Skip to main content

Updates and Controversies in the Management of Head and Neck Malignancy

  • Chapter
  • First Online:
Head and Neck Surgery : Surgical Landmark and Dissection Guide
  • 1055 Accesses

Abstract

The booming knowledge about the cancer etiology and pathogenesis has markedly changed the management of head and neck squamous cell carcinoma (HNSCC) in the last few decades. Innovation in different therapeutic modalities like surgery, radiotherapy, and chemotherapy has an admiring impact on cancer control in primary site and neck, overall survival, and issues related to quality of life. Relatively better outcome has shifted the therapeutic aim from drastic ablation to organ conservation and functional revival. Accumulation of different imaging systems, e.g., CT/MRI, PET/CT fusion scan, and very recently narrowband imaging, has had a breakthrough impact on the assessment and decision-making about treatment. Use of laser and robot has been providing opportunities to deal with some difficult areas surgically like nasopharynx, oropharynx, and hypopharynx. IMRT is a breakthrough in the field of radiotherapy.

Some controversies are still existing regarding investigative and treatment protocol like PET/CT and sentinel lymph node biopsy (SLNB). Whether the HPV-positive oropharyngeal carcinomas are being subjected to overtreatment is a concern. Targeted therapy aimed at epidermal growth factor receptor, vascular endothelial growth factor, etc. and immunotherapy with PD-1 and PD-L1 immune checkpoint inhibitor are also promising in the field of HNSCC management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levin ML. Some epidemiological features of cancer. Cancer. 1948;1(3):489–97. https://doi.org/10.1002/1097-0142(194809)1:3<489::aid-cncr2820010317>3.0.co;2-6.

    Article  PubMed  CAS  Google Scholar 

  2. Hoffmann D, Wynder EL. A study of tobacco carcinogenesis. XI. Tumor initiators, tumor accelerators, and tumor promoting activity of condensate fractions. Cancer. 1971;27(4):848–64. https://doi.org/10.1002/1097-0142(197104)27:4<848::aid-cncr2820270415>3.0.co;2-4.

    Article  PubMed  CAS  Google Scholar 

  3. Wynder EL, Gottlieb S, Wright G. A study of tobacco carcinogenesis. IV. Different tobacco types. Cancer. 1957;10(6):1206–9. https://doi.org/10.1002/1097-0142(195711/12)10:6<1206::aid-cncr2820100618>3.0.co;2-p.

    Article  PubMed  CAS  Google Scholar 

  4. Wynder EL, Kopf P, Ziegler H. A study of tobacco carcinogenesis. II. Dose-response studies. Cancer. 1957;10(6):1193–200. https://doi.org/10.1002/1097-0142(195711/12)10:6<1193::aid-cncr2820100616>3.0.co;2-y.

    Article  PubMed  CAS  Google Scholar 

  5. Wynder EL, Taguchi KT, Baden V, Hoffmann D. Tobacco carcinogenesis. IX. Effect of cigarette smoke on respiratory tract of mice after passive inhalation. Cancer. 1968;21(1):134–53. https://doi.org/10.1002/1097-0142(196801)21:1<134::aid-cncr2820210122>3.0.co;2-p.

    Article  PubMed  CAS  Google Scholar 

  6. Wynder EL, Bross IJ, Day E. A study of environmental factors in cancer of the larynx. Cancer. 1956;9(1):86–110. https://doi.org/10.1002/1097-0142(195601/02)9:1<86::aid-cncr2820090108>3.0.co;2-6.

    Article  PubMed  CAS  Google Scholar 

  7. Wynder EL, Bross IJ, Feldman RM. A study of the etiological factors in cancer of the mouth. Cancer. 1957;10(6):1300–23. https://doi.org/10.1002/1097-0142(195711/12)10:6<1300::aid-cncr2820100628>3.0.co;2-2.

    Article  PubMed  CAS  Google Scholar 

  8. Wynder EL, Covey LS, Mabuchi K, Mushinski M. Environmental factors in cancer of the larynx: a second look. Cancer. 1976;38(4):1591–601. https://doi.org/10.1002/1097-0142(197610)38:4<1591::aid-cncr2820380425>3.0.co;2-r.

    Article  PubMed  CAS  Google Scholar 

  9. Vogler WR, Lloyd JW, Milmore BK. A retrospective study of etiological factors in cancer of the mouth, pharynx, and larynx. Cancer. 1962;15:246–58. https://doi.org/10.1002/1097-0142(196203/04)15:2<246::aid-cncr2820150206>3.0.co;2-5.

    Article  PubMed  CAS  Google Scholar 

  10. Mashberg A, Boffetta P, Winkelman R, Garfinkel L. Tobacco smoking, alcohol drinking, and cancer of the oral cavity and oropharynx among U.S. veterans. Cancer. 1993;72(4):1369–75. https://doi.org/10.1002/1097-0142(19930815)72:4<1369::aid-cncr2820720436>3.0.co;2-l.

    Article  PubMed  CAS  Google Scholar 

  11. Muscat JE, Wynder EL. Tobacco, alcohol, asbestos, and occupational risk factors for laryngeal cancer. Cancer. 1992;69(9):2244–51. https://doi.org/10.1002/1097-0142(19920501)69:9<2244::aid-cncr2820690906>3.0.co;2-o.

    Article  PubMed  CAS  Google Scholar 

  12. Liang C, Marsit CJ, Houseman EA, et al. Gene–environment interactions of novel variants associated with head and neck cancer. Head Neck. 2012;34(8):1111–8. https://doi.org/10.1002/hed.21867. Accessed 2 Nov 2011.

    Article  PubMed  Google Scholar 

  13. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8. https://doi.org/10.1002/1097-0142(195309)6:5<963:aid-cncr2820060515>3.0.co;2-q.

    Article  PubMed  CAS  Google Scholar 

  14. Jemal A, Bray F, Center M, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. https://doi.org/10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  15. Hayat M, Howlader N, Reichman M, Edwards B. Cancer statistics, trends, and multiple primary cancer analyses from the surveillance, epidemiology, and end results (SEER) program. Oncologist. 2007;12(1):20–37. https://doi.org/10.1634/theoncologist.12-1-20.

    Article  PubMed  Google Scholar 

  16. Shindoh M, Chiba I, Yasuda M, et al. Detection of human papillomavirus DNA sequences in oral squamous cell carcinomas and their relation to p53 and proliferating cell nuclear antigen expression. Cancer. 1995;76(9):1513–21. https://doi.org/10.1002/1097-0142(19951101)76:9<1513::aid-cncr2820760903>3.0.co;2-4.

    Article  PubMed  CAS  Google Scholar 

  17. Kreimer AR, Clifford GM, Boyle P, Franceschi S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomark Prev. 2005;14(2):467–75. https://doi.org/10.1158/1055-9965.EPI-04-0551.

    Article  CAS  Google Scholar 

  18. Münger K, Howley PM. Human papillomavirus immortalization and transformation functions. Virus Res. 2002;89(2):213–28. https://doi.org/10.1016/s0168-1702(02)00190-9.

