Skip to main content

Organic–Inorganic Nanohybrids in Flexible Electronic Devices

  • Chapter
  • First Online:
Hybrid Nanomaterials

Abstract

Increasing demand for flexible electronics in medical gadgets, electronic paper, and different types of monitoring systems such as health and sports monitors attracted the attention of scientists to construct these types of devices at low cost with excellent electrical properties. Various flexible materials made up of organic components, silicon-based materials, indium gallium zinc oxide, carbon nanotubes, and organic–inorganic nanocomposites have been introduced in this regard. Among all these types of materials, organic–inorganic nanocomposites are placed at a vital position which are made up by hybridization of different metals/metal oxides with polymers (porphyrin, polyaniline, polyimide, poly(3,4-ethylenedioxythiophene), etc.). Their well-defined morphology and excellent performance in different types of solar cells, supercapacitors, optoelectronics, and thermoelectric devices make them suitable candidates for flexible electronic devices. In this chapter, we provide an overview for the construction of organic–inorganic nanohybrids and their applications in different types of flexible electronic devices which may be helpful for the researchers in future to synthesize novel flexible materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baig N, Kammakakam I, Falath W (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2(6):1821–1871

    Article  Google Scholar 

  2. Sanchez C, Julián B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15(35–36):3559–3592

    Article  CAS  Google Scholar 

  3. Wang MS, Xu G, Zhang ZJ, Guo GC (2010) Inorganic-organic hybrid photochromic materials. Chem Commun 46(3):361–376

    Article  CAS  Google Scholar 

  4. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38(8):1232–1261

    Article  CAS  Google Scholar 

  5. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444

    Article  Google Scholar 

  6. Faustini M, Nicole L, Ruiz-Hitzky E, Sanchez C (2018) History of organic–inorganic hybrid materials: prehistory, art, science, and advanced applications. Adv Func Mater 28(27):1704158

    Article  Google Scholar 

  7. Lee SH, Jeong CK, Hwang GT, Lee KJ (2015) Self-powered flexible inorganic electronic system. Nano Energy 14:111–125

    Article  CAS  Google Scholar 

  8. Fan FR, Tang W, Wang ZL (2016) Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater 28(22):4283–4305

    Article  CAS  Google Scholar 

  9. Wang L, Jackman JA, Ng WB, Cho NJ (2016) Flexible, graphene-coated biocomposite for highly sensitive, real-time molecular detection. Adv Funct Mater 26(47):8623–8630

    Article  CAS  Google Scholar 

  10. Zhu L, Wang L, Xue F, Chen L, Fu J, Feng X, Li T, Wang ZL (2017) Piezo-phototronic effect enhanced flexible solar cells based on n-ZnO/p-SnS core-shell nanowire array. Adv Sci 4(1):1600185

    Article  Google Scholar 

  11. Oh JY, Kim S, Baik HK, Jeong U (2016) Conducting polymer dough for deformable electronics. Adv Mater 28(22):4455–4461

    Article  CAS  Google Scholar 

  12. Sanchez C, Soler-Illia GDA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Designed hybrid organic–inorganic nanocomposites from functional nanobuilding blocks. Chem Mater 13(10):3061–3083

    Article  CAS  Google Scholar 

  13. Viter R, Savchuk M, Iatsunskyi I, Pietralik Z, Starodub N, Shpyrka N, Ramanaviciene A, Ramanavicius A (2018) Analytical, thermodynamical and kinetic characteristics of photoluminescence immunosensor for the determination of Ochratoxin A. Biosens Bioelectron 99:237–243

    Article  CAS  Google Scholar 

  14. Pavlenko M, Coy EL, Jancelewicz M, Załęski K, Smyntyna V, Jurga S, Iatsunskyi I (2016) Enhancement of optical and mechanical properties of Si nanopillars by ALD TiO2 coating. RSC Adv 6(99):97070–97076

    Article  CAS  Google Scholar 

  15. Sessolo M, Bolink HJ (2011) Hybrid organic–inorganic light-emitting diodes. Adv Mater 23(16):1829–1845

    Article  CAS  Google Scholar 

  16. Judeinstein P, Sanchez C (1996) Hybrid organic–inorganic materials: a land of multidisciplinarity. J Mater Chem 6(4):511–525

