Skip to main content

Exploring Microbial Diversity of Arid Regions of Globe for Agricultural Sustainability: A Revisit

  • Chapter
  • First Online:
Plant Growth Promoting Microorganisms of Arid Region
  • 371 Accesses

Abstract

Significant part of planet’s land is covered by arid deserts, and these ecoregions are driven and dominated with microbial dwellers. Microbial residents of desert land are known to interact with plants and boost their health through their plant growth-promoting abilities and can withstand climatic stresses imposed by arid habitats. Groups of such beneficial soil microbes are being called as plant growth-promoting microorganisms (PGPM) that are capable of alleviating plant immunity and growth through indirect means via inducing plant defense against phytopathogens or directly promote growth by nutrient solubilization, by assimilation, by modulating phytohormones, and by secreting specific solutes and enzymes. Explorations of microbial communities from extreme arid ecoregions across the globe have revealed abundance of Proteobacteria, Actinobacteria, and Bacteroidetes like bacterial communities and fungal phyla like Basidiomycota and Ascomycota. Several members of these groups, more specifically Bacillus sp., are known for wide diversity of plant growth promotion mechanisms and reported from hot as well as cold arid deserts. Exploration of such dryland microbial communities and their potentials aiding plant health against arid atrocities may open up opportunities to draw endless unexploited desert reservoir for agricultural sustainability. This chapter provides insight about microbial diversity in arid deserts of globe and highlights their plant promotion potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adkins S, Baker CA (2005) Tomato spotted wilt virus identified in desert rose in Florida. Plant Dis 89(5):526

    Article  CAS  PubMed  Google Scholar 

  • Adriaenssens EM, Van Zyl L, De Maayer P, Rubagotti E, Rybicki E, Tuffin M, Cowan DA (2015) Metagenomic analysis of the viral community in Namib Desert hypoliths. Environ Microbiol 17(2):480–495

    Article  CAS  PubMed  Google Scholar 

  • Adriaenssens EM, Kramer R, Van Goethem MW et al (2017) Environmental drivers of viral community composition in Antarctic soils identified by viromics. Microbiome 5:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Allali K, Goudjal Y, Zamoum M, Bouznada KNS, Zitouni A (2019) Nocardiopsis dassonvillei strain MB22 from the Algerian Sahara promotes wheat seedlings growth and potentially controls the common root rot pathogen Bipolaris sorokiniana. J Plant Pathol 101:1115–1125

    Article  Google Scholar 

  • Alsharif W, Saad MM, Hirt H (2020) Desert microbes for boosting sustainable agriculture in extreme environments. Front Microbiol 11:1666

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Whaibi M, Mohamed H (2011) Plant heat-shock proteins: a mini review. J King Saud Univ 23:139–150

    Article  Google Scholar 

  • An S, Couteau C, Luo F, Neveu J, DuBow MS (2013) Bacterial diversity of surface sand samples from the Gobi and Taklamakan deserts. Microb Ecol 66(4):850–860

    Article  PubMed  Google Scholar 

  • Andrew DR, Fitak RR, Munguia-Vega A, Racolta A, Martinson VG, Dontsova K (2012) Abiotic factors shape microbial diversity in Sonoran Desert soils. Appl Environ Microbiol 78(21):7527–7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apple ME, Thee CI, Smith-Longozo VL, Cogar CR, Wells CE, Nowak RS (2005) Arbuscular mycorrhizal colonization of Larrea tridentata and Ambrosia dumosa roots varies with precipitation and season in the Mojave Desert. Symbiosis 39(3):131

    Google Scholar 

  • Bachran M, Kluge S, Lopez-Fernandez M, Cherkouk A (2019) Microbial diversity in an arid, naturally saline environment. Microb Ecol 78(2):494–505

    Article  CAS  PubMed  Google Scholar 

  • Batanouny K (2001) Plants in the deserts of the Middle East. Springer, Berlin

    Book  Google Scholar 

  • Bates ST, Garcia-Pichel F (2009) A culture-independent study of free-living fungi in biological soil crusts of the Colorado plateau: their diversity and relative contribution to microbial biomass. Environ Microbiol 11(1):56–67

    Article  CAS  PubMed  Google Scholar 

  • Bates ST, Garcia-Pichel F, Nash TH III (2010) Fungal components of biological soil crusts: insight from culture-dependent and culture-independent studies. Biol Lichens 105:197–210