    Article  PubMed  Google Scholar 

  19. Hobbs CG, Sterne JA, Bailey M, Heyderman RS, Birchall MA, Thomas SJ. Human papillomavirus and head and neck cancer: a systematic review and meta-analysis. Clin Otolaryngol. 2006;31(4):259–66. https://doi.org/10.1111/j.1749-4486.2006.01246.x.

    Article  PubMed  CAS  Google Scholar 

  20. Mork J, Lie AK, Glattre E, et al. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. N Engl J Med. 2001;344(15):1125–31. https://doi.org/10.1056/NEJM200104123441503.

    Article  PubMed  CAS  Google Scholar 

  21. D’Souza G, Kreimer AR, Viscidi R, et al. Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med. 2007;356(19):1944–56. https://doi.org/10.1056/NEJMoa065497.

    Article  PubMed  Google Scholar 

  22. Schwartz SM, Daling JR, Doody DR, et al. Oral cancer risk in relation to sexual history and evidence of human papillomavirus infection. J Natl Cancer Inst. 1998;90(21):1626–36. https://doi.org/10.1093/jnci/90.21.1626.

    Article  PubMed  CAS  Google Scholar 

  23. Licitra L, Perrone F, Bossi P, et al. High-risk human papillomavirus affects prognosis in patients with surgically treated oropharyngeal squamous cell carcinoma. J Clin Oncol. 2006;24(36):5630–6. https://doi.org/10.1200/JCO.2005.04.6136.

    Article  PubMed  CAS  Google Scholar 

  24. Lindel K, Beer KT, Laissue J, Greiner RH, Aebersold DM. Human papillomavirus positive squamous cell carcinoma of the oropharynx: a radiosensitive subgroup of head and neck carcinoma. Cancer. 2001;92(4):805–13. https://doi.org/10.1002/1097-0142(20010815)92:4<805::aid-cncr1386>3.0.co;2-9.

    Article  PubMed  CAS  Google Scholar 

  25. Torrente M, Rodrigo J, Haigentz M, et al. Human papillomavirus infections in laryngeal cancer. Head Neck. 2011;33(4):581–6. https://doi.org/10.1002/hed.21421.

    Article  PubMed  Google Scholar 

  26. Maitra R, Ghalib M, Goel S. Reovirus: a targeted therapeutic—progress and potential. Mol Cancer Res. 2012;10(12):1514–25. https://doi.org/10.1158/1541-7786.mcr-12-0157.

    Article  PubMed  CAS  Google Scholar 

  27. Lin W, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Investig. 2007;117(5):1175–83. https://doi.org/10.1172/jci31537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. https://doi.org/10.1038/nature07205.

    Article  PubMed  CAS  Google Scholar 

  29. Zhu Z, Zhong S, Shen Z. Targeting the inflammatory pathways to enhance chemotherapy of cancer. Cancer Biol Ther. 2011;12(2):95–105. https://doi.org/10.4161/cbt.12.2.15952.

    Article  PubMed  CAS  Google Scholar 

  30. Lax A, Thomas W. How bacteria could cause cancer: one step at a time. Trends Microbiol. 2002;10(6):293–9. https://doi.org/10.1016/s0966-842x(02)02360-0.

    Article  PubMed  CAS  Google Scholar 

  31. Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell. 2006;124(4):823–35. https://doi.org/10.1016/j.cell.2006.02.016.

    Article  PubMed  CAS  Google Scholar 

  32. Homann N, Tillonen J, Rintamäki H, Salaspuro M, Lindqvist C, Meurman J. Poor dental status increases acetaldehyde production from ethanol in saliva: a possible link to increased oral cancer risk among heavy drinkers. Oral Oncol. 2001;37(2):153–8. https://doi.org/10.1016/s1368-8375(00)00076-2.

    Article  PubMed  CAS  Google Scholar 

  33. Salaspuro M. Acetaldehyde, microbes, and cancer of the digestive tract. Crit Rev Clin Lab Sci. 2003;40(2):183–208. https://doi.org/10.1080/713609333.

    Article  PubMed  CAS  Google Scholar 

  34. Wong R, Lin D, Schöder H, et al. Diagnostic and prognostic value of [18F]fluorodeoxyglucose positron emission tomography for recurrent head and neck squamous cell carcinoma. J Clin Oncol. 2002;20(20):4199–208. https://doi.org/10.1200/jco.2002.02.590.

    Article  PubMed  CAS  Google Scholar 

  35. Isles MG, McConkey C, Mehanna HM. A systematic review and meta-analysis of the role of positron emission tomography in the follow up of head and neck squamous cell carcinoma following radiotherapy or chemoradiotherapy. Clin Otolaryngol. 2008;33(3):210–22. https://doi.org/10.1111/j.1749-4486.2008.01688.x. Accessed 5 Jun 2008.

    Article  PubMed  CAS  Google Scholar 

  36. Kao J, Vu HL, Genden EM, et al. The diagnostic and prognostic utility of positron emission tomography/computed tomography-based follow-up after radiotherapy for head and neck cancer. Cancer. 2009;115(19):4586–94. https://doi.org/10.1002/cncr.24493. Accessed 19 Jun 2009.

    Article  PubMed  Google Scholar 

  37. Subramaniam R, Truong M, Peller P, Sakai O, Mercier G. Fluorodeoxyglucose–positron-emission tomography imaging of head and neck squamous cell cancer. Am J Neuroradiol. 2009;31(4):598–604. https://doi.org/10.3174/ajnr.a1760.

    Article  PubMed  Google Scholar 

  38. Troost E, Schinagl D, Bussink J, et al. Innovations in radiotherapy planning of head and neck cancers: role of PET. J Nucl Med. 2009;51(1):66–76. https://doi.org/10.2967/jnumed.108.061499.

    Article  PubMed  Google Scholar 

  39. Schoder H, Fury M, Lee N, Kraus D. PET monitoring of therapy response in head and neck squamous cell carcinoma. J Nucl Med. 2009;50(Suppl_1):74S–88S. https://doi.org/10.2967/jnumed.108.057208.

    Article  PubMed  CAS  Google Scholar 

  40. Kim J, Tannock I. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005;5(7):516–25. https://doi.org/10.1038/nrc1650.

    Article  PubMed  CAS  Google Scholar 

  41. Czernin J, Benz M, Allen-Auerbach M. PET/CT imaging: the incremental value of assessing the glucose metabolic phenotype and the structure of cancers in a single examination. Eur J Radiol. 2010;73(3):470–80. https://doi.org/10.1016/j.ejrad.2009.12.023.

    Article  PubMed  Google Scholar 

  42. Society of Nuclear Medicine and Molecular Imaging. Molecular imaging and head and neck cancers. SNMMI; 2020. https://s3.amazonaws.com/rdcms-snmmi/files/production/public/images/MI%20and%20Head%20and%20Neck%20cancer%20%28Master%29.pdf. Accessed 5 Sept 2020.

  43. Nagamachi S, Hoshi H, Jinnouchi S, et al. 201TI SPECT for evaluating head and neck cancer. Ann Nucl Med. 1996;10(1):105–11. https://doi.org/10.1007/bf03165062.

