastal a and island agro-ecosystems. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry systems in India: livelihood security and ecosystem services, Advances in Agroforestry, vol 10. Springer, New Delhi, pp 185–232

    Chapter  Google Scholar 

  • Dagar JC, Lal K, Kumar M, Ram J, Chaudhari SK, Yadav RK, Singh G, Ahamad S, Kaur A (2016a) Impact of eucalyptus geometry on biomass production, water table drawdown, carbon sequestration and inter-crop yield on waterlogged saline soils of North-West India. Agric Ecosyst Environ 233:33–42

    Article  CAS  Google Scholar 

  • Dagar JC, Yadav RK, Tomar OS, Minhas PS, Yadav G, Lal K (2016b) Fruit-based agroforestry systems for saline water-irrigated semi-arid hyperthermic camborthids soils of north-west India. Agrofor Syst 90:1123–1132

    Article  Google Scholar 

  • Dagar JC, Yadav RK, Sharma PC (eds) (2019) Research developments in saline agriculture. Springer, Singapore, p 926

    Google Scholar 

  • Dagar JC, Gangaiah B, Gupta SR (2020a) Agroforestry to sustain island and coastal agriculture in the scenario of climate change: Indian perspective. In: Dagar JC, Gupta SR, Teketay D (eds) Agroforestry for degraded landscapes: recent advances and challenges, vol 1. Springer, Singapore, pp 367–424

    Chapter  Google Scholar 

  • Dagar JC, Gupta SR, Teketay D (eds) (2020b) Agroforestry for degraded landscapes: recent advances and challenges. Springer, Singapore, p 554

    Google Scholar 

  • De Leeuw J, Njenga M, Wagner B, Iiyama M (eds) (2014) Treesilience, an assessment of the resilience provided by trees in the dry lands of Eastern Africa. World Agroforestry Center, ICRAF, Nairobi, p 166

    Google Scholar 

  • de Stefano A, Jacobson MG (2018) Soil carbon sequestration in agroforestry systems: a meta-analysis. Agrofor Syst 92:285–299

    Google Scholar 

  • Dhyani S, Kadaverugu R (2020) Food security and cultural benefits from urban green spaces: exploring urban foraging as a silently growing global movement. Clim Change Environ Sustain 8:219–225

    Article  Google Scholar 

  • Dhyani S, Murthy IK, Kadaverugu R, Dasgupta R, Kumar M, Adesh Gadpayle K (2021) Agroforestry to achieve global climate adaptation and mitigation targets: are south Asian countries sufficiently prepared? Forests 12:303

    Article  Google Scholar 

  • Diamond J (2005) Collapse: how societies choose to fail or succeed. Viking, New York

    Google Scholar 

  • Duarte EMG, Cardoso IM, Stijnen T, Mendonça MAFC, Coelho MS, Cantarutti RB, Kuyper TW, Villani EMA, Mendonça ES (2013) Decomposition and nutrient release in leaves of Atlantic rainforest tree species used in agroforestry systems. Agrofor Syst 87:835–847

    Article  Google Scholar 

  • Duguma LA, Minang PA, Mpanda M, Kimaro A, Alemagi D (2015) Landscape restoration from a social-ecological system perspective? In: Minang PA, van Noordwijk M, Freeman OE, Mbow C, de Leeuw J, Catacutan D (eds) Climate-smart landscapes: multifunctionality in practice. World Agroforestry Centre (ICRAF), Nairobi, pp 63–73

    Google Scholar 

  • Du-Toit JT, Walker BH, Campbell BM (2004) Conserving tropical nature: current challenges for ecologists. Trends Ecol Evol 19:12–17

    Article  PubMed  Google Scholar 

  • Eckstein D, Kunzel V, Schafer L, Winges M (2019) Global climate risk index 2020: who suffers most from extreme weather events? Weather-related loss events in 2018 and 1999 to 2018

    Google Scholar 

  • ELD Initiative (Economics of Land Degradation Initiative) (2015) The value of land: prosperous lands and positive rewards through sustainable land management. http://bit.ly/2gQrF87

  • Epple C, Dunning E (2014) Ecosystem resilience to climate change: what is it and how can it be addressed in the context of climate change adaptation? Technical report for the Mountain EbA Project. UNEP World Conservation Monitoring Centre, Cambridge

    Google Scholar 

  • Eswaran H, Lal R, Reich PF (2001) Land degradation: an overview. Oxford Press, Khon Kaen

    Google Scholar 

  • FAO and ITPS (2015) Status of the world’s soil resources (SWSR) – main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome

    Google Scholar 

  • Farrell CA, Aronson J, Daily GC, Hein L, Obst C, Woodworth P, Stout JC (2021) Natural capital approaches: shifting the UN Decade on Ecosystem Restoration from aspiration to reality. Restor Ecol 2021:13613

    Google Scholar 

  • Feliciano D, Ledo A, Hillier J, Nayak DR (2018) Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agric Ecosyst Environ 254:117–129

    Article  Google Scholar 

  • Foden WB, Butchart SH, Stuart SN, Vié J-C, Akçakaya HR, Angulo A et al (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8(6):e65427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L et al (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–581

    Article  Google Scholar 

  • Frederikse T, Landerer F, Caron L et al (2020) The causes of sea-level rise since 1900. Nature 584:393–397

    Article  CAS  PubMed  Google Scholar 

  • FSI (2015) India state of forest report. Ministry of Environment & Forests, Dehradun

    Google Scholar 

  • Fuller DO, Ottke C (2002) Land cover, rainfall and land-surface albedo in West Africa. Clim Chang 54:181–204

    Article  Google Scholar 

  • Gann GD, McDonald T, Walder B, Aronson J, Nelson CR, Jonson J, Hallett JG, Eisenberg C, Guariguata MR, Liu J, Hua F, Echeverría C, Gonzales E, Shaw N, Decleer K, Dixon KW (2019) International principles and standards for the practice of ecological restoration. Restor Ecol 27:S1–S46

    Article  Google Scholar 

  • Garrity DP, Akinnifesi FK, Ajayi OC, Weldesemayat SG, Mowo JG, Kalinganire A et al (2010) Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Secur 2:197–214

    Article  Google Scholar 

  • Geist HJ, Lambin EF (2004) Dynamic causal patterns of desertification. Bioscience 54(9):817