    Google Scholar 

  • Belnap J, Gardner JS (1993) Soil microstructure in soils of the Colorado plateau: the role of the cyanobacterium Microcoleus vaginatus. West N Am Naturalist 53:40–47

    Google Scholar 

  • Belov AA, Cheptsov VS, Vorobyova EA (2018) Soil bacterial communities of Sahara and Gibson deserts: physiological and taxonomical characteristics. AIMS Microbiol 4(4):685–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat MA, Rasool R, Ramzan S (2019) Plant growth promoting rhizobacteria (PGPR) for sustainable and eco-friendly agriculture. Acta Sci Agric 3:23–25

    Google Scholar 

  • Bhatnagar A, Bhatnagar M (2005) Microbial diversity in desert ecosystems. Curr Sci Ind 89:91–100

    Google Scholar 

  • Bohrer G (2001) Evidence of host and environmental preferences in wild communities of VAM fungi in the Kalahari Desert. Ben-Gurion University of the Negev

    Google Scholar 

  • Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13:e1002226

    Article  PubMed  PubMed Central  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S et al (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Brown JK, Guerrero JC, Matheron M, Olsen M, Idris AM (2007) Widespread outbreak of cucurbit yellow stunting disorder virus in melon, squash, and watermelon crops in the Sonoran Desert of Arizona and Sonora, Mexico. Plant Dis 91(6):773

    Article  CAS  PubMed  Google Scholar 

  • Brown LK, George TS, Neugebauer K, White PJ (2017) The rhizosheath – a potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant Soil 418:115–128

    Article  CAS  Google Scholar 

  • Bull AT, Andrews BA, Dorador C et al (2018) Introducing the Atacama Desert. Antonie Van Leeuwenhoek 111:1269–1272

    Article  PubMed  Google Scholar 

  • Caldwell MM, Björn LO, Bornman JF, Flint SD, Kulandaivelu G, Teramura AH et al (1998) Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J Photochem Photobiol B Biol 46:40–52

    Article  CAS  Google Scholar 

  • Chan Y, Van Nostrand JD, Zhou J et al (2013) Functional ecology of an Antarctic Dry Valley. Proc Natl Acad Sci U S A 110(22):8990–8995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanal A, Chapon V, Benzerara K et al (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525

    Article  CAS  PubMed  Google Scholar 

  • Chater KF, Chandra G (2006) The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol Rev 30:651–672

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi P, Shivaji S (2006) Exiguobacterium indicum sp. nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 56:2765–2770

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Zhang Y, Rafiq MT, Khan KY, Pan F, Yang X et al (2014) Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates. Chemosphere 117:367–373

    Article  CAS  PubMed  Google Scholar 

  • Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Soussi A et al (2015) Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ Microbiol Rep 7:668–678

    Article  CAS  PubMed  Google Scholar 

  • Cherlet M, Hutchinson C, Reynolds J, Hill J, Sommer S, von Maltitz G (2018) World atlas of desertification. Publication Office of the European Union, Luxembourg

    Google Scholar 

  • Chimwamurombe PM, Grönemeyer JL, Reinhold-Hurek B (2016) Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol Ecol 92:fiw083

    Article  PubMed  Google Scholar 

  • Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2009) Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus. Eur J Soil Biol 45:114–122

    Article  CAS  Google Scholar 

  • Connon SA, Lester ED, Shafaat HS et al (2007) Bacterial diversity in hyperarid Atacama Desert soils. J Geophys Res Biogeosci 112:G04S17

    Article  Google Scholar 

  • Crits-Christoph A, Robinson CK, Barnum T, Fricke WF, Davila AF, Jedynak B, McKay CP, DiRuggiero J (2013) Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome 1(1):28

    Article  PubMed  PubMed Central  Google Scholar 

  • Danish S, Hye MZ, Hussain S, Riaz M, Qayyum MF (2020) Mitigation of drought stress in maize through inoculation with drought tolerant acc deaminase containing pgpr under axenic conditions. Pak J Bot 52:49–60

    Article  CAS  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delhaize E, James RA, Ryan PR (2012) Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil. New Phytol 195:609–619