    Article  PubMed  CAS  Google Scholar 

  44. Lewis-Jones H, Colley S, Gibson D. Imaging in head and neck cancer: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol. 2016;130(S2):S28–31. https://doi.org/10.1017/s0022215116000396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ni X, Wang G. The role of narrow band imaging in head and neck cancers. Curr Oncol Rep. 2016;18(2) https://doi.org/10.1007/s11912-015-0498-1.

  46. Zhou H, Zhang J, Guo L, Nie J, Zhu C, Ma X. The value of narrow band imaging in diagnosis of head and neck cancer: a meta-analysis. Sci Rep. 2018;8(1) https://doi.org/10.1038/s41598-017-19069-0.

  47. Dahiya K, Dhankhar R. Updated overview of current biomarkers in head and neck carcinoma. World J Methodol. 2016;6(1):77. https://doi.org/10.5662/wjm.v6.i1.77.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bocca E. Supraglottic laryngectomy and functional neck dissection. J Laryngol Otol. 1966;80(8):831–8. https://doi.org/10.1017/s0022215100066032.

    Article  PubMed  CAS  Google Scholar 

  49. Bocca E, Pignataro O, Sasaki CT. Functional neck dissection. A description of operative technique. Arch Otolaryngol. 1980;106(9):524–7. https://doi.org/10.1001/archotol.1980.00790330004004.

    Article  PubMed  CAS  Google Scholar 

  50. Bocca E, Pignataro O, Oldini C, Cappa C. Functional neck dissection: an evaluation and review of 843 cases. Laryngoscope. 1984;94(7):942–5. https://doi.org/10.1288/00005537-198407000-00015.

    Article  PubMed  CAS  Google Scholar 

  51. Lindberg R. Distribution of cervical lymph node metastases from squamous cell carcinoma of the upper respiratory and digestive tracts. Cancer. 1972;29(6):1446–9. https://doi.org/10.1002/1097-0142(197206)29:6<1446::aid-cncr2820290604>3.0.co;2-c.

    Article  PubMed  CAS  Google Scholar 

  52. Shah JP. Patterns of cervical lymph node metastasis from squamous carcinomas of the upper aerodigestive tract. Am J Surg. 1990;160(4):405–9. https://doi.org/10.1016/s0002-9610(05)80554-9.

    Article  PubMed  CAS  Google Scholar 

  53. Shah JP, Candela FC, Poddar AK. The patterns of cervical lymph node metastases from squamous carcinoma of the oral cavity. Cancer. 1990;66(1):109–13. https://doi.org/10.1002/1097-0142(19900701)66:1<109::aid-cncr2820660120>3.0.co;2-a.

    Article  PubMed  CAS  Google Scholar 

  54. Lim Y, Song M, Kim S, Kim K, Choi E. Preserving level IIb lymph nodes in elective supraomohyoid neck dissection for oral cavity squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2004;130(9):1088. https://doi.org/10.1001/archotol.130.9.1088.

    Article  PubMed  Google Scholar 

  55. Pandey M, Karthikeyan S, Joshi D, Kumar M, Shukla M. Results of a randomized controlled trial of level IIb preserving neck dissection in clinically node-negative squamous carcinoma of the oral cavity. World J Surg Oncol. 2018;16(1) https://doi.org/10.1186/s12957-018-1518-z.

  56. Gould EA, Winship T, Philbin PH, Kerr HH. Observations on a “sentinel node” in cancer of the parotid. Cancer. 1960;13:77–8. https://doi.org/10.1002/1097-0142(196001/02)13:1<77::aid-cncr2820130114>3.0.co;2-d.

    Article  PubMed  CAS  Google Scholar 

  57. Shoaib T, Soutar DS, MacDonald DG, et al. The accuracy of head and neck carcinoma sentinel lymph node biopsy in the clinically N0 neck. Cancer. 2001;91(11):2077–83. https://doi.org/10.1002/1097-0142(20010601)91:11<2077::aid-cncr1235>3.0.co;2-e.

    Article  PubMed  CAS  Google Scholar 

  58. Lombardi CP, Raffaelli M, Princi P, De Crea C, Bellantone R. Minimally invasive video-assisted functional lateral neck dissection for metastatic papillary thyroid carcinoma. Am J Surg. 2007;193(1):114–8. https://doi.org/10.1016/j.amjsurg.2006.02.024.

    Article  PubMed  Google Scholar 

  59. Terris DJ, Monfared A, Thomas A, Kambham N, Sáenz Y. Endoscopic selective neck dissection in a porcine model. Arch Otolaryngol Head Neck Surg. 2003;129(6):613–7. https://doi.org/10.1001/archotol.129.6.613.

    Article  PubMed  Google Scholar 

  60. Malloy KM, Cognetti DM, Wildemore BM, et al. Feasibility of endoscopic sentinel node biopsy in the porcine neck. Otolaryngol Head Neck Surg. 2007;136(5):806–10. https://doi.org/10.1016/j.otohns.2006.11.025.

    Article  PubMed  Google Scholar 

  61. Guttman MR. Rehabilitation of voice in laryngectomized patients. Arch Otolaryngol. 1932;15:478–9.

    Google Scholar 

  62. Nijdam H, Annyas A, Schutte H, Leever H. A new prosthesis for voice rehabilitation after laryngectomy. Arch Otorhinolaryngol. 1982;237:27–9.

    Article  Google Scholar 

  63. Jebria AB, Henry C, Petit J, Gioux M, Devars F, Traissac L. Physical and aerodynamic features of the Bordeaux voice prosthesis. Artif Organs. 2008;11(5):383–7. https://doi.org/10.1111/j.1525-1594.1987.tb00949.x.

    Article  Google Scholar 

  64. Hilgers F, Schouwenburg P. A new low-resistance, self-retaining prosthesis (Provox) for voice rehabilitation after total laryngectomy. Laryngoscope. 1990;100(11):1202–7. https://doi.org/10.1288/00005537-199011000-00014.

    Article  PubMed  CAS  Google Scholar 

  65. Hilgers F, Cornelissen M, Balm A. Aerodynamic characteristics of the Provox low-resistance indwelling voice prosthesis. Eur Arch Otorhinolaryngol. 1993;250(7) https://doi.org/10.1007/bf00180379.

  66. Pressman JJ, Simon MB, Monell CM. Anatomic studies related to the dissemination of cancer of the larynx. Cancer. 1961;14:1131–8. https://doi.org/10.1002/1097-0142(196109/10)14:5<1131::aid-cncr2820140536>3.0.co;2-#.

    Article  PubMed  CAS  Google Scholar 

  67. Alonso JM. Conservative surgery of cancer of the larynx. Trans Am Acad Ophthalmol Otolaryngol. 1947;51:633–42.

    PubMed  CAS  Google Scholar 

  68. Majer EH, Rieder W. Technique de laryngectomie permetant de conserver la permeabilite. Ann Otol Rhinol Laryngol. 1959;76:677–81.

    CAS  Google Scholar 

  69. Ambrosch P. The role of laser microsurgery in the treatment of laryngeal cancer. Curr Opin Otolaryngol Head Neck Surg. 2007;15(2):82–8. https://doi.org/10.1097/MOO.0b013e3280147336.