    Article  Google Scholar 

  • Getahun E (2020) A tale of an enclosure: an Ethiopian success story. World Agroforestry (ICRAF), Nairobi

    Google Scholar 

  • Gibbs HK, Salmon JM (2015) Mapping the world’s degraded lands. Appl Geogr 57:12–21

    Article  Google Scholar 

  • Girvetz E, Ramirez-Villegas J, Claessens L, Lamanna C, Navarro-Racines C, Nowak A et al (2019) Future climate projections in Africa: where are we headed? In: Rosenstock T, Nowak A, Girvetz E (eds) The climate-smart agriculture papers. Springer, Cham, pp 15–27. https://doi.org/10.1007/978-3-319-92798-5_5

    Chapter  Google Scholar 

  • Gisladottir G, Stocking M (2005) Land degradation control and its global environmental benefits. Land Degrad Dev 16:99–112

    Article  Google Scholar 

  • Gomes LC, Bianchia FJJA, Cardoso IM, Fernandes RBA, Fernandes Filho EI, Schulte RPO (2020) Agroforestry systems can mitigate the impacts of climate change on coffee production: a spatially explicit assessment in Brazil. Agric Ecosyst Environ 294:106858

    Article  Google Scholar 

  • Goncalves N, Andrade D, Batista A, Cullen L, Souza A, Gomes H et al (2021) Potential economic impact of carbon sequestration in coffee agroforestry systems. Agrofor Syst 95:419–430

    Article  Google Scholar 

  • Grimm NB et al (2013) The impacts of climate change on ecosystem structure and function. Front Ecol Environ 11:474–482

    Article  Google Scholar 

  • Guillaume T, Kotowska MM, Hertel D, Knohl A, Krashevska V, Murtilaksono K, Scheu S, Kuzyakov Y (2018) Carbon costs and benefits of Indonesian rainforest conversion to plantations. Nat Commun 9(1):1–11

    Article  CAS  Google Scholar 

  • Gunderson L (2000) Ecological resilience in theory and application. Annu Rev Ecol Syst 31:425–439

    Article  Google Scholar 

  • Gupta SR, Dagar JC (2017) Enhancing environmental services of salt-affected soils through agroforestry. In: Dagar JC, Tewari JC (eds) Agroforestry research development. Nova Science, Washington, pp 209–244

    Google Scholar 

  • Gupta SR, Dagar JC, Jangra R, Asha G (2019) Tree-based systems for enhancing environmental services of saline environments. In: Dagar JC, Yadav RK, Sharma PC (eds) Research developments in saline agriculture. Springer, Singapore, pp 461–499

    Chapter  Google Scholar 

  • Haile SG, Nair PKR, Nair VD (2008) Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Environ Qual 37:1789–1179

    Article  CAS  PubMed  Google Scholar 

  • Hairiah K, van Noordwijk M, Sari RR, Saputra DD, Suprayogo D, Kurniawan S, Prayogo C, Gusli S (2020) A soil carbon stocks in Indonesian (agro) forest transitions: Compaction conceals lower carbon concentrations in standard accounting. Agric Ecosyst Environ 294:106879

    Article  CAS  Google Scholar 

  • Hansen LJ, Biringer JL, Hoffman J (2003) Buying time: a user’s manual for building resistance and resilience to climate change in natural systems. WWF, Washington

    Google Scholar 

  • Hanson C, Buckingham K, Dewitt S, Laestadius L (2015) The restoration diagnostic: a method for developing forest landscape restoration strategies by rapidly assessing the status of key success factors. World Resources Institute, Washington

    Google Scholar 

  • Hare JA, Morrison WE, Nelson MW, Stachura MM, Teeters EJ, Griffis RB et al (2016) A vulnerability assessment of fish and invertebrates to climate change on the Northeast US continental shelf. PLoS One 11(2):e0146756

    Article  PubMed  PubMed Central  Google Scholar 

  • Hijioka Y, Lin E, Pereira JJ et al (2014) Asia. In: Barros VR et al (eds) Climate change (2014) impacts, adaptation, and vulnerability part B: regional aspects. Cambridge University Press, Cambridge

    Google Scholar 

  • Hillbrand A, Borelli S, Conigliaro M, Olivier A (2017) Agroforestry for landscape restoration: exploring the potential of agroforestry to enhance the sustainability and resilience of degraded landscapes. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Hirota M, Holmgren M, Van Nes EH, Scheffer M (2011) Global resilience of tropical forest and savanna to critical transitions. Science 334:232–235

    Article  CAS  PubMed  Google Scholar 

  • Hoang MH, Namirembe S, van Noordwijk M, Catacutan D, Öborn I, Perez-Teran AS, Nguyen HQ, Dumas-Johansen MK (2014) Farmer portfolios, strategic diversity management and climate-change adaptation–implications for policy in Vietnam and Kenya. Clim Dev 6(3):216–225

    Article  Google Scholar 

  • Hobbs RJ, Cramer VA (2008) Restoration ecology: interventionist approaches for restoring and maintaining ecosystem function in the face of rapid. Annu Rev Environ Resour 33:39–61. https://doi.org/10.1016/j.cosust.2013.10.013

    Article  Google Scholar 

  • Huang J, Yu H, Guan X et al (2015) Accelerated dryland expansion under climate change. Nat Clim Chang 6:166–171

    Article  Google Scholar 

  • Hübner R, Kühnel A, Lu J, Dettmann H, Wang W, Wiesmeier M (2021) Soil carbon sequestration by agroforestry systems in China: a meta-analysis. Agric Ecosyst Environ 315:107437

    Article  Google Scholar 

  • Hulvey KB, Hobbs RJ, Standish RJ, Lindenmayer DB, Lach L, Perring MP (2013) Benefits of tree mixes in carbon plantings. Nat Clim Chang 3:869–874

    Article  CAS  Google Scholar 

  • ICRAF (2021) Restoring land with agroforestry: new guide published. ICRAF, Bogor

    Google Scholar 

  • IPBES (2018) Summary for policymakers of the assessment report on land degradation and restoration of the Intergovernmental Science- Policy Platform on Biodiversity and Ecosystem Services. Bonn, IPBES Secretariat, p 44

    Google Scholar 

  • IPCC (2019a) Climate change and land: an IPCC special report on climate change, desertification, land degradation sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC, Geneva

    Google Scholar 

  • IPCC (2019b) Summary for policymakers. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC, Geneva