    Article  CAS  PubMed  Google Scholar 

  • Dibblee TW (1967) Areal geology of the western Mojave Desert, California

    Google Scholar 

  • Dimmitt MA, Comus PW, Phillips SJ, Brewer LM (2015) A natural history of the Sonoran Desert. University of California Press, Tucson, AZ

    Google Scholar 

  • Eckardt FD et al (2013) The nature of moisture at Gobabeb, in the central Namib Desert. J Arid Environ 93:7–19

    Article  Google Scholar 

  • Ensign JC (1978) Formation, properties, and germination of actinomycetes spores. Annu Rev Microbiol 32:185–219

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Devi TS, Gupta S, Kapoor R (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470

    Article  PubMed  PubMed Central  Google Scholar 

  • Fakruddin M, Mannan KSB (2013) Methods for analyzing diversity of microbial communities in natural environments. Ceylon J Sci (Bio Sci) 42(1):19–33

    Article  Google Scholar 

  • Fernandez O, Theocharis A, Bordiec S, Feil R, Jacquens L, Clément C (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant Microbe Interact 5:496–504

    Article  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Fierer N, StricklandMS LD et al (2009) Global patterns in belowground communities. Ecol Lett 12:1238–1249

    Article  PubMed  Google Scholar 

  • Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109(52):21390–21395. https://doi.org/10.1073/pnas.1215210110

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuentes A, Herrera H, Charles TC, Arriagada C (2020) Fungal and bacterial microbiome associated with the rhizosphere of native plants from the Atacama desert. Microorganisms 8(2):209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111(1):3–49

    Article  CAS  PubMed  Google Scholar 

  • Gaitan JJ, Bran DE, Oliva GE, Stressors PA (2019) Patagonian desert. Encyclopedia of the World’s biomes. Elsevier, Amsterdam, pp 163–180

    Google Scholar 

  • Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Microbiol 9:791–802

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Pringault O (2001) Cyanobacteria track water in desert soils. Nature 413:380–381

    Article  CAS  PubMed  Google Scholar 

  • Gehlot P, Solanki DS, Kumar S, Parihar K, Tak A, Pathak R, Singh SK (2020) A new record of gastroid fungus Broomeia congregata Berk. From great Indian Thar Desert, India. Indian Phytopathol 73(1):111–115

    Article  Google Scholar 

  • Genderjahn S, Alawi M, Mangelsdorf K, Horn F, Wagner D (2018) Desiccation-and saline-tolerant bacteria and archaea in kalahari pan sediments. Front Microbiol 9:2082

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson AC (1996) Structure-function relations of warm desert plants. Adaptations of Desert Organisms. Heidelberg, Springer-Verlag, Berlin

    Book  Google Scholar 

  • Greenville A (2018) In: Ward D (ed) The biology of deserts, 2nd edn. Oxford University Press, Oxford; 2016. xv + 370 pp. Price AUD $66 (paperback, also available as hardback and Ebook). ISBN: 9780198732761. Aust. Ecol. 43:e20

    Google Scholar 

  • Harwani D (2013) Biodiversity of rare thermophilic actinomycetes in the great Indian Thar desert: an overview. Indo Am J Pharm Res 3:934–939

    Google Scholar 

  • Hashem A, Tabassum B, Allah EFA (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26:1291–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan SE, Hijri M, St-Arnaud M (2013) Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnol 30:780–787

    Article  CAS  Google Scholar 

  • Holmes MG, Keiller DR (2002) Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell Environ 25:85–93

    Article  CAS  Google Scholar 

  • Hoyt CA (2002) The Chihuahuan desert. endangered species. Bulletin 27:03–06

    Google Scholar 

  • Ilyas N, Mumtaz K, Akhtar N, Yasmin H, Sayyed RZ, Khan W, El Enshasy HA, Dailin DJ, Elsayed EA, Ali Z (2020) Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability 12:8876

    Article  CAS  Google Scholar 

  • Jabborova D, Kannepalli A, Davranov K et al (2021) Co-inoculation of rhizobacteria promotes growth, yield, and nutrient contents in soybean and improves soil enzymes and nutrients under drought conditions. Sci Rep 11:22081

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobs A, Pieterse Z, Aveling TA (2016) Fungi associated with Aizoaceae seed in the succulent Karoo. In: VII international symposium on seed, transplant and stand establishment of horticultural crops-SEST2016 1204, pp 177–186