    Article  PubMed  Google Scholar 

  70. Genden EM, Ferlito A, Silver CE, et al. Evolution of the management of laryngeal cancer. Oral Oncol. 2007;43(5):431–9. https://doi.org/10.1016/j.oraloncology.2006.08.007.

    Article  PubMed  Google Scholar 

  71. Weinstein GS, O’Malley BW Jr, Snyder W, Hockstein NG. Transoral robotic surgery: supraglottic partial laryngectomy. Ann Otol Rhinol Laryngol. 2007;116(1):19–23. https://doi.org/10.1177/000348940711600104.

    Article  PubMed  Google Scholar 

  72. Weinstein G, O’Malley BW Jr, Hockstein NG. Transoral robotic surgery: supraglottic laryngectomy in a canine model. Laryngoscope. 2005;115(7):1315–9. https://doi.org/10.1097/01.mlg.0000170848.76045.47.

    Article  PubMed  Google Scholar 

  73. O’Malley B, Weinstein G, Hockstein N. Transoral robotic surgery (TORS): glottic microsurgery in a canine model. J Voice. 2006;20(2):263–8. https://doi.org/10.1016/j.jvoice.2005.10.004.

    Article  PubMed  Google Scholar 

  74. National Comprehensive Cancer Network. NCCN practice guidelines in oncology: head and neck cancers. 2013. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp.

  75. Pederson A, Salama J, Witt M, et al. Concurrent chemotherapy and intensity-modulated radiotherapy for organ preservation of locoregionally advanced oral cavity cancer. Am J Clin Oncol. 2011;34(4):356–61. https://doi.org/10.1097/coc.0b013e3181e8420b.

    Article  PubMed  CAS  Google Scholar 

  76. Bedwinek J, Shukovsky L, Fletcher G, Daley T. Osteonecrosis in patients treated with definitive radiotherapy for squamous cell carcinomas of the oral cavity and naso- and oropharynx. Radiology. 1976;119(3):665–7. https://doi.org/10.1148/119.3.665.

    Article  PubMed  CAS  Google Scholar 

  77. Loree T, Strong E. Significance of positive margins in oral cavity squamous carcinoma. Am J Surg. 1990;160(4):410–4. https://doi.org/10.1016/s0002-9610(05)80555-0.

    Article  PubMed  CAS  Google Scholar 

  78. Cooper J, Pajak T, Forastiere A, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med. 2004;350:1937–44. https://doi.org/10.1056/NEJMoa032646.

    Article  PubMed  Google Scholar 

  79. Montero PH, Patel SG. Cancer of the oral cavity. Surg Oncol Clin N Am. 2015;24(3):491–508. https://doi.org/10.1016/j.soc.2015.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Farah C, Dalley A, Nguyen P, et al. Improved surgical margin definition by narrow band imaging for resection of oral squamous cell carcinoma: a prospective gene expression profiling study. Head Neck. 2015;38(6):832–9. https://doi.org/10.1002/hed.23989.

    Article  PubMed  Google Scholar 

  81. Vu A, Farah C. Narrow band imaging: clinical applications in oral and oropharyngeal cancer. Oral Dis. 2016;22(5):383–90. https://doi.org/10.1111/odi.12430.

    Article  PubMed  CAS  Google Scholar 

  82. Schmalbach C, Chepeha D, Giordano T, et al. Molecular profiling and the identification of genes associated with metastatic oral cavity/pharynx squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2004;130(3):295. https://doi.org/10.1001/archotol.130.3.295.

    Article  PubMed  Google Scholar 

  83. Gourin C, Boyce B, Vaught C, Burkhead L, Podolsky R. Effect of comorbidity on post-treatment quality of life scores in patients with head and neck squamous cell carcinoma. Laryngoscope. 2009;119(5):907–14. https://doi.org/10.1002/lary.20199.

    Article  PubMed  Google Scholar 

  84. Ang K, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35. https://doi.org/10.1056/NEJMoa0912217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Mydlarz W, Chan J, Richmon J. The role of surgery for HPV-associated head and neck cancer. Oral Oncol. 2015;51:305–13. https://doi.org/10.1016/j.oraloncology.2014.10.005.

    Article  PubMed  Google Scholar 

  86. Tateya I, Shiotani A, Satou Y, et al. Transoral surgery for laryngo-pharyngeal cancer—the paradigm shift of the head and cancer treatment. Auris Nasus Larynx. 2016;43(1):21–32. https://doi.org/10.1016/j.anl.2015.06.013.

    Article  PubMed  Google Scholar 

  87. Kass J, Pool C, Teng M, Miles B, Genden E. Initial experience using transoral robotic surgery for advanced-stage (T3) tumors of the head and neck. Int J Radiat Oncol Biol Phys. 2016;94(4):899. https://doi.org/10.1016/j.ijrobp.2015.12.106.

    Article  Google Scholar 

  88. Weinstein G, O’Malley B, Cohen M, Quon H. Transoral robotic surgery for advanced oropharyngeal carcinoma. Arch Otolaryngol Head Neck Surg. 2010;136(11):1079. https://doi.org/10.1001/archoto.2010.191.

    Article  PubMed  Google Scholar 

  89. Hinni M, Nagel T, Howard B. Oropharyngeal cancer treatment: the role of transoral surgery. Curr Opin Otolaryngol Head Neck Surg. 2015;23(2):132–8. https://doi.org/10.1097/MOO.0000000000000143.

    Article  PubMed  Google Scholar 

  90. Kelly K, Johnson-Obaseki S, Lumingu J, Corsten M. Oncologic, functional and surgical outcomes of primary Transoral Robotic Surgery for early squamous cell cancer of the oropharynx: a systematic review. Oral Oncol. 2014;50(8):696–703. https://doi.org/10.1016/j.oraloncology.2014.04.005.

    Article  PubMed  Google Scholar 

  91. Reynolds L, Rigby M, Trites J, Hart R, Taylor S. Outcomes of transoral laser microsurgery for recurrent head and neck cancer. J Laryngol Otol. 2013;127(10):982–6. https://doi.org/10.1017/S0022215113001953.

    Article  PubMed  CAS  Google Scholar 

  92. White H, Ford S, Bush B, et al. Salvage surgery for recurrent cancers of the oropharynx. JAMA Otolaryngol Head Neck Surg. 2013;139(8):773. https://doi.org/10.1001/jamaoto.2013.3866.

    Article  PubMed  Google Scholar 

  93. Dallan I, Castelnuovo P, Vicini C, Tschabitscher M. The natural evolution of endoscopic approaches in skull base surgery: robotic-assisted surgery? Acta Otorhinolaryngol Ital. 2011;31(6):390–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Mercante G, Ruscito P, Pellini R, Cristalli G, Spriano G. Transoral robotic surgery (TORS) for tongue base tumours. Acta Otorhinolaryngol Ital. 2013;33(4):230–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Mirimanoff R, Wang C, Doppke K. Combined surgery and postoperative radiation therapy for advanced laryngeal and hypopharyngeal carcinomas. Int J Radiat Oncol Biol Phys. 1985;11(3):499–504. https://doi.org/10.1016/0360-3016(85)90180-4.