    Article  CAS  Google Scholar 

  17. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all- solid-state rechargeable lithium batteries. Nano Energy 33:363–386

    Article  CAS  Google Scholar 

  18. Arkas M, Allabashi R, Tsiourvas D, Mattausch EM, Perfler R (2006) Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environ Sci Technol 40(8):2771–2777

    Article  CAS  Google Scholar 

  19. Manocha LM, Yasuda E, Tanabe Y, Manocha S, Vashistha D (2000) Sol–gel processing of carbidic glasses. Bull Mater Sci 23(1):1–4

    Article  CAS  Google Scholar 

  20. Forster PM, Thomas PM, Cheetham AK (2002) Biphasic solvothermal synthesis: a new approach for hybrid inorganic-organic materials. Chem Mater 14(1):17–20

    Article  CAS  Google Scholar 

  21. Shen M, Shi X (2010) Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale 2(9):1596–1610

    Article  CAS  Google Scholar 

  22. Fattahi P, Yang G, Kim G, Abidian MR (2014) A review of organic and inorganic biomaterials for neural interfaces. Adv Mater 26(12):1846–1885

    Article  CAS  Google Scholar 

  23. Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev 119(8):5298–5415

    Article  CAS  Google Scholar 

  24. Gao N, Fang X (2015) Synthesis and development of graphene-inorganic semiconductor nanocomposites. Chem Rev 115(16):8294–8343

    Article  CAS  Google Scholar 

  25. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053

    Article  CAS  Google Scholar 

  26. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564

    Article  CAS  Google Scholar 

  27. Zhao MQ, Liu XF, Zhang Q, Tian GL, Huang JQ, Zhu W, Wei F (2012) Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries. ACS Nano 6(12):10759–10769

    Article  CAS  Google Scholar 

  28. Kim YT, Shin HW, Ko YS, Ahn TK, Kwon YU (2013) Synthesis of a CdSe-graphene hybrid composed of CdSe quantum dot arrays directly grown on CVD-graphene and its ultrafast carrier dynamics. Nanoscale 5(4):1483–1488

    Article  CAS  Google Scholar 

  29. Zhang LS, Jiang LY, Yan HJ, Wang WD, Wang W, Song WG, Guo YG, Wan LJ (2010) Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. J Mater Chem 20(26):5462–5467

    Article  CAS  Google Scholar 

  30. Pasricha R, Gupta S, Joshi AG, Bahadur N, Haranath D, Sood KN, Singh S, Singh S (2012) Directed nanoparticle reduction on graphene. Mater Today 15(3):118–125

    Article  CAS  Google Scholar 

  31. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578

    Google Scholar 

  32. Shao Y, El-Kady MF, Wang LJ, Zhang Q, Li Y, Wang H, Mousavi MF, Kaner RB (2015) Graphene-based materials for flexible supercapacitors. Chem Soc Rev 44(11):3639–3665

    Article  CAS  Google Scholar 

  33. Mao M, Hu J, Liu H (2015) Graphene-based materials for flexible electrochemical energy storage. Int J Energy Res 39(6):727–740

    Article  CAS  Google Scholar 

  34. Jung N, Kwon S, Lee D, Yoon DM, Park YM, Benayad A, Choi Y, Park JS (2013) Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors. Adv Mater 25(47):6854–6858

    Article  CAS  Google Scholar 

  35. Xie J, Sun X, Zhang N, Xu K, Zhou M, Xie Y (2013) Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy 2(1):65–74

    Article  CAS  Google Scholar 

  36. Peng L, Peng X, Liu B, Wu C, Xie Y, Yu G (2013) Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett 13(5):2151–2157

    Article  CAS  Google Scholar 

  37. Bissett MA, Kinloch IA, Dryfe RA (2015) Characterization of MoS2-graphene composites for high-performance coin cell supercapacitors. ACS Appl Mater Interfaces 7(31):17388–17398

    Article  CAS  Google Scholar 

  38. El-Kady MF, Kaner RB (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4(1):1–9

    Article  Google Scholar 

  39. Wang B, Li X, Zhang X, Luo B, Jin M, Liang M, Dayeh SA, Picraux ST, Zhi L (2013) Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano 7(2):1437–1445