    Google Scholar 

  • IPCC (2021) Summary for policymakers. In: Climate change 2021: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2014) Summary for policymakers. In: Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. IPCC, Geneva, p 44

    Google Scholar 

  • IUCN (2015) Land degradation neutrality: implications and opportunities for conservation. IUCN, Gland

    Google Scholar 

  • IUCN (2017) The Bonn challenge in Asia: Driving leadership on forest landscape restoration. Forest Brief, no 17. https://www.iucn.org/sites/dev/files/content/documents/20170502_iucn-forest-brief-no-17-bonn-challenge-asia_web.pdf

  • IUCN (2018) The IUCN red list of threatened species. Retrieved from http://www.iucnredlist.org/. Accessed 22 January 2018

  • IUCN and WRI (2014) A guide to the restoration opportunities assessment methodology (ROAM): assessing forest landscape restoration opportunities at the national or sub-national level. IUCN, Gland, p 125

    Google Scholar 

  • Jat ML, Dagar JC, Sapkota TB, Yadvinder-Singh GB, Ridaura SL, Saharawat YS, Sharma RK, Tetarwal JP, Hobbs H, Stirling C (2016) Climate change and agriculture: adaptation strategies and mitigation opportunities for food security in South Asia and Latin America. Adv Agron 137:1–115

    Google Scholar 

  • Jha S, Das J, Goyal MK (2019) Assessment of risk and resilience of terrestrial ecosystem productivity under the influence of extreme climatic conditions over India. Sci Rep 9:18923. https://doi.org/10.1038/s41598-019-55067-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones HP, Jones PC, Barbier EB, Blackburn RC, Rey Benayas JM, Holl KD et al (2018) Restoration and repair of Earth’s damaged ecosystems. Proc R Soc Lond B Biol Sci 285:20172577. https://doi.org/10.1098/rspb.2017.2577

    Article  Google Scholar 

  • Jonsson K, Ong CK, Odongo JCW (1999) Influence of scattered nere and karite trees on microclimate, soil fertility and millet yield in Burkina Faso. Exp Agric 35(1):39–53

    Article  Google Scholar 

  • Jose S, Gold MA, Garrett HE (2012) The future of temperate agroforestry in the United States. In: Nair PKR, Garrity D (eds) Agroforestry - the future of global land use. Advances in agroforestry, vol 9. Springer, Dordrecht, p 245

    Google Scholar 

  • Kandji ST, Verchot LV, Mackensen J, Boye A, Van Noordwijk M, Tomich CK, Ong CK, Albrecht A, Palm CA (2006) Opportunities for linking climate change adaptation and mitigation through agroforestry systems. In: Garrity DP, Okono A, Grayson M, Parrott S (eds) World agroforestry into the future. World Agroforestry Centre, Nairobi, pp 113–121

    Google Scholar 

  • Kaur B, Gupta SR, Singh G (2002) Carbon storage and nitrogen cycling in silvi-pastoral systems on a sodic soil in India. Agrofor Syst 54:21–29

    Article  Google Scholar 

  • Kim DG, Kirschbaum MUF, Beedy TL (2016) Carbon sequestration and net emissions of CH4 and N2O under agroforestry: synthesizing available data and suggestions for future studies. Agric Ecosyst Environ 226:65–78. https://doi.org/10.1016/j.agee.2016.04.011

    Article  CAS  Google Scholar 

  • Kimaro AA, Timmer VR, Chamshama S, Ngaga Y, Kimaro DA (2009) Competition between maize and pigeonpea in semi-arid Tanzania: effect on yields and nutrition of crops. Agric Ecosyst Environ 134(1-2):115–125

    Article  CAS  Google Scholar 

  • Kimaro AA, Birhane E, Mowo J, Betemariam E, Mpanda M, Hadgn KM (2014) Benefits from the ecosystem services provided by trees-supporting services, soil fertility management. In: De Leeuw J, Njenga M, Wagner B, Iiyama M (eds) Treesilience: an assessment of the resilience provided by trees in the drylands of Eastern Africa. Nairobi, ICRAF, pp 71–74

    Google Scholar 

  • Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manag 246:208–221

    Article  Google Scholar 

  • Kirui OK, Mirzabaev A (2014) Economics of land degradation in Eastern Africa. University of Bonn, Bonn

    Google Scholar 

  • Kirui OK, Mirzabaev A, von Braun J (2021) Assessment of land degradation ‘on the ground’ and from ‘above’. SN Appl Sci 3:318. https://doi.org/10.1007/s42452-021-04314-z

    Article  Google Scholar 

  • Kmoch L, Pagella T, Palm M, Sinclair FL (2018) Using local agroecological knowledge in climate change adaptation: a study of tree-based options in Northern Morocco. Sustain For 10:3719

    Article  Google Scholar 

  • Kumar BM (2006) Carbon sequestration potential of tropical homegardens. In: Kumar BM, Nair PKR (eds) Tropical homegardens: a time-tested example of sustainable agroforestry. Springer, Dordrecht, pp 185–204

    Chapter  Google Scholar 

  • Kumar BM, Nair PKR (2004) The enigma of tropical homegardens. Agrofor Syst 61:135–152

    Google Scholar 

  • Kumar BM, Singh AK, Dhyani S (2012) South Asian agroforestry: traditions, transformations, and prospects. In: Agroforestry: the future of global land use. Springer, Berlin

    Google Scholar 

  • Kumari C, Gupta SR, Dagar JC, Singh V, Kumar M (2018) Carbon sequestration and microbial biodiversity in agroforestry systems for saline water irrigated semi-arid hyperthermic camborthids regions of north-west India. J Soil Salinity Water Qual 10:133–148

    Google Scholar 

  • Kuyah S, Whitney CW, Jonsson M, Sileshi GW, Öborn I, Muthuri CW, Luedeling E (2019) Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. Agron Sustain Dev 39:47. https://doi.org/10.1007/s13593-019-0589-8

    Article  CAS  Google Scholar 

  • Kuyah S, Sileshi GW, Luedeling E, Akinnifesi FK, Whitney CW, Bayala J, Kuntashula E, Dimobe K, Mafongoya PL (2020) Potential of agroforestry to enhance livelihood security in Africa. In: Dagar JC, Gupta SR, Teketay D (eds) Agroforestry for degraded landscapes-recent advances and emerging challenges, vol 1. Springer, Singapore, pp 135–167