    Article  PubMed  CAS  Google Scholar 

  96. Hoffman H, Karnell L, Shah J, et al. Hypopharyngeal cancer patient care evaluation. Laryngoscope. 1997;107:1005–17. https://doi.org/10.1097/00005537-199708000-00001.

    Article  PubMed  CAS  Google Scholar 

  97. Braendstrup P. Lehrbuch der Augenheilkunde. 2. AufL. 1954. Karger, Basel. Acta Ophthalmol. 2009;32(1):95–6. https://doi.org/10.1111/j.1755-3768.1954.tb07677.x.

    Article  Google Scholar 

  98. Chu P, Chang S. Reconstruction of the hypopharynx after surgical treatment of squamous cell carcinoma. J Chin Med Assoc. 2009;72(7):351–5. https://doi.org/10.1016/s1726-4901(09)70386-7.

    Article  PubMed  Google Scholar 

  99. Disa J, Pusic A, Hidalgo D, Cordeiro P. Microvascular reconstruction of the hypopharynx: defect classification, treatment algorithm, and functional outcome based on 165 consecutive cases. Plast Reconstr Surg. 2003;111(2):652–60. https://doi.org/10.1097/01.prs.0000041987.53831.23.

    Article  PubMed  Google Scholar 

  100. Ho M, Houghton L, Gillmartin E, et al. Outcomes following pharyngolaryngectomy reconstruction with the anterolateral thigh (ALT) free flap. Br J Oral Maxillofac Surg. 2012;50(1):19–24. https://doi.org/10.1016/j.bjoms.2010.10.004.

    Article  PubMed  CAS  Google Scholar 

  101. Yu P, Hanasono M, Skoracki R, et al. Pharyngoesophageal reconstruction with the anterolateral thigh flap after total laryngopharyngectomy. Cancer. 2010;116(7):1718–24. https://doi.org/10.1002/cncr.24947.

    Article  PubMed  Google Scholar 

  102. Kim V, Chapman W, Albrecht R, et al. Early experience with telemanipulative robot-assisted laparoscopic cholecystectomy using Da Vinci. Surg Laparosc Endosc Percutan Tech. 2002;12(1):33–40. https://doi.org/10.1097/00129689-200202000-00006.

    Article  PubMed  Google Scholar 

  103. Moore E, Olsen K, Kasperbauer J. Transoral robotic surgery for oropharyngeal squamous cell carcinoma: a prospective study of feasibility and functional outcomes. Laryngoscope. 2009;119(11):2156–64. https://doi.org/10.1002/lary.20647.

    Article  PubMed  Google Scholar 

  104. Boudreaux B, Rosenthal E, Magnuson J, et al. Robot-assisted surgery for upper aerodigestive tract neoplasms. Arch Otolaryngol Head Neck Surg. 2009;135(4):397. https://doi.org/10.1001/archoto.2009.24.

    Article  PubMed  Google Scholar 

  105. Hirayama T, Ito Y. A new view of the etiology of nasopharyngeal carcinoma. Prev Med. 1981;10(5):614–22. https://doi.org/10.1016/0091-7435(81)90051-7.

    Article  PubMed  CAS  Google Scholar 

  106. Shi W, Pataki I, MacMillan C, et al. Molecular pathology parameters in human nasopharyngeal carcinoma. Cancer. 2002;94(7):1997–2006. https://doi.org/10.1002/cncr.0679.

    Article  PubMed  CAS  Google Scholar 

  107. Zhang M, Li J, Shen G, et al. Intensity-modulated radiotherapy prolongs the survival of patients with nasopharyngeal carcinoma compared with conventional two-dimensional radiotherapy: a 10-year experience with a large cohort and long follow-up. Eur J Cancer. 2015;51(17):2587–95. https://doi.org/10.1016/j.ejca.2015.08.006.

    Article  PubMed  Google Scholar 

  108. Su S, Han F, Zhao C, et al. Long-term outcomes of early-stage nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy alone. Int J Radiat Oncol Biol Phys. 2012;82(1):327–33. https://doi.org/10.1016/j.ijrobp.2010.09.011.

    Article  PubMed  Google Scholar 

  109. Hao S, Tsang N, Chang C. Salvage surgery for recurrent nasopharyngeal carcinoma. Arch Otolaryngol Head Neck Surg. 2002;128(1):63. https://doi.org/10.1001/archotol.128.1.63.

    Article  PubMed  Google Scholar 

  110. Chan K, Woo J, King A, et al. Analysis of plasma Epstein–Barr virus DNA to screen for nasopharyngeal cancer. N Engl J Med. 2017;377(6):513–22. https://doi.org/10.1056/nejmoa1701717.

    Article  PubMed  CAS  Google Scholar 

  111. Ji M, Huang Q, Yu X, et al. Evaluation of plasma Epstein-Barr virus DNA load to distinguish nasopharyngeal carcinoma patients from healthy high-risk populations in Southern China. Cancer. 2014;120(9):1353–60. https://doi.org/10.1002/cncr.28564.

    Article  PubMed  CAS  Google Scholar 

  112. Na’ara S, Amit M, Billan S, Cohen J, Gil Z. Outcome of patients undergoing salvage surgery for recurrent nasopharyngeal carcinoma: a meta-analysis. Ann Surg Oncol. 2014;21(9):3056–62. https://doi.org/10.1245/s10434-014-3683-9.

    Article  PubMed  Google Scholar 

  113. Chen M, Wen W, Guo X, et al. Endoscopic nasopharyngectomy for locally recurrent nasopharyngeal carcinoma. Laryngoscope. 2009;119(3):516–22. https://doi.org/10.1002/lary.20133.

    Article  PubMed  Google Scholar 

  114. Chen M, Wang S, Zhu Y, et al. Use of a posterior pedicle nasal septum and floor mucoperiosteum flap to resurface the nasopharynx after endoscopic nasopharyngectomy for recurrent nasopharyngeal carcinoma. Head Neck. 2011;34(10):1383–8. https://doi.org/10.1002/hed.21928.

    Article  PubMed  Google Scholar 

  115. You R, Zou X, Hua Y, et al. Salvage endoscopic nasopharyngectomy is superior to intensity-modulated radiation therapy for local recurrence of selected T1–T3 nasopharyngeal carcinoma—a case-matched comparison. Radiother Oncol. 2015;115(3):399–406. https://doi.org/10.1016/j.radonc.2015.04.024.

    Article  PubMed  Google Scholar 

  116. Frazell E, Lewis J. Cancer of the nasal cavity and accessory sinuses. A report of the management of 416 patients. Cancer. 1963;16(10):1293–301. https://doi.org/10.1002/1097-0142(196310)16:10<1293::aid-cncr2820161010>3.0.co;2-4.

    Article  PubMed  CAS  Google Scholar 

  117. Ketcham A, Wilkins R, Van Buren J, Smith R. A combined intracranial facial approach to the paranasal sinuses. Am J Surg. 1963;106(5):698–703. https://doi.org/10.1016/0002-9610(63)90387-8.

    Article  PubMed  CAS  Google Scholar 

  118. Dulguerov P, Jacobsen M, Allal A, Lehmann W, Calcaterra T. Nasal and paranasal sinus carcinoma: are we making progress? Cancer. 2001;92(12):3012–29. https://doi.org/10.1002/1097-0142(20011215)92:12<3012::aid-cncr10131>3.0.co;2-e.