    Article  Google Scholar 

  40. Zhao Y, Ma C, Li Y, Chen H, Shao Z (2015) Self-adhesive Co3O4/expanded graphite paper as high-performance flexible anode for Li-ion batteries. Carbon 95:494–496

    Article  CAS  Google Scholar 

  41. Li N, Chen Z, Ren W, Li F, Cheng HM (2012) Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc Natl Acad Sci 109(43):17360–17365

    Article  CAS  Google Scholar 

  42. Xiong P, Peng L, Chen D, Zhao Y, Wang X, Yu G (2015) Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy 12:816–823

    Article  CAS  Google Scholar 

  43. Manthiram A, Fu Y, Chung SH, Zu C, Su YS (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114(23):11751–11787

    Article  CAS  Google Scholar 

  44. Manthiram A, Chung SH, Zu C (2015) Lithium-sulfur batteries: progress and prospects. Adv Mater 27(12):1980–2006

    Article  CAS  Google Scholar 

  45. Ji X, Nazar LF (2010) Advances in Li-S batteries. J Mater Chem 20(44):9821–9826

    Article  CAS  Google Scholar 

  46. Yin L, Wang J, Yang J, Nuli Y (2011) A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. J Mater Chem 21(19):6807–6810

    Article  CAS  Google Scholar 

  47. Li Z, Zhang J, Lou XW (2015) Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew Chem 127(44):13078–13082

    Article  Google Scholar 

  48. Zhou G, Pei S, Li L, Wang DW, Wang S, Huang K, Cheng HM et al (2014) Batteries: a graphene-pure‐sulfur sandwich structure for ultrafast, long‐life lithium-sulfur batteries. Adv Mater 26(4):664–664

    Google Scholar 

  49. Yang X, Zhang L, Zhang F, Huang Y, Chen Y (2014) Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries. ACS Nano 8(5):5208–5215

    Article  CAS  Google Scholar 

  50. Jin J, Wen Z, Ma G, Lu Y, Cui Y, Wu M, Liang X, Wu X (2013) Flexible self- supporting graphene-sulfur paper for lithium sulfur batteries. RSC Adv 3(8):2558–2560

    Article  CAS  Google Scholar 

  51. Zhang W, Liu Y, Chen C, Li Z, Huang Y, Hu X (2015) Flexible and binder-free electrodes of Sb/rGO and Na3V2 (PO4)3/rGO nanocomposites for sodium-ion batteries. Small 11(31):3822–3829

    Article  CAS  Google Scholar 

  52. David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8(2):1759–1770

    Article  CAS  Google Scholar 

  53. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  54. Peng LM (2018) A new stage for flexible nanotube devices. Nat Electron 1(3):158–159

    Article  Google Scholar 

  55. Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6(12):788–792

    Article  CAS  Google Scholar 

  56. Kim B, Jang S, Geier ML, Prabhumirashi PL, Hersam MC, Dodabalapur A (2014) High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. Nano Lett 14(6):3683–3687

    Article  CAS  Google Scholar 

  57. Lee JM, Park JS, Lee SH, Kim H, Yoo S, Kim SO (2011) Selective electron-or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B-doped carbon nanotubes. Adv Mater 23(5):629–633

    Article  CAS  Google Scholar 

  58. Chaudhary S, Lu H, Müller AM, Bardeen CJ, Ozkan M (2007) Hierarchical placement and associated optoelectronic impact of carbon nanotubes in polymer-fullerene solar cells. Nano Lett 7(7):1973–1979

    Article  CAS  Google Scholar 

  59. Drain CM, Varotto A, Radivojevic I (2009) Self-organized porphyrinic materials. Chem Rev 109(5):1630–1658

    Article  CAS  Google Scholar 

  60. Guo P, Chen P, Liu M (2012) Porphyrin assemblies via a surfactant-assisted method: from nanospheres to nanofibers with tunable length. Langmuir 28(44):15482–15490

    Article  CAS  Google Scholar 

  61. Atula SD (2008) Sonication-assisted supramolecular nanorods of meso-diaryl-substituted porphyrins. Chem Commun 6:724–726

