Skip to main content

Challenges of Timberline Mapping in the Himalaya: A Case Study of the Sikkim Himalaya

  • Chapter
  • First Online:
Ecology of Himalayan Treeline Ecotone

Abstract

High-altitude Himalayan vegetation is considered a prominent indicator of climate change. Field-based observations are limited in coverage to understand regional patterns and to be used as inputs in ecological models for generalization. This study standardizes the terminology by defining the rules for the interpretation of timberline through auto-extraction methods and proposes a harmonized approach to regional-scale mapping of timberline by incorporating field-based observations. At rare locations in the state of Sikkim, high-altitude timberline may occur much below (~2620 m) or much higher altitude (~4390 m) than the normal range reported from field observations. Change analysis for timberline (upward or downward shift) in the Sikkim Himalaya indicates that the majority of the timberlines (76.5%) remained stationary in last three and half decades (1977–2015). The mean upward shift of timberline was 100 m ± 89 (@ 2.71 m/year) and the mean downward shift was 56 m ± 54 (@ 1.52 m/year). This study reports for the first time a stationary timberline in the Sikkim Himalaya, and the rate of change observed in this study is in tune with the previous studies. A well-harmonized approach, using satellite imagery in conjunction with field observations, can be useful for the regular monitoring of timberline change in order to study the impacts of global warming and biotic pressures at high altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baker BB, Moseley RK (2007) Advancing Treeline and retreating glaciers: implications for conservation in Yunnan, P.R. China. Arct Antarct Alp Res 39(2):200–209

    Article  Google Scholar 

  • Beaman JH (1962) The timberlines of Iztaccihuatl and Popocatepetl, Mexico. Ecology 43:377–385

    Article  Google Scholar 

  • Berdanier AB (2010) Global treeline position. Nat Educ Knowl 3(10):11

    Google Scholar 

  • Bharti RR, Rai ID, Adhikari BS et al (2011) Timberline change detection using topographic map and satellite imagery: a critique. Trop Ecol 52:133–137

    Google Scholar 

  • Bharti RR, Adhikari BS, Rawat GS (2012) Assessing vegetation changes in timberline ecotone of Nanda Devi National Park, Uttarakhand. Int J Appl Earth Obs Geoinf 18:472–479

    Google Scholar 

  • Chaudhuri AB (1992) Himalayan ecology and environment. New Delhi

    Google Scholar 

  • Colombaroli D, Henne PD, Kaltenrieder P et al (2010) Species responses to fire, climate and human impact at tree line in the Alps as evidenced by palaeo-environmental records and a dynamic simulation model. J Ecol 98:1346–1357

    Article  Google Scholar 

  • Dolezal J, Dvorsky M, Kopecky M et al (2016) Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci Rep 6:24881. https://doi.org/10.1038/srep24881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey B, Yadav RR, Singh J, Chaturvedi R (2003) Upward Shift of Himalayan Pine in Western Himalaya, India. Curr Sci 85(8):1135–1136

    Google Scholar 

  • Germino MJ, Smith WK, Resor AC (2002) Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecol 162(2):157–168

    Article  Google Scholar 

  • Hamid MK, Malik AA, Ahmad AH et al (2020) Early evidence of shifts in alpine summit vegetation: a case study from Kashmir Himalaya. Front Plant Sci 11:421

    Article  PubMed  PubMed Central  Google Scholar 

  • Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410

    Article  Google Scholar 

  • Holtmeier FK, Broll G (2007) Treeline advance– driving processes and adverse factors. Landscape Online 1:1–33

    Article  Google Scholar 

  • Holzinger B, Hülber K, Camenisch M et al (2008) Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol 195:179–196. https://doi.org/10.1007/s11258-007-9314-9

    Article  Google Scholar 

  • Ives JD, Hansen-Bristow KJ (1983) Stability and instability of natural and modified upper timberline landscapes in the colorado rocky mountains. Mt Res Dev 3(2):149–155