    Article  PubMed  CAS  Google Scholar 

  119. Banhiran W, Casiano R. Endoscopic sinus surgery for benign and malignant nasal and sinus neoplasm. Curr Opin Otolaryngol Head Neck Surg. 2005;13(1):50–4. https://doi.org/10.1097/00020840-200502000-00012.

    Article  PubMed  Google Scholar 

  120. Snyderman C, Carrau R, Kassam A, et al. Endoscopic skull base surgery: principles of endonasal oncological surgery. J Surg Oncol. 2008;97(8):658–64. https://doi.org/10.1002/jso.21020.

    Article  PubMed  Google Scholar 

  121. Schneider J, Burgner J, Webster R, Russell P. Robotic surgery for the sinuses and skull base. Curr Opin Otolaryngol Head Neck Surg. 2013;21(1):11–6. https://doi.org/10.1097/moo.0b013e32835bc650.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Brennan P, Ammar M, Matharu J. Contemporary management of benign parotid tumours—the increasing evidence for extracapsular dissection. Oral Dis. 2016;23(1):18–21. https://doi.org/10.1111/odi.12518.

    Article  PubMed  Google Scholar 

  123. Brennan P, Herd M, Howlett D, Gibson D, Oeppen R. Is ultrasound alone sufficient for imaging superficial lobe benign parotid tumours before surgery? Br J Oral Maxillofac Surg. 2012;50(4):333–7. https://doi.org/10.1016/j.bjoms.2011.01.018.

    Article  PubMed  CAS  Google Scholar 

  124. Thoeny H. Imaging of salivary gland tumours. Cancer Imaging. 2007;7(1):52–62. https://doi.org/10.1102/1470-7330.2007.0008.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kendi A, Magliocca K, Corey A, et al. Is there a role for PET/CT parameters to characterize benign, malignant, and metastatic parotid tumors? Am J Roentgenol. 2016;207(3):635–40. https://doi.org/10.2214/ajr.15.15590.

    Article  Google Scholar 

  126. Sood A, Houlton J, Nguyen S, Gillespie M. Facial nerve monitoring during parotidectomy: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2014;151(1_Suppl):P56. https://doi.org/10.1177/0194599814541627a86.

    Article  Google Scholar 

  127. Guntinas-Lichius O, Eisele D. Facial nerve monitoring. In: Salivary gland neoplasms. Basel: Karger; 2016. p. 46–52. https://doi.org/10.1159/000442124.

  128. Krishnatreya M, Sharma J, Kataki A, Kalita M. Survival in carcinoma of unknown primary to neck nodes treated with neck dissection and radiotherapy. Ann Med Health Sci Res. 2014;4(8):165. https://doi.org/10.4103/2141-9248.138050.

    Article  Google Scholar 

  129. Keller L, Galloway T, Holdbrook T, et al. p16 status, pathologic and clinical characteristics, biomolecular signature, and long-term outcomes in head and neck squamous cell carcinomas of unknown primary. Head Neck. 2014;36(12):1677–84. https://doi.org/10.1002/hed.23514.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Motz K, Qualliotine J, Rettig E, Richmon J, Eisele D, Fakhry C. Changes in unknown primary squamous cell carcinoma of the head and neck at initial presentation in the era of human papillomavirus. JAMA Otolaryngol Head Neck Surg. 2016;142(3):223. https://doi.org/10.1001/jamaoto.2015.3228.

    Article  PubMed  Google Scholar 

  131. Axelsson L, Nyman J, Haugen-Cange H, et al. Prognostic factors for head and neck cancer of unknown primary including the impact of human papilloma virus infection. J Otolaryngol Head Neck Surg. 2017;46(1) https://doi.org/10.1186/s40463-017-0223-1.

  132. Sivars L, Näsman A, Tertipis N, et al. Human papillomavirus and p53 expression in cancer of unknown primary in the head and neck region in relation to clinical outcome. Cancer Med. 2014;3(2):376–84. https://doi.org/10.1002/cam4.19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Vent J, Haidle B, Wedemeyer I, et al. p16 Expression in carcinoma of unknown primary: diagnostic indicator and prognostic marker. Head Neck. 2013;35(11):1521–6. https://doi.org/10.1002/hed.23190.

    Article  PubMed  Google Scholar 

  134. Perkins S, Spencer C, Chernock R, et al. Radiotherapeutic management of cervical lymph node metastases from an unknown primary site. Arch Otolaryngol Head Neck Surg. 2012;138(7):656. https://doi.org/10.1001/archoto.2012.1110.

    Article  PubMed  Google Scholar 

  135. Mistry R, Qureshi S, Talole S, Deshmukh S. Cervical lymph node metastases of squamous cell carcinoma from an unknown primary: outcomes and patterns of failure. Indian J Cancer. 2008;45(2):54. https://doi.org/10.4103/0019-509x.41771.

    Article  PubMed  CAS  Google Scholar 

  136. Huang C, Tseng F, Yeh T, et al. Prognostic factors of unknown primary head and neck squamous cell carcinoma. Otolaryngol Head Neck Surg. 2008;139(3):429–35. https://doi.org/10.1016/j.otohns.2008.05.015.

    Article  PubMed  Google Scholar 

  137. Christiansen H, Hermann R, Martin A, Nitsche M, Schmidberger H, Pradier O. Neck lymph node metastases from an unknown primary tumor. Strahlenther Onkol. 2005;181(6):355–62. https://doi.org/10.1007/s00066-005-1338-2.

    Article  PubMed  Google Scholar 

  138. Aslani M, Sultanem K, Voung T, Hier M, Niazi T, Shenouda G. Metastatic carcinoma to the cervical nodes from an unknown head and neck primary site: is there a need for neck dissection? Head Neck. 2007;29(6):585–90. https://doi.org/10.1002/hed.20581.

    Article  PubMed  Google Scholar 

  139. Su AI, Welsh JB, Sapinoso LM, et al. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res. 2001;61(20):7388–93.

    PubMed  CAS  Google Scholar 

  140. Golub T, Slonim D, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531–7. https://doi.org/10.1126/science.286.5439.531.

    Article  PubMed  CAS  Google Scholar 

  141. Kato S, Krishnamurthy N, Banks K, et al. Utility of genomic analysis in circulating tumor DNA from patients with carcinoma of unknown primary. Cancer Res. 2017;77(16):4238–46. https://doi.org/10.1158/0008-5472.can-17-0628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Paderno A, Piazza C, Nicolai P. Recent advances in surgical management of parapharyngeal space tumors. Curr Opin Otolaryngol Head Neck Surg. 2015;23(2):83–90. https://doi.org/10.1097/moo.0000000000000134.

    Article  PubMed  Google Scholar 

  143. Chu F, De Berardinis R, Tagliabue M, Zorzi S, Bandi F, Ansarin M. The role of transoral robotic surgery for parapharyngeal space. J Craniofac Surg. 2020;31(1):117–20. https://doi.org/10.1097/scs.0000000000005912.