    Chapter  Google Scholar 

  • Labata MM, Aranico EC, Tabaranza ACE, Patricio JHP, Amparado RF Jr (2012) Carbon stock assessment of three elected agroforestry systems in Bukidnon, Philippines. Adv Environ Sci 4(1):5–11

    Google Scholar 

  • Lal R (2001) Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Clim Chang 51:35–72

    Article  Google Scholar 

  • Landicho L, Paelmo R, Cabahug R, de Luna C, Visco R, Tolentino L (2016) Climate change adaptation strategies of smallholder agroforestry farmers in the Philippines. J Environ Sci Manag 19(1):37–45

    Article  Google Scholar 

  • Lasco RD, Pulhin FB (2009) Carbon budgets of forest ecosystems in the Philippines. J Environ Sci Manag 12(1):1–13

    Google Scholar 

  • Lasco RD, Sales RF, Estrella R, Saplaco SR, Castillo ASA, Cruz RVO, Pulhin FB (2001) Carbon stock assessment of two agroforestry systems in a tropical forest reserve in the Philippines. Philipp Agric Sci 84(4):401–407

    Google Scholar 

  • Lasco RD, Evangelista RS, Pulhin FB (2010) Potential of community-based forest management to mitigate climate change in the Philippines. Small-scale For 9:429–443

    Article  Google Scholar 

  • Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61(3):183–193

    Article  Google Scholar 

  • Lin K, Guo S, Zhang W, Liu P (2007) A new baseflow separation method based on analytical solutions of the Horton infiltration capacity curve. Hydrol Process 21(13):1719–1736

    Article  Google Scholar 

  • Lin T, Catacutan DC, van Noordwijk M, Finlayson RF, Rogel CN, Orencio P (2021) State and outlook of agroforestry in ASEAN – status, trends and outlook 2030 and beyond. FAO, Bangkok

    Google Scholar 

  • Liu LP, Long XH, Shao HB, Liu ZP, Tao Y, Zhou QS, Zong JQ (2015) Ameliorants improve saline-alkaline soils on a large scale in northern Jiangsu Province. Ecol Eng 81:328–334

    Article  Google Scholar 

  • Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry systems. A review. Agron Sustain Dev 34:443–454. https://doi.org/10.1007/s13593-014-0212-y

    Article  CAS  Google Scholar 

  • Lott JE, Ong CK, Black CR (2009) Understorey microclimate and crop performance in a Grevillea robusta-based agroforestry system in semi-arid Kenya. Agric Forest Meteor 149:1140–1151

    Article  Google Scholar 

  • Mafongoya P, Bation A, Kihara J, Waswa BS (2007) Appropriate technologies to replenish soil fertility in southern Africa. Nutr Cycl Agroecosyst 76(2):29–43

    Google Scholar 

  • Magaju C, Winowiecki LA, Crossland M, Frija A, Ouerghemmi H, Hagazi N, Sinclair F (2020) Assessing context-specific factors to increase tree survival for scaling ecosystem restoration efforts in East Africa. Landscape 9(12):494. https://doi.org/10.3390/land9120494

    Article  Google Scholar 

  • Maimunah S, Rahman SA, Samsudin YB, Artati Y, Simamora TI, Andini S, Lee SM, Baral H (2018) Assessment of suitability of tree species for bioenergy production on burned and degraded Peatlands in Central Kalimantan. Land 7:40115. https://doi.org/10.3390/land7040115

    Article  Google Scholar 

  • Manaye A, Tesfamariam B, Tesfaye M, Worku A, Gufi Y (2021) Tree diversity and carbon stocks in agroforestry systems in northern Ethiopia. Carbon Balance Manag 16:14. https://doi.org/10.1186/s13021-021-00174-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangalassery S, Dayal D, Meena SL, Ram B (2014) Carbon sequestration in agroforestry and pasture systems in arid northwestern India. Curr Sci 107:1200–1293

    Google Scholar 

  • Mansourian S, Berrahmouni N (2021) Review of forest and landscape restoration in Africa. FAO, Accra

    Google Scholar 

  • Mansourian S, Parrotta J (2018) Forest landscape restoration: integrated approaches to support effective implementation. Routledge, London, p 249

    Book  Google Scholar 

  • Martini E, Nguyen HT, Mercado AR Jr, Finlayson RF, Nguyen TQ, Catacutan DC, Triraganon R (2020) Practitioner’s field guide: agroforestry for climate resilience. World Agroforestry (ICRAF), Bogor

    Google Scholar 

  • Masih I, Maskey S, Trambauer P (2014) A review of droughts on the African continent: a geospatial and long-term perspective. Hydrol Earth Syst Sci 18:3635–3649

    Article  Google Scholar 

  • Mbow C, Smith P, Skole D, Bustamante M, Duguma L (2014a) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14

    Article  Google Scholar 

  • Mbow C, van Noordwijk M, Luedeling E, Neufeldt H, Minang PA, Kowero G (2014b) Agroforestry solutions to address food security and climate change challenges in Africa. Curr Opin Environ Sustain 6:61–67

    Article  Google Scholar 

  • McNeely J, Schroth G (2006) Agroforestry and biodiversity conservation—traditional practices, present dynamics, and lessons for the future. Biodivers Conserv 15:549–554

    Article  Google Scholar 

  • Millennium Ecosystem Assessment framework (MEA) (2005) Ecosystems and human well-being. Island Press, Washington

    Google Scholar 

  • Molua EL (2005) The economics of tropical agroforestry systems: the case of agroforestry farms in Cameroon. Forest Policy Econ 7:199–211

    Article  Google Scholar 

  • Moreira SLS, Pires CV, Marcatti GE, Santos RHS, Imbuzeiro HMA, Fernandes RBA (2018) Intercropping of coffee with the palm tree, macauba, can mitigate climate change effects. Agric For Meteorol 256–257:379–390

    Article  Google Scholar 

  • Mulia R, Nguyen MP, Pham TV, Dinh TH (2018) Potential mitigation contribution from agroforestry to Vietnam’s NDC. World Agroforestry (ICRAF) Southeast Asia Program, Hanoi

    Google Scholar 

  • Mulia R, Nguyen DD, Nguyen MP, Steward P, Pham VT, Le HA, Simelton E (2020) Enhancing Vietnam’s nationally determined contribution with mitigation targets for agroforestry: a technical and economic estimate. Landscape 9(12):528