    Google Scholar 

  • James RA, Weligama C, Verbyla K, Ryan PR, Rebetzke GJ, Rattey A et al (2016) Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control. J Exp Bot 67:3709–3718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julkunen-Tiitto R, Nenadis N, Neugart S, Robson M, Agati G, Vepsäläinen J et al (2015) Assessing the response of plant flavonoids to UV radiation: an overview of appropriate techniques. Phytochem Rev 14:273–297

    Article  CAS  Google Scholar 

  • Kalam S, Basu A, Ahmad I, Sayyed RZ, El-Enshasy HA, Dailin DJ, Suriani NL (2020) Recent understanding of soil Acidobacteria and their ecological significance: a critical review. Front Microbiol 11:580024

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan I, Awan SA, Ikram R, Rizwan M, Akhtar N, Yasmin H, Sayyed RZ, Ali S, Ilyas N (2020) 24-Epibrassinolide regulated antioxidants and osmolyte defense and endogenous hormones in two wheat varieties under drought stress. Physiol Plant 172(2):696–706

    Article  PubMed  Google Scholar 

  • Khoshru B, Mitra D, Khoshmanzar E, Myo EM, Uniyal N, Mahakur B et al (2020) Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions. J Plant Nutr 43:3062–3092

    Article  CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  CAS  PubMed  Google Scholar 

  • Kishore KH, Begum Z, Pathan AAK, Shivaji S (2010) Paenibacillus glacialis sp. nov., isolated from the Kafni glacier of the Himalayas, India. Int J Syst Evol Microbiol 60:1909–1913

    Article  CAS  PubMed  Google Scholar 

  • Köberl M, Müller H, Ramadan EM et al (2011) Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One 6:e24452

    Article  PubMed  PubMed Central  Google Scholar 

  • Kour D, Sayyed RZ (2019) Drought tolerant phosphorus solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plant. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management, Abiotic stress management, vol 1. Springer, Singapore, pp 255–308

    Chapter  Google Scholar 

  • Kumar S, Solanki DS, Parihar K, Tak A, Gehlot P, Pathak R, Singh SK (2021) Actinomycetes isolates of arid zone of Indian Thar Desert and efficacy of their bioactive compounds against human pathogenic bacteria. Biol Futur 72:431–440

    Article  CAS  PubMed  Google Scholar 

  • Laity JJ (2009) Deserts and desert environments. Wiley-Blackwell, Chichester

    Google Scholar 

  • Lauber CL, Hamady M, Knight R et al (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lester ED, Satomi M, Ponce A (2007) Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem 39:704–708

    Article  CAS  Google Scholar 

  • Li F, Lu Q, Liao S, Jin T, Li W, Sun C (2019a) Labedella phragmitis sp. nov. and Labedella populi sp. nov., two endophytic actinobacteria isolated from plants in the Taklamakan Desert and emended description of the genus Labedella. Syst Appl Microbiol 42:126004

    Article  CAS  PubMed  Google Scholar 

  • Li F, Liao S, Liu S, Jin T, Sun C (2019b) Aeromicrobium endophyticum sp. nov., an endophytic actinobacterium isolated from reed (Phragmites australis). J Microbiol 57:725–731

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Habden X, Guo L, Tuo L, Jiang Z, Liu S et al (2015a) Prauserella endophytica sp. nov., an endophytic actinobacterium isolated from Tamarix taklamakanensis. Antonie Van Leeuwenhoek 107:1401–1409

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Tuo L, Habden X, Guo L, Jiang Z, Liu X et al (2015b) Nesterenkonia populi sp. nov., an actinobacterium isolated from Populus euphratica. Int J Syst Evol Microbiol 65:1474–1479

    Article  CAS  PubMed  Google Scholar 

  • Lodha S, Harsh LN (2009) Combined effects of biocontrol agents and residues on root rot mortality in Indian mesquite (Prosopis cineraria). Acta Hort 883:317–322

    Google Scholar 

  • Lodha S, Mawar R (2019) A review: population dynamics of Macrophomina phaseolina in relation to disease management. J Phytopathol 168:1–17

    Article  Google Scholar 

  • Lodha S, Mawar R, Chakarbarty PK, Singh B (2013) Managing Macrophomina phaseolina causing dry root rot of legumes by a native strain of Bacillus firmus. Indian Phytopathol 66(4):356–360

    Google Scholar 

  • López-Lozano NE, Eguiarte LE, Bonilla-Rosso G, García-Oliva F, Martínez-Piedragil C, Rooks C, Souza V (2012) Bacterial communities and the nitrogen cycle in the gypsum soils of Cuatro Ciénegas Basin, Coahuila: a Mars analogue. Astrobiology 12(7):699–709

    Article  PubMed  PubMed Central  Google Scholar 

  • Lubsanova DA, Zenova GM, Kozhevin PA, Manucharova NA, Shvarov AP (2014) Filamentous Actinobacteria of the saline soils of arid territories. Moscow Univ Soil Sci Bull 69:88–92

    Article  Google Scholar 

  • Ludwig M (2012) Carbonic anhydrase and the molecular evolution of C4 photosynthesis. Plant Cell Environ 35:22–37

    Article  CAS  PubMed  Google Scholar 

  • Lyles MB, Fredrickson HL, Bednar AJ, Fannin HB, Sobecki TM (2005) The chemical, biological and mechanical characterization of airborne micro-particulates from Kuwait. In: Abstract of the 8th annual force health protection conference, session

    Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere 93:1386–1392

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918

    Article  PubMed  PubMed Central  Google Scholar 

  • MacMahon JA (1988) Warm Deserts. In: Barbour MG, Billing WD (eds) North American terrestrial vegetation. Cambridge University Press, Cambridge, pp 231–264

    Google Scholar 

  • Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond JB, Cowan DA (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 39:203–221

    Article  CAS  PubMed  Google Scholar 

  • Maki T, Kurosaki Y, Onishi K, Lee KC, Pointing SB, Jugder D, Yamanaka N, Hasegawa H, Shinoda M (2017) Variations in the structure of airborne bacterial communities in Tsogt-Ovoo of Gobi desert area during dust events. Air Qual Atmos Health 10(3):249–260

    Article  CAS  PubMed  Google Scholar 

  • Mandakovic D, Rojas C, Maldonado J, Latorre M, Travisany D, Delage E et al (2018) Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience. Sci Rep 8:1–12

    Article  CAS  Google Scholar 

  • Marcos MS, Bertiller MB, Olivera NL (2019) Microbial community composition and network analyses in arid soils of the Patagonian Monte under grazing disturbance reveal an important response of the community to soil particle size. Appl Soil Ecol 138:223–232

    Article  Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Mascot-Gómez E, Flores J, López-Lozano NE (2021) The seed-associated microbiome of four cactus species from southern Chihuahuan Desert. J Arid Environ 190:104531

    Article  Google Scholar 

  • Maupin-Furlow JA, Humbard MA, Kirkland PA (2012) Extreme challenges and advances in archaeal proteomics. Curr Opin Microbiol 15:351–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mawar R, Singh V, Lodha S (2017) Combining food substrates for improved survival of aspergillus versicolor, a bio-agent. Biopesticide Int 13:140–148

    Google Scholar 

  • Mawar R, Tomer AS, Singh D (2019) Demonstration of efficacy of bio-control agents in managing soil-borne diseases of various crops in arid region of India. In special issue of Fusarium. Indian Phytopathol 72:699–703; NAAS rating 5.9

    Article  Google Scholar 

  • Mawar R, Sharma D, Ram L (2021a) Potential of biocontrol agents against Ganoderma lucidum causing basal stem rot in mesquite (Prosopis cineraria) growing in arid region of India. J For Res 32:1269–1279

    Article  CAS  Google Scholar 

  • Mawar R, Ram L, Sharma D, Jangid K (2021b) Bacterial antagonists against Ganoderma lucidum the incitant of root rot of Indian mesquite. Indian Phytopathol 74(3):843–848

    Article  Google Scholar 

  • Mawar R, Mathur T (2022) Enhancing survival and multiplication of Trichoderma harzianum by Prosopis juliflora based compost in Indian arid region. Indian Phytopathology. https://doi.org/10.1007/s42360-022-00495-8

  • McCarthy AJ, Williams ST (1992) Actinomycetes as agents of biodegradation in the environment—a review. Gene 115:189–192

    Article  CAS  PubMed  Google Scholar 

  • McHugh TA, Compson Z, van Gestel N, Hayer M, Ballard L, Haverty M et al (2017) Climate controls prokaryotic community composition in desert soils of the southwestern United States. FEMS Microbiol Ecol 93(10)

    Google Scholar 

  • Mogul R, Vaishampayan P, Bashir M, McKay CP, Schubert K, Bornaccorsi R, Gomez E, Tharayil S, Payton G, Capra J, Andaya J (2017) Microbial community and biochemical dynamics of biological soil crusts across a gradient of surface coverage in the Central Mojave Desert. Front Microbiol 8:1974

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadipanah F, Wink J (2016) Actinobacteria from arid and desert habitats: diversity and biological activity. Front Microbiol 6:1541

    Article  PubMed  PubMed Central  Google Scholar 

  • Monson RK (2014) Ecology and the environment. Springer, New York, NY

    Book  Google Scholar 

  • Moran NA, Sloan DB (2015) The Hologenome concept: helpful or hollow? PLoS Biol 13(12):e1002311

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murgia M, Fiamma M, Barac A, Deligios M, Mazzarello V, Paglietti B, Cappuccinelli P, Al-Qahtani A, Squartini A, Rubino S, Al-Ahdal MN (2019) Biodiversity of fungi in hot desert sands. Microbiology 8(1):e00595

    Article  Google Scholar 

  • Na X, Xu T, Li M, Zhou Z, Ma S, Wang J et al (2018) Variations of bacterial community diversity within the rhizosphere of three phylogenetically related perennial shrub plant species across environmental gradients. Front Microbiol 9:709

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagy ML, Pérez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233–245

    Article  CAS  PubMed  Google Scholar 

  • Najafi S, Nasi HN, Tuncturk R, Tuncturk M, Sayyed RZ, Amirnia R (2021) Biofertilizer application enhances drought stress tolerance and alters the antioxidant enzymes in medicinal pumpkin (Cucurbita pepo convar. pepo var. Styriaca). Horticulturae 7:588

    Article  Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9:689–701

    Article  Google Scholar 

  • Neilson JW, Quade J, Ortiz M et al (2012) Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles 16:553–566

    Article  PubMed  Google Scholar 

  • Norton MR, Malinowski DP, Volaire F (2016) Plant drought survival under climate change and strategies to improve perennial grasses. A review. Agron Sustain Dev 36:29

    Article  Google Scholar 

  • Oren A, Steinberger Y (2008) Catabolic profiles of soil fungal communities along a geographic climatic gradient in Israel. Soil Biol Biochem 40:2578–2587

    Article  CAS  Google Scholar 

  • Osborne P, Hall LJ, Kronfeld-Schor N et al (2020) A rather dry subject; investigating the study of arid-associated microbial communities. Environ Microbiome 15:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Othman AA, Amer WM, Fayez M, Hegazi NA (2004) Rhizosheath of Sinai desert plants is a potential repository for associative diazotrophs. Microbiol Res 159:285

    Article  PubMed  Google Scholar 

  • Pang J, Ryan MH, Siddique KHM, Simpson RJ (2017) Unwrapping the rhizosheath. Plant Soil 418:129–139

    Article  CAS  Google Scholar 

  • Ranzoni FV (1968) Fungi isolated in culture from soils of the Sonoran desert. Mycologia 60:356

    Article  CAS  PubMed  Google Scholar 

  • Redfield E, Barns SM, Belnap J, Daane LL, Kuske CR (2002) Comparative diversity and composition of cyanobacteria in three predominant soil crusts of the Colorado plateau. FEMS Microbiol Ecol 40:55–63

    Article  CAS  PubMed  Google Scholar 

  • Rittner M, Vermeesch P, Carter A, Bird A, Stevens T, Garzanti E, Andò S, Vezzoli G, Dutt R, Xu Z, Lu H (2016) The provenance of Taklamakan desert sand. Earth Planet Sci Lett 437:127–137

    Article  CAS  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Marine Ecol Prog 243:1–10

    Article  Google Scholar 

  • Saad MM, Eida AA, Hirt H (2020) Tailoring plant-associated microbial inoculants in agriculture – a roadmap for successful application. J Exp Bot 71:3878–3901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saadabi AMA (2006) On the fungal flora of Saudi Arabian soils. Res J Microbiol 1:280–284

    Article  Google Scholar 

  • Sahay H, Babu BK, Singh S, Kaushik R, Saxena AK, Arora DK (2013) Cold-active hydrolases producing bacteria from two different sub-glacial Himalayan lakes. J Basic Microbiol 53:703–714