    Article  PubMed  Google Scholar 

  144. O’Malley B Jr, Quon H, Leonhardt F, Chalian A, Weinstein G. Transoral robotic surgery for parapharyngeal space tumors. ORL. 2010;72(6):332–6. https://doi.org/10.1159/000320596.

    Article  PubMed  Google Scholar 

  145. Kyubo K, Dong JL. The updated AJCC/TNM staging system (8th edition) for oral tongue cancer. Transl Cancer Res. 2019;8(Suppl 2):S164–6. https://doi.org/10.21037/tcr.2019.01.02.

    Article  Google Scholar 

  146. Jain K, Sikora A, Baxi S, Morris L. Synchronous cancers in patients with head and neck cancer. Cancer. 2013;119(10):1832–7. https://doi.org/10.1002/cncr.27988.

    Article  PubMed  Google Scholar 

  147. Birkeland A, Rosko A, Chinn S, Prince M, Sun G, Spector M. Prevalence and outcomes of head and neck versus non-head and neck second primary malignancies in head and neck squamous cell carcinoma: an analysis of the surveillance, epidemiology, and end results database. ORL. 2016;78(2):61–9. https://doi.org/10.1159/000443768.

    Article  PubMed  Google Scholar 

  148. Hanamoto A, Takenaka Y, Shimosegawa E, et al. Limitation of 2-deoxy-2-[F-18]fluoro-d-glucose positron emission tomography (FDG-PET) to detect early synchronous primary cancers in patients with untreated head and neck squamous cell cancer. Ann Nucl Med. 2013;27(10):880–5. https://doi.org/10.1007/s12149-013-0765-x.

    Article  PubMed  Google Scholar 

  149. Suzuki H, Hasegawa Y, Terada A, et al. Limitations of FDG-PET and FDG-PET with computed tomography for detecting synchronous cancer in pharyngeal cancer. Arch Otolaryngol Head Neck Surg. 2008;134(11):1191. https://doi.org/10.1001/archotol.134.11.1191.

    Article  PubMed  Google Scholar 

  150. Martel M, Alemany L, Taberna M, et al. The role of HPV on the risk of second primary neoplasia in patients with oropharyngeal carcinoma. Oral Oncol. 2017;64:37–43. https://doi.org/10.1016/j.oraloncology.2016.11.011.

    Article  PubMed  Google Scholar 

  151. Diaz D, Reis I, Weed D, Elsayyad N, Samuels M, Abramowitz M. Head and neck second primary cancer rates in the human papillomavirus era: a population-based analysis. Head Neck. 2015;38(S1):E873–83. https://doi.org/10.1002/hed.24119.

    Article  PubMed  Google Scholar 

  152. Ferlito A, Shaha A, Silver C, Rinaldo A, Mondin V. Incidence and sites of distant metastases from head and neck cancer. ORL. 2001;63(4):202–7. https://doi.org/10.1159/000055740.

    Article  PubMed  CAS  Google Scholar 

  153. Noij D, Martens R, Zwezerijnen B, et al. Diagnostic value of diffusion-weighted imaging and 18F-FDG-PET/CT for the detection of unknown primary head and neck cancer in patients presenting with cervical metastasis. Eur J Radiol. 2018;107:20–5. https://doi.org/10.1016/j.ejrad.2018.08.009.

    Article  PubMed  Google Scholar 

  154. Lee J, Kim J, Roh J, et al. Detection of occult primary tumors in patients with cervical metastases of unknown primary tumors: comparison of 18F FDG PET/CT with contrast-enhanced CT or CT/MR imaging—prospective study. Radiology. 2015;274(3):764–71. https://doi.org/10.1148/radiol.14141073.

    Article  PubMed  Google Scholar 

  155. Hermans R. Imaging in cervical nodal metastases of unknown primary. Cancer Imaging. 2011;11(1A):S9–S14. https://doi.org/10.1102/1470-7330.2011.9004.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49(3):480–508.

    Article  PubMed  Google Scholar 

  157. Becker M, Zbären P, Laeng H, Stoupis C, Porcellini B, Vock P. Neoplastic invasion of the laryngeal cartilage: comparison of MR imaging and CT with histopathologic correlation. Radiology. 1995;194(3):661–9. https://doi.org/10.1148/radiology.194.3.7862960.

    Article  PubMed  CAS  Google Scholar 

  158. Beitler J, Muller S, Grist W, et al. Prognostic accuracy of computed tomography findings for patients with laryngeal cancer undergoing laryngectomy. J Clin Oncol. 2010;28(14):2318–22. https://doi.org/10.1200/jco.2009.24.7544.

    Article  PubMed  Google Scholar 

  159. Becker M, Burkhardt K, Dulguerov P, Allal A. Imaging of the larynx and hypopharynx. Eur J Radiol. 2008;66(3):460–79. https://doi.org/10.1016/j.ejrad.2008.03.027.

    Article  PubMed  Google Scholar 

  160. Thompson C, St. John M, Lawson G, Grogan T, Elashoff D, Mendelsohn A. Diagnostic value of sentinel lymph node biopsy in head and neck cancer: a meta-analysis. Eur Arch Otorhinolaryngol. 2012;270(7):2115–22. https://doi.org/10.1007/s00405-012-2320-0.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Colnot D, Nieuwenhuis E, van den Brekel M, et al. Head and neck squamous cell carcinoma: US-guided fine-needle aspiration of sentinel lymph nodes for improved staging—initial experience. Radiology. 2001;218(1):289–93. https://doi.org/10.1148/radiology.218.1.r01dc01289.

    Article  PubMed  CAS  Google Scholar 

  162. Turner R, Hansen N, Stern S, Giulino A. Intraoperative examination of the sentinel lymph node for breast carcinoma staging. Am J Clin Pathol. 1999;112(5):627–34. https://doi.org/10.1093/ajcp/112.5.627.

    Article  PubMed  CAS  Google Scholar 

  163. Koopal S, Tiebosch A, Albertus Piers D, Plukker J, Schraffordt Koops H, Hoekstra H. Frozen section analysis of sentinel lymph nodes in melanoma patients. Cancer. 2000;89(8):1720–5. https://doi.org/10.1002/1097-0142(20001015)89:8<1720::aid-cncr11>3.0.co;2-f.

    Article  PubMed  CAS  Google Scholar 

  164. Höft S, Maune S, Muhle C, et al. Sentinel lymph-node biopsy in head and neck cancer. Br J Cancer. 2004;91(1):124–8. https://doi.org/10.1038/sj.bjc.6601877. Accessed 8 Jun 2004.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Kuo P, Sosa J, Burtness B, et al. Treatment trends and survival effects of chemotherapy for hypopharyngeal cancer: analysis of the National Cancer Data Base. Cancer. 2016;122(12):1853–60. https://doi.org/10.1002/cncr.29962.

    Article  PubMed  Google Scholar 

  166. Timmermans A, van Dijk B, Overbeek L, et al. Trends in treatment and survival for advanced laryngeal cancer: a 20-year population-based study in The Netherlands. Head Neck. 2015;38(S1):E1247–55. https://doi.org/10.1002/hed.24200.