    Google Scholar 

  • Murty D, Kirschbaum MUF, Mcmurtrie ER, Mcgilvray H (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Chang Biol 8:105–123

    Article  Google Scholar 

  • Nachtergaele F, Biancalani R, Petri M (2011) Land degradation: SOLAW background thematic report 3. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Nair PKR (1993) An introduction to agroforestry. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009a) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Haile SG (2009b) Soil carbon sequestration in tropical agroforestry systems: a feasibility appraisal. Environ Sci Policy 12:1099–1111

    Article  CAS  Google Scholar 

  • Nath AJ, Sileshi GW, Laskar SY, Pathak K, Reang D, Nath A, Das AK (2021) Quantifying carbon stocks and sequestration potential in agroforestry systems under divergent management scenarios relevant to India’s Nationally Determined Contribution. J Clean Prod 281:124831. https://doi.org/10.1016/j.jclepro.2020.124831

    Article  CAS  Google Scholar 

  • Neumann RB, Cardon ZG (2012) The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol 194(2):337–352

    Article  PubMed  Google Scholar 

  • Nguyen VX, Park PS, Hoang TMH (2011) Comparison of carbon stock in different agroforestry systems in buffer zone of Ba Be National Park, Vietnam. World Agroforestry Centre (ICRAF), Hanoi

    Google Scholar 

  • Nguyen Q, Hoang MH, Oborn I, van Noordwijk M (2013) Multipurpose agroforestry as a climate change resiliency option for farmers: an example of local adaptation in Vietnam. Clim Chang 117(1–2):241–257

    Article  Google Scholar 

  • Niagi D (2021) Farmers regreen Kenya’s drylands with agroforestry and an app. Mongabay series: agroecology, global agroforestry. https://news.mongabay.com/2021/08/farmers-regreen-kenyas-drylands-with-agroforestry-and-an-app/

  • Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, et al. (2014) Africa. Climate change 2014: impacts, adaptation and vulnerability: part B: regional aspects: working group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change, p. 1199–1266

    Google Scholar 

  • Niether W, Armengot L, Andres C, Schneider M, Gerold G (2018) Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Ann For Sci 75:38. https://doi.org/10.1007/s13595-018-0723-9

    Article  Google Scholar 

  • Nkonya E, Gerber N, von Braun J, de Pinto A (2011) Economics of land degradation: the costs of action versus inaction. IFPRI, Washington DC

    Google Scholar 

  • Nyamadzawo G, Chikowo R, Nyamugafata P et al (2008) Soil organic carbon dynamics of improved fallow-maize rotation systems under conventional and no-tillage in Central Zimbabwe. Nutr Cycl Agroecosyst 81:85–93

    Article  CAS  Google Scholar 

  • Nzyoka J, Minang PA, Wainaina P, Duguma L, Manda L, Temu E (2021) Landscape governance and sustainable land restoration: evidence from Shinyanga, Tanzania. Sustain For 13(14):7730

    Article  Google Scholar 

  • Ofori SA, Cobbina SJ, Obiri S (2021) Climate change, land, water, and food security: perspectives from Sub-Saharan Africa. Front Sustain Food Syst 5:680924. https://doi.org/10.3389/fsufs.2021.680924

    Article  Google Scholar 

  • Olson, L., H. Barbosa, S. Bhadwal, A. Cowie, K. Delusca, D. Flores-Renteria, K. Hermans, E. Jobbagy, W. Kurz, D. Li, D.J. Sonwa, L. Stringer (2019) Land degradation. In: Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems

    Google Scholar 

  • Palmer MA, Reidy Liermann CA, Nilsson C, Flörke M, Alcamo J, Lake PS et al (2008) Climate change and the world’s river basins: anticipating management options. Front Ecol Environ 6:81–89

    Article  Google Scholar 

  • Pendergrast M (2010) Uncommon grounds: the history of coffee and how it transformed our world. Basic Books, New York

    Google Scholar 

  • Poeplau C, Vos C, Don A (2017) Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. Soil 3:61–66. https://doi.org/10.5194/soil-3-61-2017

    Article  CAS  Google Scholar 

  • Pretty J, Bharucha ZP (2014) Sustainable intensification in agricultural systems. Ann Bot 114:1571–1596

    Article  PubMed  PubMed Central  Google Scholar 

  • Priess JA, Mimler M, Klein AM, Schwarze S, Tscharntke T, Steffan-Dewenter I (2007) Linking deforestation scenarios to pollination services and economic returns in coffee agroforestry systems. Ecol Appl 17:407–417

    Article  CAS  PubMed  Google Scholar 

  • Quadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247

    Article  Google Scholar 

  • Qureshi AS, McCornick PG, Qadir M, Aslam Z (2008) Managing salinity and waterlogging in the Indus Basin of Pakistan. Agric Water Manag 95:1–10

    Article  Google Scholar 

  • Qureshi AS, Ertebo T, Mehansiwala M (2018) Prospects of alternative copping systems for salt affected soils in Ethiopia. J Soil Sci Environ Manage 9:98–107

    Article  CAS  Google Scholar 

  • Rahman SA, Baral H (2020) Nature-based solution for balancing the food, energy, and environment trilemma: Lessons from Indonesia. In: Dhyani S, Gupta A, Karki M (eds) Nature-based solutions for resilient ecosystems and societies. Springer, Singapore, pp 69–82. https://doi.org/10.1007/978-981-15-4712-6_4

    Chapter  Google Scholar 

  • Rahn E, Vaast P, Läderach P, van Asten P, Jassogne L, Ghazoul J (2018) Exploring adaptation strategies of coffee production to climate change using a process-based model. Ecol Model 371:76–89

    Article  Google Scholar 

  • Ramos HMN, Vasconcelos SS, Kato OR, Castellani DC (2018) Above- and belowground carbon stocks of two organic, agroforestry-based oil palm production systems in eastern Amazonia. Agrofor Syst. https://doi.org/10.1007/s10457-017-0131-4

  • Reang D, Hazarika A, Sileshi GW, Pandey R, Das AK, Nath AJ (2021) Assessing tree diversity and carbon storage during land use transitioning from shifting cultivation to indigenous agroforestry systems: implications for REDD+ initiatives. J Environ Manag 298:113470. https://doi.org/10.1016/j.jenvman.2021.113470