    Article  Google Scholar 

  • Juntunen V, Neuvonen S, Norokorpi Y et al (2002) Potential for timberline advance in Northern Finland, as revealed by monitoring during 1983–99. Arctic. 55:348–361

    Article  Google Scholar 

  • Klinge M, Böhner J, Erasmi S (2015) Modeling forest lines and forest distribution patterns with remote-sensing data in a mountainous region of semiarid central Asia. Biogeosciences 12:2893–2905

    Article  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high-altitude treeline temperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Kullman L (2007) Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973-2005: implications for tree line theory and climate change ecology. J Ecol 95:41–52

    Article  Google Scholar 

  • Lamprecht A, Semenchuk PR, Steinbauer K et al (2018) Climate change leads to accelerated transformation of high elevation vegetation in the central Alps. New Phytol 220:447–459. https://doi.org/10.1111/nph.15290

    Article  PubMed  PubMed Central  Google Scholar 

  • Latwal A, Sah P, Sharma S (2018) A cartographic representation of a timberline, treeline and wood vegetation around a Central Himalayan summit using remote sensing method. Trop Ecol 59(2):177–187

    Google Scholar 

  • Latwal A, Sah P, Sharma S et al (2022) Relationship between timberline elevation and climate in Sikkim Himalaya. In: Singh SP, Reshi ZA, Joshi RJ (eds) Ecology of Himalayan treeline ecotone. Springer Nature

    Google Scholar 

  • Lenoir J, Svenning JC (2015) Climate related range shifts – a global multidimensional synthesis and new research directions. Ecography 38:15–28. https://doi.org/10.1111/ecog.00967

    Article  Google Scholar 

  • Leonelli G, Pelfini M, di Cella UM (2009) Detecting climatic treelines in the Italian alps: the influence of geomorphological factors and human impacts. Phys Geogr 30(4):338–352

    Article  Google Scholar 

  • Leonelli G, Masseroli A, Pelfini M (2016) The influence of topographic variables on treeline trees under different environmental conditions. Phys Geogr 37(1):56–72

    Article  Google Scholar 

  • Mohapatra J, Singh CP, Tripathi OP et al (2019) Remote sensing of alpine treeline ecotone dynamics and phenology in Arunachal Pradesh Himalaya. Int J Remote Sens 40(20):7986–8009

    Article  Google Scholar 

  • Motta R, Moralis M, Nola P (2006) Human land-use, forest dynamics and tree growth at the treeline in the Western Italian Alps. Ann For Sci 63:739–747

    Article  Google Scholar 

  • Pandey A, Rai S, Kumar D (2018a) Changes in vegetation attributes along an elevation gradient towards timberline in Khangchendzonga National Park, Sikkim. Trop Ecol 59(2):259–271

    Google Scholar 

  • Pandey A, Badola HK, Rai S et al (2018b) Timberline structure and woody taxa regeneration towards treeline along latitudinal gradients in Khangchendzonga National Park, Eastern Himalaya. PLoS One 13(11):e0207762. https://doi.org/10.1371/journal.pone.0207762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panigrahy S, Anitha D, Kimothi MM et al (2010a) Timberline change detection using topographic map and satellite imagery. Trop Ecol 51:87–91

    Google Scholar 

  • Panigrahy S, Singh CP, Kimothi MM et al (2010b) Alpine Treeline Atlas of Indian Himalaya: Uttarakhand, India. Space Application Centre (ISRO), Ahmedabad

    Google Scholar 

  • Ramachandran RM, Roy PS (2018) Vegetation response to climate change in Himalayan hill ranges: a remote sensing perspective. In: Das AP, Bera S (eds) Plant diversity in the Himalaya hotspot region, vol 1. M/s Bishen Singh Mahendra Pal Singh, Dehradun, pp 369–392

    Google Scholar 

  • Sah P, Sharma S (2018) Topographical characterisation of high-altitude timberline in the Indian Central Himalayan region. Trop Ecol 59(2):187–196

    Google Scholar 

  • Sarmiento FO, Frolich LM (2002) Andean cloud forest tree lines. Mt Res Dev 22(3):278–288