    Article  CAS  PubMed  Google Scholar 

  • Samaddar S, Chatterjee P, Choudhury AR, Ahmed S, Sa T (2019) Interactions between Pseudomonas spp. and their role in improving the red pepper plant growth under salinity stress. Microbiol Res 219:66–73

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Peña SR (2000) Entomopathogens from two Chihuahuan desert localities in Mexico. BioControl 45(1):63–78

    Article  Google Scholar 

  • Sangamesh MB, Jambagi S, Vasanthakumari MM, Shetty NJ, Kolte H, Ravikanth G, Nataraja KN, Shaanker RU (2018) Thermotolerance of fungal endophytes isolated from plants adapted to the Thar Desert, India. Symbiosis 75(2):135–147

    Article  Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209

    Article  CAS  Google Scholar 

  • Schmidt RH Jr (1979) A climatic delineation of the ‘real’ Chihuahuan Desert. J Arid Environ 2(3):243–250

    Article  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Article  Google Scholar 

  • Shao-peng ZH, Ting XU, Li-qiang YA, Yu SO, Xin-yu LI, Hui-wen ZH (2014) Endophytic fungal communities of Stipa sp. roots in different types of steppes in northern China. Ying Yong Sheng Tai Xue Bao 25(12):3475–3482

    Google Scholar 

  • Shi ZY, Zhang LY, Li XL, Feng G, Tian CY, Christie P (2007) Diversity of arbuscular mycorrhizal fungi associated with desert ephemerals in plant communities of Junggar Basin, Northwest China. Appl Soil Ecol 35(1):10–20

    Article  CAS  Google Scholar 

  • Shivaji S, Pratibha M, Sailaja B, Kishore KH, Singh AK, Begum Z, Anarasi U, Prabagaran S, Reddy G, Srinivas T (2011) Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones. Extremophiles 15:1–22

    Article  CAS  PubMed  Google Scholar 

  • Singh SC, Sinha RP, Hader DP (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41:297–308

    CAS  Google Scholar 

  • Singh V, Mawar R, Lodha S (2014) Influence of bio-ecological factors on population dynamics of a native bio control agent Aspergillus versicolor in arid soil. Indian Phytopathol 67:86–91

    Google Scholar 

  • Smith SD, Monson RK, Anderson JE (1997) Physiological ecology of north American Desert plants. Adaptations of desert organisms. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Sorrels CM, Proteau PJ, Gerwick WH (2009) Organization, evolution, and expression analysis of the biosynthetic gene cluster for scytonemin, a cyanobacterial UV-absorbing pigment. Appl Environ Microbiol 75:4861–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza R, de Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Sprent JI, Gehlot HS (2010) Nodulated legumes in arid and semi-arid environments: are they important? Plant Ecol Divers 3:211–219

    Article  Google Scholar 

  • Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecol 5:453–462

    Article  Google Scholar 

  • Sternberg T, Rueff H, Middleton N (2015) Contraction of the Gobi desert, 2000–2012. Remote Sens 7(2):1346–1358

    Article  Google Scholar 

  • Steven B, Kuske CR, Reed SC, Belnap J (2015) Climate change and physical disturbance manipulations result in distinct biological soil crust communities. Appl Environ Microbiol 81:7448–7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahir M, Mirza MS, Hameed S, Dimitrov MR, Smidt H (2015) Cultivation-based and molecular assessment of bacterial diversity in the rhizosheath of wheat under different crop rotations. PLoS One 10:e0130030

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor-George S, Palmer F, Staley J (1983) Fungi and bacteria involved in desert varnish formation. Microb Ecol 9:227–245

    Article  CAS  PubMed  Google Scholar 

  • Teixeira LCRS, Peixoto RS, Cury JC (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4:989–1001

    Article  PubMed  Google Scholar 

  • Temperini CV, Franchi ML, Rozo ME, Greco M, Pardo AG, Pose GN (2019) Diversity and abundance of airborne fungal spores in a rural cold dry desert environment in Argentinean Patagonia. Sci Total Environ 665:513–520

    Article  CAS  PubMed  Google Scholar 

  • Thomas DS, Shaw PA (1993) The evolution and characteristics of the Kalahari, southern Africa. J Arid Environ 25(1):97–108

    Article  Google Scholar 

  • Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Titus JH, Nowak RS, Smith SD (2002) Soil resource heterogeneity in the Mojave Desert. J Arid Environ 52:23–37

    Article  Google Scholar 

  • Torsvik V, Daae FL, Sandaa RA, Ovreas L (1998) Review article: novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64:53–62

    Article  CAS  PubMed  Google Scholar 

  • United Nations Environment Programme (2006) Global deserts outlook. https://wedocs.unep.org/20.500.11822/9581

  • Varma A, Tripathi S, Prasad R (2019) Plant biotic interactions. Springer, Cham

    Book  Google Scholar 

  • Vasar M, Davison J, Sepp SK, Öpik M, Moora M, Koorem K, Meng Y, Oja J, Akhmetzhanova AA, Al-Quraishy S, Onipchenko VG, Cantero JJ, Glassman SI, Hozzein WN, Zobel M (2021) Arbuscular mycorrhizal fungal communities in the soils of desert habitats. Microorganisms 9(2):229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waller F, Achatz B, Baltruschat H et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Shen J, Wu Y et al (2013) Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J 7:1310–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Li F, Lu Q, Wu G, Jiang Z, Liu S et al (2020) Studies on diversity, novelty, antimicrobial activity, and new antibiotics of cultivable endophytic actinobacteria isolated from psammophytes collected in Taklamakan Desert. J Pharm Anal 11:241. https://doi.org/10.1016/j.jpha.2020.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu L, Zeng X-C, Nie Y et al (2014) Pontibacter diazotrophicus sp. nov., a novel nitrogen-fixing bacterium of the family Cytophagaceae. PLoS One 9:e92294

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Sachan SG, Verma P et al (2015) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108

    Article  CAS  PubMed  Google Scholar 

  • Yang W (2018) Atlas of sandy deserts in China. Science Press, Beijing

    Google Scholar 

  • Yang X, Preusser F, Radtke U (2006) Late quaternary environmental changes in the Taklamakan Desert, western China, inferred from OSL-dated lacustrine and aeolian deposits. Quat Sci Rev 25:923–932

    Article  Google Scholar 

  • Yeager CM, Kornosky JL, Housman DC, Grote EE, Belnap J, Kuske CR (2004) Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado plateau and Chihuahuan Desert. Appl Environ Microbiol 70:973–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeager CM, Kornosky JL, Morgan RE, Cain EC, Garcia-Pichel F, Housman DC et al (2007) Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado plateau, USA. FEMS Microbiol Ecol 60:85–97

    Article  CAS  PubMed  Google Scholar 

  • Zablocki O, Adriaenssens EM, Cowan D (2015) Diversity and ecology of viruses in Hyperarid Desert soils. Appl Environ Microbiol 82(3):770–777

    Article  PubMed  Google Scholar 

  • Zamoum M, Goudjal Y, Sabaou N, Mathieu F, Zitouni A (2017) Development of formulations based on Streptomyces rochei strain PTL2 spores for biocontrol of Rhizoctonia solani damping-off of tomato seedlings. Biocont Sci Technol 27:723–738

    Article  Google Scholar 

  • Zhang YM, Chen J, Wang L, Wang XQ, Gu ZH (2007) The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China. J Arid Environ 68(4):599–610

    Article  Google Scholar 

  • Zhang B, Zhang Y, Li X, Zhang Y (2018) Successional changes of fungal communities along the biocrust development stages. Biol Fertil Soils 54(2):285–294

    Article  Google Scholar 

  • Zhao S, Zhou N, Zhao ZY, Zhang K, Wu GH, Tian CY (2016) Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress. Curr Microbiol 73:574–581

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Bloomfield J, Hocart H, Egerton JG, O’Sullivan S, Penillard A et al (2018) Plasticity of photosynthetic heat tolerance in plants adapted to thermally contrasting biomes. Plant Cell Environ 41:1251–1262

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mawar, R., Ranawat, M., Sharma, S.K., Sayyed, R.Z. (2023). Exploring Microbial Diversity of Arid Regions of Globe for Agricultural Sustainability: A Revisit. In: Mawar, R., Sayyed, R.Z., Sharma, S.K., Sattiraju, K.S. (eds) Plant Growth Promoting Microorganisms of Arid Region. Springer, Singapore. https://doi.org/10.1007/978-981-19-4124-5_1

Download citation

Publish with us

Policies and ethics