    Article  Google Scholar 

  • Reij C, Tappan G, Smale M (2009) Re-greening the Sahel: farmer-led innovation in Burkina Faso and Niger. In: Spielman D, Pandya-Lorch R (eds) Millions Fed. Proven successes in agricultural development. IFPRI, Washington, pp 53–58

    Google Scholar 

  • Rey Benayas JM, Bullock JM (2012) Restoration of biodiversity and ecosystem services on agricultural land. Ecosystems 15:883–899

    Article  Google Scholar 

  • Rey Benayas JM, Newton AC, Diaz A, Bullock JM (2009) Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325:1121–1124

    Article  PubMed  Google Scholar 

  • Ricketts KD, Turvey CG, Gómez MI (2014) Value chain approaches to development: smallholder farmer perceptions of risk and benefits across three cocoa chains in Ghana. J Agribus Dev Emerg Econ 4:2–22

    Article  Google Scholar 

  • Ringler C, Zhu T, Cai X, Koo J, Wang D (2010) Climate change impacts on food security in sub-Saharan Africa: insights from comprehensive climate change scenarios (No. 1042). International Food Policy Research Institute (IFPRI), Washington

    Google Scholar 

  • Rosenstock TS, Dawson IK, Aynekulu E, Chomba S, Degrande A, Fornace K, Jamnadass R, Kimaro A, Kindt R, Lamanna C et al (2019) A planetary health perspective on agroforestry in Sub-Saharan Africa. One Earth 1:330–344. https://doi.org/10.1016/j.oneear.2019.10.017

    Article  Google Scholar 

  • Roshetko M, Delaney M, Hairiah K, Purnomosidhi P (2002) Carbon stocks in Indonesian homegarden systems: can smallholder systems be targeted for increased carbon storage? Am J Altern Agric 17:125–137

    Google Scholar 

  • Safriel U (2014) The water regulation service of dryland agroforestry ecosystems. In: De Leeuw J, Njenga M, Wagner B, Iiyama M (eds) Treesilience: an assessment of the resilience provided by trees in the drylands of Eastern Africa. ICRAF, Nairobi, pp 87–92

    Google Scholar 

  • Samain O, Kergoat L, Hiernaux P, Guichard F, Eric M, Franck T, Lavenu F (2008) Analysis of the in situ and MODIS albedo variability at multiple time scales in the Sahel. J Geophys Res 113:14119

    Article  Google Scholar 

  • Samsudin YB, Puspitaloka D, Rahman SA, Chandran A, Baral H (2020) Community-based peat swamp restoration through agroforestry in Indonesia. In: Dagar JC, Gupta SR, Teketay D (eds) Agroforestry for degraded landscapes. Springer, Singapore

    Google Scholar 

  • Santhyami S, Basukriadi A, Patria M, Abdulhadi R (2018) The comparison of aboveground C-stock between cacao-based agroforestry system and cacao monoculture practice in West Sumatra, Indonesia. Biodiversitas 19:472–479

    Article  Google Scholar 

  • Santos PZF, Crouzeilles R, Sansevero JBB (2019) Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. For Ecol Manag 433:140–145

    Article  Google Scholar 

  • Scharlemann JP, Edmund W, Tanner VJ, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage 5(1):81–91. https://doi.org/10.4155/cmt.13.77

    Article  CAS  Google Scholar 

  • Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends Ecol Evol 18:648–656

    Article  Google Scholar 

  • Schoeneberger MM, Bentrup G, Gooijer de H, Soolanayakamahally R, Sauer T, Brandle J, Zhou X, Current D (2012) Branching out: agroforestry as a climate change mitigation and adaptation for agriculture. J Soil Water Conserv 67:128–136

    Article  Google Scholar 

  • SER (2004) International Primer on ecological restoration science & policy working group (version 2). Society for Ecological Restoration, Washington

    Google Scholar 

  • Sharma A, Goyal MK (2017) Assessment of ecosystem resilience to hydroclimatic disturbances in India. Glob Chang Biol 2:2017

    Google Scholar 

  • Sharrow SH, Ismail S (2004) Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agrofor Syst 60:123–130

    Article  Google Scholar 

  • Shi L, Feng W, Xu J, Kuzyakov Y (2018) Agroforestry systems: meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad Dev 29:3886–3897. https://doi.org/10.1002/ldr.3136

    Article  Google Scholar 

  • Siarudin M, Rahman SA, Artati Y, Indrajaya Y, Narulita S, Ardha MJ, Larjavaara M (2021) Carbon sequestration potential of agroforestry systems in degraded landscapes in West Java, Indonesia. Forests 12:714

    Article  Google Scholar 

  • Sileshi GW, Akinnifesi FK, Ajayi OC, Muys B (2011) Integration of legume trees in maize-based cropping systems improves rainfall use efficiency and crop yield stability. Agric Water Manag 98:1364–1372

    Article  Google Scholar 

  • Sileshi GW, Mafongoya PL, Akinnifesi FK, Phiri E, Chirwa P, Beedy T, Makumba W, Nyamadzawo G, Njoloma J, Wuta M, Nyamugafata P, Jiri O (2014) Fertilizer trees. Encyclopedia of agriculture and food systems, vol 1. Elsevier, San Diego, pp 222–234

    Book  Google Scholar 

  • Sileshi GW, Teketay D, Gebrekirstos A, Hadgu K (2020) Sustainability of Faidherbia albida-based agroforestry in crop production and maintaining soil health. In: Dagar JC, Gupta SR, Teketay D (eds) Agroforestry for degraded landscapes: recent advances and challenges, vol 2. Springer, Singapore, pp 349–369

    Chapter  Google Scholar 

  • Sileshi GW, Dagar JC, Nath AJ, Teketay D (2022) Agroforestry as a climate-smart agriculture: strategic interventions, current practices and policies. In: Dagar JC, Gupta SR, Sileshi GW (eds) Agroforestry for degraded landscapes. Springer, Singapore

    Google Scholar 

  • Sinclair FL, Wezel A, Mbow C, Robiglio V, Harrison R, Chomba C (2019) The contribution of agroecological approaches to realizing climate-resilient agriculture. Background Paper Global Commission on Adaptation Rotterdam

    Google Scholar 

  • Singh G, Dagar JC (2005) Greening sodic lands: Bichhian model. Technical Bulletin No.2/2005. Central Soil Salinity Research Institute, Karnal, p 51

    Google Scholar 

  • Singh M, Arrawatia ML, Tewari VP (1998) Agroforestry for sustainable development in arid zones of Rajasthan. Int Tree Crops J 9:203–212