    Article  Google Scholar 

  • Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakoram: a review of geographical and ecological aspects. In: Broll G, Keplin B (eds) Mountain ecosystems. Springer, Berlin, pp 275–354

    Chapter  Google Scholar 

  • Singh CP, Mohapatra J, Pandya HA et al (2018) Evaluating changes in treeline position and land surface phenology in Sikkim Himalaya. Geocarto Int 35(5):453–469. https://doi.org/10.1080/10106049.2018.1524513

    Article  Google Scholar 

  • Singh CP, Mohapatra J, Mathew JR et al (2021a) Long-term observation and modeling on the distribution and patterns of alpine treeline ecotone in Indian Himalaya. J Geom 15(1):68–84. ISSN: 0976-1330

    Google Scholar 

  • Singh CP, Panigrahy S, Thapliyal A et al (2012) Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Curr Sci 102:559–562

    Google Scholar 

  • Singh SP, Rawal RS (2017) Manual of field methods- Indian Himalayan timberline. CHEA, Nainital

    Google Scholar 

  • Singh SP, Sharma S, Dhyani PP (2019) Himalayan arc and treeline: distribution, climate change responses and ecosystem properties. Biodivers Conserv 28(8–9):1997–2016

    Article  Google Scholar 

  • Singh SP, Bhattacharyya A, Mittal A et al (2021b) Indian Himalayan timberline ecotone in response to climate change — initial findings. Curr Sci 120(5):859–871

    Article  Google Scholar 

  • Smith WK, Germino MJ, Johnson DM et al (2009) The altitude of alpine treeline: a bellwether of climate change effects. Bot Rev 75:163–190

    Article  Google Scholar 

  • Steinbauer MJ, Grytnes JA, Jurasinski G et al (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556:231–234. https://doi.org/10.1038/s41586-018-0005-6

    Article  CAS  PubMed  Google Scholar 

  • Treml V, Banas M (2008) The effect of exposure on alpine treeline position: a case study from the high Sudetes, Czech republic. Arct Antarct Alp Res 40(4):751–760

    Article  Google Scholar 

  • Van Den Hoek J, Smith AC, Hurni K et al (2021) Shedding new light on mountainous forest growth: a cross-scale evaluation of the effects of topographic illumination correction on 25 years of forest cover change across Nepal. Remote Sens 13(11):2131

    Article  Google Scholar 

  • Vittoz P, Rulence B, Largey T et al (2008) Effects of Climate and Land-UseChange on the Establishment and Growth of Cembran Pine (Pinuscembra L.) over the Altitudinal Treeline Ecotone in the Central Swiss. Alps Arct Antarc Alp Res 40(1):225–232

    Article  Google Scholar 

  • www1 (n.d.) NRSC, ISRO. Satellite data product https://nrsc.gov.in/Satellite_Data_Products_Overview?q=Price_List. accessed 19 December 2015

  • Zhao F, Zhang B, Pang Y et al (2014) A study of the contribution of mass elevation effect to the altitudinal distribution of timberline in the Northern Hemisphere. J Geogr Sci 24(2):226–236

    Article  Google Scholar 

Download references

Acknowledgement

Authors are thankful to Prof. S. P. Singh for encouragement and guidance to conduct this research. Director, G. B. Pant ‘National Institute of Himalayan Environment’ (NIHE), Kosi-Katarmal, Almora for providing necessary facility. Financial grant for this study was supported by National Mission on Himalayan Studies, Ministry of Environment, Forest and Climate Change, Govt. of India. The LISS data provided by the National Remote Sensing Centre (NRSC) Hyderabad, and Landsat data from National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS) are duly acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sah, P., Latwal, A., Sharma, S. (2023). Challenges of Timberline Mapping in the Himalaya: A Case Study of the Sikkim Himalaya. In: Singh, S.P., Reshi, Z.A., Joshi, R. (eds) Ecology of Himalayan Treeline Ecotone. Springer, Singapore. https://doi.org/10.1007/978-981-19-4476-5_6

Download citation

Publish with us

Policies and ethics