    Google Scholar 

  62. Wang Z, Medforth CJ, Shelnutt JA (2004) Porphyrin nanotubes by ionic self-assembly. J Am Chem Soc 126(49):15954–15955

    Article  CAS  Google Scholar 

  63. Yoon SM, Hwang IC, Kim KS, Choi HC (2009) Synthesis of single-crystal tetra (4-pyridyl) porphyrin rectangular nanotubes in the vapor phase. Angew Chem Int Ed 48(14):2506–2509

    Article  CAS  Google Scholar 

  64. Wang Z, Lybarger LE, Wang W, Medforth CJ, Miller JE, Shelnutt JA (2008) Monodisperse porphyrin nanospheres synthesized by coordination polymerization. Nanotechnology 19(39):395604

    Article  Google Scholar 

  65. Lee SJ, Hupp JT, Nguyen ST (2008) Growth of narrowly dispersed porphyrin nanowires and their hierarchical assembly into macroscopic columns. J Am Chem Soc 130(30):9632–9633

    Article  CAS  Google Scholar 

  66. Lee SJ, Malliakas CD, Kanatzidis MG, Hupp JT, Nguyen ST (2008) Amphiphilic porphyrin nanocrystals: Morphology tuning and hierarchical assembly. Adv Mater 20(18):3543–3549

    Article  CAS  Google Scholar 

  67. Hu JS, Guo YG, Liang HP, Wan LJ, Jiang L (2005) Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J Am Chem Soc 127(48):17090–17095

    Article  CAS  Google Scholar 

  68. Wang Z, Li Z, Medforth CJ, Shelnutt JA (2007) Self-assembly and self-metallization of porphyrin nanosheets. J Am Chem Soc 129(9):2440–2441

    Article  CAS  Google Scholar 

  69. Tian Y, Martin KE, Shelnutt JYT, Evans L, Busani T, Miller JE, Medforth CJ, Shelnutt JA (2011) Morphological families of self-assembled porphyrin structures and their photosensitization of hydrogen generation. Chem Commun 47(21):6069–6071

    Article  CAS  Google Scholar 

  70. Kotiaho A, Lahtinen RM, Tkachenko NV, Efimov A, Kira A, Imahori H, Lemmetyinen H (2007) Gold nanoparticle enhanced charge transfer in thin film assemblies of porphyrin-fullerene dyads. Langmuir 23(26):13117–13125

    Article  CAS  Google Scholar 

  71. Huang CC, Parasuraman PS, Tsai HC, Jhu JJ, Imae T (2014) Synthesis and characterization of porphyrin-TiO2 core-shell nanoparticles as visible light photocatalyst. RSC Adv 4(13):6540–6544

    Article  CAS  Google Scholar 

  72. Hasobe T, Sakai H, Mase K, Ohkubo K, Fukuzumi S (2013) Remarkable enhancement of photocatalytic hydrogen evolution efficiency utilizing an internal cavity of supramolecular porphyrin hexagonal nanocylinders under visible-light irradiation. J Phys Chem C 117(9):4441–4449

    Article  CAS  Google Scholar 

  73. Nam KH, Choi HK, Yeo H, You NH, Ku BC, Yu J (2018) Molecular design and property prediction of sterically confined polyimides for thermally stable and transparent materials. Polymers 10(6):630

    Article  Google Scholar 

  74. Eastmond GC, Paprotny J, Pethrick RA, Santamaria-Mendia F (2006) A comparison of poly (ether imide) s with 3-phthalimide and 4-phthalimide units: synthesis, characterization, and physical properties. Macromolecules 39(22):7534–7548

    Article  CAS  Google Scholar 

  75. Yorifuji D, Ando S (2011) Enhanced thermal conductivity over percolation threshold in polyimide blend films containing ZnO nano-pyramidal particles: advantage of vertical double percolation structure. J Mater Chem 21(12):4402–4407

    Article  CAS  Google Scholar 

  76. Gao H, Yorifuji D, Jiang Z, Ando S (2014) Thermal and optical properties of hyperbranched fluorinated polyimide/mesoporous SiO2 nanocomposites exhibiting high transparency and reduced thermo-optical coefficients. Polymer 55(12):2848–2855

    Article  CAS  Google Scholar 

  77. Qiu F, Da Z, Yang D, Cao G, Li P (2008) The synthesis and electro-optic properties of polyimide/silica hybrids containing the benzothiazole chromophore. Dyes Pigm 77(3):564–569

    Article  CAS  Google Scholar 

  78. Yorifuji D, Ando S (2010) Enhanced thermal diffusivity by vertical double percolation structures in polyimide blend films containing silver nanoparticles. Macromol Chem Phys 211(19):2118–2124

    Article  CAS  Google Scholar 

  79. Liu JG, Nakamura Y, Ogura T, Shibasaki Y, Ando S, Ueda M (2008) Optically transparent sulfur-containing polyimide-TiO2 nanocomposite films with high refractive index and negative pattern formation from poly (amic acid)-TiO2 nanocomposite film. Chem Mater 20(1):273–281

    Article  CAS  Google Scholar 

  80. Chu G, Yin H, Jiang H, Qu D, Shi Y, Ding D, Xu Y (2016) Ultrafast optical modulation of rationally engineered photonic-plasmonic coupling in self-assembled nanocrystalline cellulose/silver hybrid material. J Phys Chem C 120(48):27541–27547

    Article  CAS  Google Scholar 

  81. Chu G, Wang X, Yin H, Shi Y, Jiang H, Chen T, Gao J, Qu D, Xu Y, Ding D (2015) Free-standing optically switchable chiral plasmonic photonic crystal based on self-assembled cellulose nanorods and gold nanoparticles. ACS Appl Mater Interfaces 7(39):21797–21806

    Article  CAS  Google Scholar 

  82. Wang Y, Zhang H, Lin X, Chen S, Jiang Z, Wang J, Huang J, Zhang F, Li H (2018) Naked Au nanoparticles monodispersed onto multifunctional cellulose nanocrystal-graphene hybrid sheets: towards efficient and sustainable heterogeneous catalysts. New J Chem 42(3):2197–2203

    Article  CAS  Google Scholar 

  83. Goikuria U, Larranaga A, Vilas JL, Lizundia E (2017) Thermal stability increase in metallic nanoparticles-loaded cellulose nanocrystal nanocomposites. Carbohyd Polym 171:193–201

    Article  CAS  Google Scholar 

  84. Martakov IS, Torlopov MA, Mikhaylov VI, Krivoshapkina EF, Silant’ev VE, Krivoshapkin PV (2018) Interaction of cellulose nanocrystals with titanium dioxide and peculiarities of hybrid structures formation. J Sol-Gel Sci Technol 88(1):13–21

    Google Scholar 

  85. Xue J, Song F, Yin XW, Zhang ZL, Liu Y, Wang XL, Wang YZ (2017) Cellulose nanocrystal-templated synthesis of mesoporous TiO2 with dominantly exposed (001) facets for efficient catalysis. ACS Sustain Chem Eng 5(5):3721–3725

    Article  CAS  Google Scholar 

  86. Tchinda AJ, Ngameni E, Kenfack IT, Walcarius A (2009) One-step preparation of thiol-functionalized porous clay heterostructures: application to Hg(II) binding and characterization of mass transport issues. Chem Mater 21(18):4111–4121

    Article  CAS  Google Scholar 

  87. Arkhireeva A, Hay JN, Oware W (2005) A versatile route to silsesquioxane nanoparticles from organically modified silane precursors. J Non-Cryst Solids 351(19–20):1688–1695

    Article  CAS  Google Scholar 

  88. Shea KJ, Loy DA (2001) Bridged polysilsesquioxanes. Molecular-engineered hybrid organic–inorganic materials. Chem Mater 13(10):3306–3319

    Google Scholar 

  89. Leu CM, Chang YT, Wei KH (2003) Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chem Mater 15(19):3721–3727

    Article  CAS  Google Scholar 

  90. Sellinger A, Tamaki R, Laine RM, Ueno K, Tanabe H, Williams E, Jabbour GE (2004) Solution processable nanocomposites based on silsesquioxane cores for use in organic light emitting diodes (OLEDs). MRS Online Proc Lib (OPL) 847

    Google Scholar 

  91. Xiao S, Nguyen M, Gong X, Cao Y, Wu H, Moses D, Heeger AJ (2003) Stabilization of semiconducting polymers with silsesquioxane. Adv Func Mater 13(1):25–29

    Article  CAS  Google Scholar 

  92. Chan KL, Sonar P, Sellinger A (2009) Cubic silsesquioxanes for use in solution processable organic light emitting diodes (OLED). J Mater Chem 19(48):9103–9120

    Article  CAS  Google Scholar 

  93. Ovik R, Long BD, Barma MC, Riaz M, Sabri MFM, Said SM, Saidur R (2016) A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew Sustain Energy Rev 64:635–659

    Article  Google Scholar 

  94. Yang J, Stabler FR (2009) Automotive applications of thermoelectric materials. J Electron Mater 38(7):1245

    Article  CAS  Google Scholar 

  95. He J, Tritt TM (2017) Advances in thermoelectric materials research: looking back and moving forward. Science, 357(6358):eaak9997

    Google Scholar 

  96. Debnath A, Deb K, Sarkar K, Saha B (2020) Improved thermoelectric performance in TiO2 incorporated polyaniline: a polymer-based hybrid material for thermoelectric generators. J Electron Mater 49(8):5028–5036

    Article  CAS  Google Scholar 

  97. Sarkar K, Debnath A, Deb K, Bera A, Saha B (2019) Effect of NiO incorporation in charge transport of polyaniline: improved polymer based thermoelectric generator. Energy 177:203–210

    Article  CAS  Google Scholar 

  98. Islam R, Chan-Yu-King R, Brun JF, Gors C, Addad A, Depriester M, Roussel F et al (2014) Transport and thermoelectric properties of polyaniline/reduced graphene oxide nanocomposites. Nanotechnology 25(47):475705

    Google Scholar 

  99. Toshima N, Imai M, Ichikawa S (2011) Organic–inorganic nanohybrids as novel thermoelectric materials: hybrids of polyaniline and bismuth(III) telluride nanoparticles. J Electron Mater 40(5):898–902

    Article  CAS  Google Scholar 

  100. Toshima N (2013) Metal nanoparticles for energy conversion. Pure Appl Chem 85(2):437–451

    Article  CAS  Google Scholar 

  101. Hata S, Omura T, Oshima K, Du Y, Shiraishi Y, Toshima N (2017) Novel Preparation of Poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)-protected noble metal nanoparticles as organic–inorganic hybrid thermoelectric materials. Bull Soc Photogr Imaging 27:13–18

    Google Scholar 

  102. Hata S, Taguchi K, Oshima K, Du Y, Shiraishi Y, Toshima N (2019) Preparation of Ga–ZnO nanoparticles using microwave and ultrasonic irradiation, and the application of poly(3,4-ethylenedioxythiophene)-poly (styrenesulfonate) hybrid thermoelectric films. ChemistrySelect 4(22):6800–6804

    Article  CAS  Google Scholar 

  103. Shiraishi Y, Hata S, Okawauchi Y, Oshima K, Anno H, Toshima N (2017) Improved thermoelectric behavior of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) using poly(n-vinyl-2-pyrrolidone)-coated GeO2 nanoparticles. Chem Lett 46(7):933–936

    Article  CAS  Google Scholar 

  104. Cheng X, Wang L, Wang X, Chen G (2018) Flexible films of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/SnS nanobelt thermoelectric composites. Compos Sci Technol 155:247–251

    Article  CAS  Google Scholar 

  105. Ju H, Kim J (2016) Chemically exfoliated SnSe nanosheets and their SnSe/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite films for polymer based thermoelectric applications. ACS Nano 10(6):5730–5739

    Article  CAS  Google Scholar 

  106. Wang Y, Cai K, Yao X (2011) Facile fabrication and thermoelectric properties of PbTe-modified poly(3,4-ethylenedioxythiophene) nanotubes. ACS Appl Mater Interfaces 3(4):1163–1166

    Article  Google Scholar 

  107. Liu E, Liu C, Zhu Z, Xu J, Jiang F, Wang T, Li C (2017) Preparation of poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate)/silicon dioxide nanoparticles composite films with large thermoelectric power factor. J Compos Mater 52:621–627

    Article  Google Scholar 

  108. Wang YY, Cai KF, Yao X (2012) One-pot fabrication and enhanced thermoelectric properties of poly(3,4-ethylenedioxythiophene)-Bi2S3 nanocomposites. J Nanopart Res 14(5):1–7

    Article  Google Scholar 

  109. Green MA, Emery K, King DL, Igari S, Warta W (2001) Solar cell efficiency tables (version 18). Prog Photovolt 9(4):287–293

    Article  CAS  Google Scholar 

  110. He M, Qiu F, Lin Z (2013) Toward high-performance organic–inorganic hybrid solar cells: bringing conjugated polymers and inorganic nanocrystals in close contact. J Phys Chem Lett 4(11):1788–1796

    Article  CAS  Google Scholar 

  111. Kalita G, Adhikari S, Aryal HR, Afre R, Soga T, Sharon M, Umeno M (2009) Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes. J Phys D Appl Phys 42(11):115104

    Google Scholar 

  112. Liu Q, Ono M, Tang Z, Ishikawa R, Ueno K, Shirai H (2012) Highly efficient crystalline silicon/zonyl fluorosurfactant-treated organic heterojunction solar cells. Appl Phys Lett 100(18):183901

    Article  Google Scholar 

  113. Huang J, Yin Z, Zheng Q (2011) Applications of ZnO in organic and hybrid solar cells. Energy Environ Sci 4(10):3861–3877

    Article  CAS  Google Scholar 

  114. Shin KS, Jo H, Shin HJ, Choi WM, Choi JY, Kim SW (2012) High quality graphene-semiconducting oxide heterostructure for inverted organic photovoltaics. J Mater Chem 22(26):13032–13038

    Article  CAS  Google Scholar 

  115. Shin KS, Park HJ, Kumar B, Kim KK, Ihn SG, Kim SW (2011) Low- temperature growth and characterization of ZnO thin films for flexible inverted organic solar cells. J Mater Chem 21(33):12274–12279

    Article  CAS  Google Scholar 

  116. Liu CP, Wang HE, Ng TW, Chen ZH, Zhang WF, Yan C, Jha SK (2012) Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions. Phys Status Solidi (b) 249(3):627–633

    Google Scholar 

  117. Liu CP, Chen ZH, Wang HE, Jha SK, Zhang WJ, Bello I, Zapien JA (2012) Enhanced performance by incorporation of zinc oxide nanowire array for organic–inorganic hybrid solar cells. Appl Phys Lett 100(24):243102

    Article  Google Scholar 

  118. Dehaudt J, Beouch L, Peralta S, Plesse C, Aubert PH, Chevrot C, Goubard F (2011) Facile route to prepare film of poly(3,4-ethylene dioxythiophene)-TiO2 nanohybrid for solar cell application. Thin Solid Films 519(6):1876–1881

    Article  CAS  Google Scholar 

  119. Atienzar P, Ishwara T, Horie M, Durrant JR, Nelson J (2009) Hybrid polymer-metal oxide solar cells by in situ chemical polymerization. J Mater Chem 19(30):5377–5380

    Article  CAS  Google Scholar 

  120. Lancelle-Beltran E, Prené P, Boscher C, Belleville P, Buvat P, Lambert S, Guillet F, Marcel C, Sanchez C (2008) Solid-state organic/inorganic hybrid solar cells based on poly (octylthiophene) and dye-sensitized nanobrookite and nanoanatase TiO2 electrodes. Eur J Inorg Chem 2008(6):903–910

    Article  Google Scholar 

  121. Alparslan Z, Kösemen A, Örnek O, Yerli Y, San SE (2011) TiO2-based organic hybrid solar cells with Mn+2 doping. Int J Photoenergy

    Google Scholar 

  122. Jo J, Vak D, Noh YY, Kim SS, Lim B, Kim DY (2008) Effect of photo- and thermo-oxidative degradation on the performance of hybrid photovoltaic cells with a fluorene-based copolymer and nanocrystalline TiO2. J Mater Chem 18(6):654–659

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameer Fawad Zahoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akhtar, R. et al. (2022). Organic–Inorganic Nanohybrids in Flexible Electronic Devices. In: Rizwan, K., Bilal, M., Rasheed, T., Nguyen, T.A. (eds) Hybrid Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-4538-0_17

Download citation

Publish with us

Policies and ethics