    Article  Google Scholar 

  • Singh VP, Sinha RB, Nayak D, Neufeldt H, van Noordwijk M, Rizvi J (2016) The national agroforestry policy of India: experiential learning in development and delivery phases. ICRAF Working Paper No. 240. World Agroforestry Centre, New Delhi. https://doi.org/10.5716/WP16143.PDF

    Book  Google Scholar 

  • Singh K, Singh RP, Tewari SK (2021) Ecosystem restoration: challenges and opportunities for India. Restor Ecol 29(3):13341. https://doi.org/10.1111/rec.13341

    Article  Google Scholar 

  • Smith DM (2008) Determination of plant water sources using stable isotopes: a strategic tool for planning water resource management for agroforestry. In: Management of agroforestry systems for enhancing resource use efficiency and crop productivity. Food and Agriculture Organization & International Atomic Energy Agency (IAEA), Vienna, pp 29–42

    Google Scholar 

  • Smithson PC, Giller KE (2002) Appropriate farm management practices for alleviating N and P deficiencies in low-nutrient soils of the tropics. Plant Soil 245(1):169–180

    Article  CAS  Google Scholar 

  • Solh M (2009) Keynote presentation 2: The role of science and technology in combating desertification, land degradation and drought in the dry areas. O¢ce for O¢cial Publications of the European Communities, Luxembourg, pp 12–16

    Google Scholar 

  • Soni ML, Subbulakshmi V, Yadava ND, Dagar JC (2017) Agroforestry for increasing farm productivity in water-stressed ecologies. In: Dagar JC, Tewari VP (eds) Agroforestry: anecdotal to modern science. Springer, Singapore, pp 369–411

    Chapter  Google Scholar 

  • Strassburg BBN, Iribarrem A, Beyer HL, Cordeiro CL, Crouzeilles R, Jakovac CC, Visconti P (2020) Global priority areas for ecosystem restoration. Nature 586(7831):724–729. https://doi.org/10.1038/s41586-020-2784-9

    Article  CAS  PubMed  Google Scholar 

  • Sutton PC, Anderson SJ, Costanza R, Kubiszewski I (2016) The ecological economics of land degradation: impacts on ecosystem service values. Ecol Econ 129:182–192. https://doi.org/10.1016/j.ecolecon.2016.06.016

    Article  Google Scholar 

  • Tewari JC, Ram M, Roy MM, Dagar JC (2014) Livelihood improvements and climate change adaptations through agroforestry in hot arid environments. Agroforestry systems in India: livelihood security & ecosystem services. Springer, New Delhi, pp 155–184

    Book  Google Scholar 

  • Thompson HE, Berrang-Ford L, Ford JD (2010) Climate change and food security in Sub-Saharan Africa: a systematic literature review. Sustain For 2:2719–2733. https://doi.org/10.3390/su208271

    Article  Google Scholar 

  • Timpane-Padgham BL, Beechie T, Klinger T (2017) A systematic review of ecological attributes that confer resilience to climate change in environmental restoration. PLoS ONE 12(3):e0173812. https://doi.org/10.1371/journal.pone.0173812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolentino L, Landicho L, Cabahug R, de Luna C (2010) Case study: agroforestry in the Philippines. In: Lever-Tracy C (ed) Handbook on climate change and society. Routledge, Milton Park

    Google Scholar 

  • Udawatta RP, Gantzer CJ, Jose S (2017) Agroforestry practices and soil ecosystem services. In: Al-Kaisi MM, Lowery B (eds) Soil health and intensification of agroecosytems. Academic Press, London, pp 305–333

    Chapter  Google Scholar 

  • UNCCD (2017a) Global land outlook. UNCCD, Bonn

    Google Scholar 

  • UNCCD (2017b) Global land outlook, 1st edn. UNCCD, Bonn

    Google Scholar 

  • United Nations Environment Programme (UNEP) (2021) Becoming#GenerationRestoration: ecosystem restoration for people, nature and climate. UNEP, Nairobi

    Book  Google Scholar 

  • Vaast P, Somarriba E (2014) Trade-offs between crop intensification and ecosystem services: the role of agroforestry in cocoa cultivation. Agrofor Syst 88:947–956

    Article  Google Scholar 

  • Valderrábano M, Nelson C, Nicholson E, Etter A, Carwardine J, Hallett JG, McBreen J, Botts E (2021) Using ecosystem risk assessment science in ecosystem restoration: a guide to applying the Red List of Ecosystems to ecosystem restoration. IUCN, Gland

    Book  Google Scholar 

  • van Noordwijk M (2019) Sustainable development through trees on farms: agroforestry in its fifth decade. World Agroforestry (ICRAF), Bogor

    Google Scholar 

  • van Noordwijk M, Hoang M, Neufeldt H, Oborn I, Yatich T (eds) (2011) How trees and people can co-adapt to climate change reducing vulnerability in multifunctional landscapes. Nairobi, World Agroforestry Centre (ICRAF), p 136

    Google Scholar 

  • van Noordwijk M, Duguma LA, Dewi S, Leimona B, Catacutan DC, Lusiana B, Öborn I, Hairiah K, Minang PA (2018) SDG synergy between agriculture and forestry in the food, energy, water and income nexus: reinventing agroforestry? Curr Opin Environ Sustain 34:33–42. https://doi.org/10.1016/j.cosust.2018.09.003

    Article  Google Scholar 

  • van Noordwijk M, Rahayu S, Gebrekirstos A, Kindt R, Tata HL, Muchugi A, Ordonez JC, Xu J (2019a) Tree diversity as basis of agroforestry. In: van Noordwijk M (ed) Sustainable development through trees on farms: agroforestry in its fifth decade. World Agroforestry (ICRAF), Bogor, pp 17–44

    Google Scholar 

  • van Noordwijk M, Bargues-Tobella A, Muthuri CW, Gebrekirstos A, Maimbo M, Leimona B, Bayala J, Ma X, Lasco R, Xu J, Ong CK (2019b) Agroforestry as part of nature-based water management. In: van Noordwijk M (ed) Sustainable development through trees on farms: agroforestry in its fifth decade. World Agroforestry (ICRAF), Bogor, pp 305–333

    Google Scholar 

  • van Noordwijk M, Duguma LA, Dewi S, Leimona B, Catacutan D, Lusiana B, Oborn I, Hairiah K et al (2019c) Agroforestry into its fifth decade: local responses to global challenges and goals in the Anthropocene. In: van Noordwijk M (ed) Sustainable development through trees on farms: agroforestry in its fifth decade. World Agroforestry (ICRAF), Bogor, pp 405–428

    Google Scholar 

  • van Noordwijk M, Coe R, Sinclair FL, Luedeling E, Bayala J, Muthuri CW, Cooper P, Kindt R, Duguma L, Lamanna C, Minang PA (2021) Climate change adaptation in and through agroforestry: four decades of research initiated by Peter Huxley. Mitig Adapt Strateg Glob Chang 26:18. https://doi.org/10.1007/s11027-021-09954-5

    Article  Google Scholar 

  • Vandenbeldt RJ, Williams JH (1992) The effect of soil surface temperature on the growth of millet in relation to the effect of Faidherbia albida trees. Agric For Meteorol 60:93–100

    Article  Google Scholar 

  • Vargas R, Pankova EI, Balyuk SA, Krasilnikov PV, Khasankhanova GM (2018) Handbook for saline soil management. Food and Agriculture Organization of the United Nations and Lomonosov Moscow State University, Rome

    Google Scholar 

  • Verdone M, Seidl A (2017) Time, space, place, and the Bonn challenge global forest restoration target. Restor Ecol 25:903–911

    Article  Google Scholar 

  • Wainaina P, Minang PA, Nzyoka J, Duguma L, Temu E, Manda L (2021) Incentives for landscape restoration: lessons from Shinyanga, Tanzania. J Environ Manag 280:111831

    Article  Google Scholar 

  • Waldron A, Garrity D, Malhi Y, Girardin C, Miller DC, Seddon N (2017) Agroforestry can enhance food security while meeting other sustainable development goals. Trop Conserv Sci 10:194008291772066

    Article  Google Scholar 

  • Walker B, Salt D (2012) Resilience thinking: sustaining ecosystems and people in a changing world. Island Press, Washington

    Google Scholar 

  • Walker B, Holling CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social—ecological systems. Ecol Soc 9(2):5

    Article  Google Scholar 

  • Wardah, Toknok B, Zulkhaidah (2011) Carbon stock of agroforestry systems at adjacent buffer zone of Lore Lindu National Park, Central Sulawesi. J Trop Soil 16(2):123–128

    Article  Google Scholar 

  • Webb NP et al (2017) Land degradation and climate change: building climate resilience in agriculture. Front Ecol Environ 15:450–459. https://doi.org/10.1002/fee.1530

    Article  Google Scholar 

  • Wei X, Shao M, Gale W, Li L (2015) Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Sci Rep 4:4062. https://doi.org/10.1038/srep04062

    Article  CAS  Google Scholar 

  • Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol 6(12):e325

    Article  PubMed  PubMed Central  Google Scholar 

  • Williamson RB, Smith CM, Cooper AB (1996) Watershed riparian management and its benefits to a eutrophic lake. J Water Resour Plan Manag 122(1):24–32

    Article  Google Scholar 

  • Wilson J, Ndufia J (2014) Benefits from the ecosystem services provided by trees-supporting services, soil moisture. In: De Leeuw J, Njenga M, Wagner B, Iiyama M (eds) Treesilience: an assessment of the resilience provided by trees in the drylands of Eastern Africa. Nairobi, ICRAF, pp 74–78

    Google Scholar 

  • World Bank (2004) Sustaining forest: a development strategy. World Bank, Washington

    Book  Google Scholar 

  • WRI (2008) Roots of resilience—growing the wealth of the poor. World Resources Institute, Washington

    Google Scholar 

  • WRI India (2020) Restoring landscapes in India for climate and communities: key findings from Madhya Pradesh’s Sidha district. World Resources Institute, Bengaluru

    Google Scholar 

  • Xu B, Yang Y, Li P, Shen H, Fang J (2014) Global patterns of ecosystem carbon flux in forests: a biometric data-based synthesis. Glob Biogeochem Cycles 28:962–973

    Article  CAS  Google Scholar 

  • Yadav GS, Kandpal BK, Das A, Babu S et al (2021) Impact of 28 year old agroforestry systems on soil carbon dynamics in Eastern Himalayas. J Environ Manag 283:111978. https://doi.org/10.1016/j.jenvman.2021.111978

    Article  CAS  Google Scholar 

  • Yamba B, Larwanou M, Hassane A, Reij C (2005) Niger study: Sahel pilot study report. U.S. Agency for International Development and International Resources Group, Washington

    Google Scholar 

  • Young A (1997) Agroforestry for soil management, 2nd edn. CAB International, Wallingford

    Book  Google Scholar 

  • Zewdie A (2014) Impacts of climate change on food security: a literature review in Sub Saharan Africa earth science and climatic change. J Earth Sci Clim Change 5:8–11. https://doi.org/10.4172/2157-7617.1000225

    Article  Google Scholar 

  • Zhang SJ (2010) Crop production on acid soils: Overcoming aluminium toxicity and phosphorus deficiency. Ann Bot 106(1):183–184

    Article  Google Scholar 

  • Zomer RJ, Trabucco A, Coe R, Place F (2009) Trees on farm: analysis of global extent and geographical patterns of agroforestry. In: ICRAF (ed) Working paper no. 89. World Agroforestry Centre, Nairobi, p 72

    Google Scholar 

  • Zomer RJ, Trabucco A, Coe R, Place F, van Noordwijk M, Xu JC (2014) Trees on farms: an update and reanalysis of agroforestry’s global extent and socio-ecological characteristics. Working Paper 179. World Agroforestry Centre (ICRAF) Southeast Asia Regional Program, Bogor

    Google Scholar 

  • Zomer RJ, Neufeldt H, Xu J, Ahrends A, Bossio D, Trabucco A, Van Noordwijk M, Wang M (2016) Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets. Sci Rep 6:29987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S.R., Dagar, J.C., Sileshi, G.W., Chaturvedi, R.K. (2023). Agroforestry for Climate Change Resilience in Degraded Landscapes. In: Dagar, J.C., Gupta, S.R., Sileshi, G.W. (eds) Agroforestry for Sustainable Intensification of Agriculture in Asia and Africa. Sustainability Sciences in Asia and Africa(). Springer, Singapore. https://doi.org/10.1007/978-981-19-4602-8_5

Download citation

Publish with us

Policies and ethics