    Article  PubMed  Google Scholar 

  167. Elicin O, Nisa L, Dal Pra A, et al. Up-front neck dissection followed by definitive (chemo)-radiotherapy in head and neck squamous cell carcinoma: rationale, complications, toxicity rates, and oncological outcomes—a systematic review. Radiother Oncol. 2016;119(2):185–93. https://doi.org/10.1016/j.radonc.2016.03.003.

    Article  PubMed  Google Scholar 

  168. Mehanna H, Wong W-L, McConkey CC, et al. PET-CT surveillance versus neck dissection in advanced head and neck cancer. N Engl J Med. 2016;374(15):1444–54. https://doi.org/10.1056/NEJMoa1514493.

    Article  PubMed  CAS  Google Scholar 

  169. Miller M, Goldenberg D. AHNS series: do you know your guidelines? Principles of surgery for head and neck cancer: a review of the National Comprehensive Cancer Network guidelines. Head Neck. 2016;39(4):791–6. https://doi.org/10.1002/hed.24654.

    Article  PubMed  Google Scholar 

  170. Woolgar J, Triantafyllou A. A histopathological appraisal of surgical margins in oral and oropharyngeal cancer resection specimens. Oral Oncol. 2005;41(10):1034–43. https://doi.org/10.1016/j.oraloncology.2005.06.008.

    Article  PubMed  Google Scholar 

  171. Ch’ng S, Corbett-Burns S, Stanton N, et al. Close margin alone does not warrant postoperative adjuvant radiotherapy in oral squamous cell carcinoma. Cancer. 2013;119(13):2427–37. https://doi.org/10.1002/cncr.28081.

    Article  PubMed  Google Scholar 

  172. Cohen E, Karrison T, Kocherginsky M, et al. Phase III randomized trial of induction chemotherapy in patients with N2 or N3 locally advanced head and neck cancer. J Clin Oncol. 2014;32(25):2735–43. https://doi.org/10.1200/jco.2013.54.6309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Zhong L, Zhang C, Ren G, et al. Randomized phase III trial of induction chemotherapy with docetaxel, cisplatin, and fluorouracil followed by surgery versus up-front surgery in locally advanced resectable oral squamous cell carcinoma. J Clin Oncol. 2013;31(6):744–51. https://doi.org/10.1200/jco.2012.43.8820.

    Article  PubMed  CAS  Google Scholar 

  174. Lee L, Huang C, Liao C, et al. Human papillomavirus-16 infection in advanced oral cavity cancer patients is related to an increased risk of distant metastases and poor survival. PLoS One. 2012;7(7):e40767. https://doi.org/10.1371/journal.pone.0040767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Chung C, Zhang Q, Kong C, et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J Clin Oncol. 2014;32(35):3930–8. https://doi.org/10.1200/jco.2013.54.5228.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60. https://doi.org/10.1126/science.1208130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Adelstein D. Maximizing local control and organ preservation in stage IV squamous cell head and neck cancer with hyperfractionated radiation and concurrent chemotherapy. J Clin Oncol. 2002;20(5):1405–10. https://doi.org/10.1200/jco.20.5.14.

    Article  PubMed  Google Scholar 

  178. Chevalier D, Laccourreye O, Laccourreye H, Brasnu D, Piquet J. Cricohyoidoepiglottopexy for glottic carcinoma with fixation or impaired motion of the true vocal cord: 5-year oncologic results with 112 patients. Ann Otol Rhinol Laryngol. 1997;106(5):364–9. https://doi.org/10.1177/000348949710600502.

    Article  PubMed  CAS  Google Scholar 

  179. McCoul E, Har-El G. Meta-analysis of impaired vocal cord mobility as a prognostic factor in T2 glottic carcinoma. Arch Otolaryngol Head Neck Surg. 2009;135(5):479. https://doi.org/10.1001/archoto.2009.47.

    Article  PubMed  Google Scholar 

  180. Tham I, Lu J. Controversies and challenges in the current management of nasopharyngeal cancer. Expert Rev Anticancer Ther. 2010;10(9):1439–50. https://doi.org/10.1586/era.10.97.

    Article  PubMed  Google Scholar 

  181. Chan A, Teo P, Johnson P. Controversies in the management of locoregionally advanced nasopharyngeal carcinoma. Curr Opin Oncol. 1998;10(3):219–25. https://doi.org/10.1097/00001622-199805000-00008.

    Article  PubMed  CAS  Google Scholar 

  182. Kozakiewicz P, Grzybowska-Szatkowska L, Kozakiewicz P, Grzybowska-Szatkowska L. Application of molecular targeted therapies in the treatment of head and neck squamous cell carcinoma. Oncol Lett. 2018;15(5):7497–505. https://doi.org/10.3892/ol.2018.8300. Accessed 20 Mar 2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Argiris A, Karamouzis M, Raben D, Ferris R. Head and neck cancer. Lancet. 2008;371(9625):1695–709. https://doi.org/10.1016/s0140-6736(08)60728-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Alsaab H, Sau S, Alzhrani R, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8 https://doi.org/10.3389/fphar.2017.00561.

  185. Vermorken J, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116–27. https://doi.org/10.1056/nejmoa0802656.

    Article  PubMed  CAS  Google Scholar 

  186. Seiwert T, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956–65. https://doi.org/10.1016/s1470-2045(16)30066-3.

    Article  PubMed  CAS  Google Scholar 

  187. Bauml J, Seiwert T, Pfister D, et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study. J Clin Oncol. 2017;35(14):1542–9. https://doi.org/10.1200/jco.2016.70.1524.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Licitra L, Haddad R, Even C, et al. EAGLE: a phase 3, randomized, open-label study of durvalumab (D) with or without tremelimumab (T) in patients (pts) with recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC). J Clin Oncol. 2019;37(15_Suppl):6012. https://doi.org/10.1200/jco.2019.37.15_suppl.6012.

    Article  Google Scholar 

  189. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8. https://doi.org/10.1038/367645a0.

    Article  PubMed  CAS  Google Scholar 

  190. Campbell L, Polyak K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle. 2007;6(19):2332–8. https://doi.org/10.4161/cc.6.19.4914.

    Article  PubMed  CAS  Google Scholar 

  191. Elkashty O, Ashry R, Tran S. Head and neck cancer management and cancer stem cells implication. Saudi Dent J. 2019;31(4):395–416. https://doi.org/10.1016/j.sdentj.2019.05.010.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Clarke M, Fuller M. Stem cells and cancer: two faces of eve. Cell. 2006;124(6):1111–5. https://doi.org/10.1016/j.cell.2006.03.011.

    Article  PubMed  CAS  Google Scholar 

  193. Zhang P, Zhang Y, Mao L, Zhang Z, Chen W. Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Lett. 2009;277(2):227–34. https://doi.org/10.1016/j.canlet.2008.12.015.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiquee, B.H. (2022). Updates and Controversies in the Management of Head and Neck Malignancy. In: Mat Lazim, N., Mohd Ismail, Z.I., Abdullah, B. (eds) Head and Neck Surgery : Surgical Landmark and Dissection Guide. Springer, Singapore. https://doi.org/10.1007/978-981-19-3854-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3854-2_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3853-5

  • Online ISBN: 978-981-19-3854-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics