Skip to main content

Hydrolysis and Assessment

  • Chapter
  • First Online:
Biofuel Production Using Anaerobic Digestion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The pretreatment aids hydrolysis and is considered as a challenging process in recovering energy from biomass. During pretreatment, modification occurs at the macroscopic and microscopic levels of biomass such as size, structure, and chemical configuration. Pretreatment aids the hydrolysis of biomass and enhances the efficiency of the subsequent biological and chemical conversion process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma J, Frear C, Wang Z-W, Yu L, Zhao Q, Li X, Chen S (2013) A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresour Technol 134:391–395

    Article  Google Scholar 

  2. Mairet F, Bernard O, Masci P, Lacour T, Sciandra A (2011) Modelling neutral lipid production by the microalga Isochrysis aff. galbana under nitrogen limitation. Bioresour Technol 102:142–149

    Article  Google Scholar 

  3. Kythreotou N, Florides G, Tassou SA (2014) A review of simple to scientific models for anaerobic digestion. Renew Energy 71:701–714

    Article  Google Scholar 

  4. Kafle GK, Kim SH, Sung KI (2013) Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour Technol 127:326–336

    Article  Google Scholar 

  5. Mejdoub H, Ksibi H (2015) Regulation of biogas production through waste water anaerobic digestion process: modeling and parameters optimization. Waste Biomass Valorizat 6:29–35

    Article  Google Scholar 

  6. Liang Y, Lu Y, Li Q (2016) Comparative study on the performances and bacterial diversity from anaerobic digestion and aerobic composting in treating solid organic wastes

    Google Scholar 

  7. Patil JH, Raj MA, Muralidhara PL, Desai SM, Raju GKM (2012) Kinetics of anaerobic digestion of water hyacinth using poultry litter as inoculum. Int J Environ Sci Dev 94–98

    Google Scholar 

  8. Ganidi N, Tyrrel S, Cartmell E (2009) Anaerobic digestion foaming causes–a review. Bioresour Technol 100:5546–5554

    Article  Google Scholar 

  9. Chen H, Yan S-H, Ye Z-L, Meng H-J, Zhu Y-G (2012) Utilization of urban sewage sludge: Chinese perspectives. Environ Sci Pollut Res 19:1454–1463

    Article  Google Scholar 

  10. Perendeci A, Arslan S, Celebi S, Tanyolac A (2008) Prediction of effluent quality of an anaerobic treatment plant under unsteady state through ANFIS modeling with on-line input variables. Chem Eng J 145:78–85

    Article  Google Scholar 

  11. Qdais HA, Hani KB, Shatnawi N (2010) Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour Conserv Recycl 54:359–363

    Article  Google Scholar 

  12. Shen S, Premier GC, Guwy A, Dinsdale R (2007) Bifurcation and stability analysis of an anaerobic digestion model. Nonlinear Dyn 48:391–408

    Article  MathSciNet  MATH  Google Scholar 

  13. Siegrist H, Vogt D, Garcia-Heras JL, Gujer W (2002) Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion. Environ Sci Technol 36:1113–1123

    Article  Google Scholar 

  14. Subha C, Kavitha S, Abisheka S, Tamilarasan K, Arulazhagan P, Banu JR (2019) Bioelectricity generation and effect studies from organic rich chocolaterie wastewater using continuous upflow anaerobic microbial fuel cell. Fuel 251:224–232

    Article  Google Scholar 

  15. Blumensaat F, Keller J (2005) Modelling of two-stage anaerobic digestion using the IWA anaerobic digestion model no. 1 (ADM1). Water Res 39:171–183

    Article  Google Scholar 

  16. Wang P, Yu Z, Zhao J, Zhang H (2018) Do microbial communities in an anaerobic bioreactor change with continuous feeding sludge into a full-scale anaerobic digestion system? Bioresour Technol 249:89–98

    Article  Google Scholar 

  17. Preethi BJR, Sharmila VG, Kavitha S, Varjani S, Kumar G, Gunasekaran M (2021) Alkali activated persulfate mediated extracellular organic release on enzyme secreting bacterial pretreatment for efficient hydrogen production. Bioresour Technol 341:125810

    Article  Google Scholar 

  18. Sun C, Cao W, Liu R (2015) Kinetics of methane production from swine manure and buffalo manure. Appl Biochem Biotechnol 177:985–995

    Article  Google Scholar 

  19. Taricska JR, Long DA, Chen JP, Hung Y-T, Zou S-W (2007) Anaerobic digestion. In: Handbook of environmental engineering. Humana Press, Totowa, NJ, pp 135–176

    Google Scholar 

  20. Bhatia SK, Otari SV, Jeon J-M, Gurav R, Choi Y-K, Bhatia RK, Pugazhendhi A, Kumar V, Banu JR, Yoon J-J, Choi K-Y, Yang Y-H (2021) Biowaste-to-bioplastic (polyhydroxyalkanoates): conversion technologies, strategies, challenges, and perspective. Bioresour Technol 326:124733

    Article  Google Scholar 

  21. Puyuelo B, Gea T, Sánchez A (2010) A new control strategy for the composting process based on the oxygen uptake rate. Chem Eng J 165:161–169

    Article  Google Scholar 

  22. Behera SK, Meher SK, Park H-S (2015) Artificial neural network model for predicting methane percentage in biogas recovered from a landfill upon injection of liquid organic waste. Clean Technol Environ Policy 17:443–453

    Article  Google Scholar 

  23. Banu JR, Sharmila VG, Ushani U, Amudha V, Kumar G (2020) Impervious and influence in the liquid fuel production from municipal plastic waste through thermo-chemical biomass conversion technologies—a review. Sci Total Environ 718:137287

    Article  Google Scholar 

  24. Banu JR, Preethi KS, Tyagi VK, Gunasekaran M, Karthikeyan OP, Kumar G (2021) Lignocellulosic biomass based biorefinery: a successful platform towards circular bioeconomy. Fuel 302:121086

    Article  Google Scholar 

  25. Ginni K, Kannah RY, Bhatia SK, Kumar A, Rajkumar KG, Pugazhendhi A, Chi NTL, Banu R (2021) Valorization of agricultural residues: Different biorefinery routes. J Environ Chem Eng 9:105435

    Article  Google Scholar 

  26. Terashima M, Goel R, Komatsu K, Yasui H, Takahashi H, Li YY, Noike T (2009) CFD simulation of mixing in anaerobic digesters. Bioresour Technol 100:2228–2233

    Article  Google Scholar 

  27. Vavilin VA, Lokshina LY, Flotats X, Angelidaki I (2007) Anaerobic digestion of solid material: multidimensional modeling of continuous-flow reactor with non-uniform influent concentration distributions. Biotechnol Bioeng 97:354–366

    Article  Google Scholar 

  28. Sharmila VG, Kumar SA, Banu JR, Yeom IT, Saratale GD (2019) Feasibility analysis of homogenizer coupled solar photo Fenton process for waste activated sludge reduction. J Environ Manage 238:251–256

    Article  Google Scholar 

  29. Di Maria F, Barratta M, Bianconi F, Placidi P, Passeri D (2017) Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: Comparison of system performances and identification of microbial guilds. Waste Manag 59:172–180

    Article  Google Scholar 

  30. Madigan MT, Martinko JM (2006) Brock biology of microorganisms, 11th edn. Prentice Hall, Pearson

    Google Scholar 

  31. Vavilin VA, Fernandez B, Palatsi J, Flotats X (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag 28:939–951

    Article  Google Scholar 

  32. Vlyssides A, Barampouti EM, Mai S (2007) An alternative approach of UASB dynamic modeling. AIChE J 53:3269–3276

    Article  Google Scholar 

  33. Raj T, Chandrasekhar K, Banu R, Yoon J-J, Kumar G, Kim S-H (2021) Synthesis of γ-valerolactone (GVL) and their applications for lignocellulosic deconstruction for sustainable green biorefineries. Fuel 303:121333

    Article  Google Scholar 

  34. Banu JR, Tamilarasan K, Chang SW, Nguyen DD, Ponnusamy VK, Kumar G (2020) Surfactant assisted microwave disintegration of green marine macroalgae for enhanced anaerobic biodegradability and biomethane recovery. Fuel (Lond) 281:118802

    Article  Google Scholar 

  35. Ahn HK, Richard TL, Choi HL (2007) Mass and thermal balance during composting of a poultry manure Wood shavings mixture at different aeration rates. Process Biochem 42:215–223

    Article  Google Scholar 

  36. Chang JI, Chen YJ (2010) Effects of bulking agents on food waste composting. Bioresour Technol 101:5917–5924

    Article  Google Scholar 

  37. Wu B (2012) Integration of mixing, heat transfer, and biochemical reaction kinetics in anaerobic methane fermentation. Biotechnol Bioeng 109:2864–2874

    Article  Google Scholar 

  38. Wei L, Shutao W, Jin Z, Tong X (2014) Biochar influences the microbial community structure during tomato stalk composting with chicken manure. Bioresour Technol 154:148–154

    Article  Google Scholar 

  39. Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenerg 5:95–111

    Article  Google Scholar 

  40. Pugazhendi A, Alreeshi GG, Jamal MT, Karuppiah T, Jeyakumar RB (2021) Bioenergy production and treatment of aquaculture wastewater using saline anode microbial fuel cell under saline condition. Environ Technol Innov 21:101331

    Article  Google Scholar 

  41. Wu B (2012) CFD simulation of mixing for high-solids anaerobic digestion. Biotechnol Bioeng 109:2116–2126

    Article  Google Scholar 

  42. Banu JR, Kumar MD, Gunasekaran M, Kumar G (2019) Biopolymer production in bio electrochemical system: literature survey. Bioresour Technol Rep 7:100283

    Article  Google Scholar 

  43. Gopikumar S, Banu JR, Robinson YH, Shanmuganathan V, Kadry S, Rho S (2021) Novel framework of GIS based automated monitoring process on environmental biodegradability and risk analysis using Internet of Things. Environ Res 194:110621

    Article  Google Scholar 

  44. Yu L, Ma J, Chen S (2011) Numerical simulation of mechanical mixing in high solid anaerobic digester. Bioresour Technol 102:1012–1018

    Article  Google Scholar 

  45. Yu L, Wensel PC (2013) Mathematical modeling in anaerobic digestion (AD). J Bioremediat Biodegrad 4:1–12

    Google Scholar 

  46. Neto JM, Dos Reis GD, Rueda SMG, da Costa AC (2013) Study of kinetic parameters in a mechanistic model for enzymatic hydrolysis of sugarcane bagasse subjected to different pretreatments. Bioprocess Biosyst Eng 36:1579–1590

    Article  Google Scholar 

  47. Beszedes S, Kertesz SZ, Laszlo Z, Szabo G (2007) Biogas production of ozone and/or microwave-pretreated canned maize production sludge. Ozone Sci Eng 2:1–3

    Google Scholar 

  48. Bougrier C, Battimelli A, Delgenes JP, Carrere H (2007) Combined ozone pretreatment and anaerobic digestion for the reduction of biological sludge production in wastewater treatment. Ozone Sci Eng 29:201–206

    Google Scholar 

  49. Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011

    Article  Google Scholar 

  50. Carrere H, Dumas C, Battimelli A, Batstone DJ, Delgenes JP, Steyer JP, Ferrer I (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183:1–15

    Article  Google Scholar 

  51. Cesaro A, Belgiorno V (2013) Sonolysis and ozonation as pretreatment for anaerobic digestion of solid organic waste. Ultrason Sonochem 2013(20):931–936

    Article  Google Scholar 

  52. Barros Rda R, Paredes Rde S, Endo T, Bon EP, Lee SH (2013) Association of wet disk milling and ozonolysis as pretreatment for enzymatic saccharification of sugarcane bagasse and straw. Bioresour Technol 136:288–294

    Article  Google Scholar 

  53. Sowmya Packyam G, Kavitha S, Kumar A, Kaliappan S, Yeom IT, Rajesh Banu J (2015) Effect of sonically induced deflocculation on the efficiency of ozone mediated partial sludge disintegration for improved production of biogas. Ultrason Sonochem 26:241–248

    Article  Google Scholar 

  54. Tian X, Trzcinski AP, Lin LL, Ng WJ (2015) Impact of ozone assisted ultrasonication pre-treatment on anaerobic digestibility of sewage sludge. J Environ Sci 33:29–38

    Google Scholar 

  55. Tian X, Wang C, Trzcinski AP, Lin LL, Ng WJ (2015) Interpreting the synergistic effect in combined ultrasonication–ozonation sewage sludge pre-treatment. Chemosphere 140:63–71

    Article  Google Scholar 

  56. Cardena R, Moreno G, Bakonyi P, Buitron G (2017) Enhancement of methane production from various microalgae cultures via novel ozonation pretreatment. Chem Eng J 307:948–954

    Article  Google Scholar 

  57. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700

    Article  Google Scholar 

  58. Saeman JF (1945) Kinetics of wood saccharification—hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37:43–52

    Article  Google Scholar 

  59. Rani G, Nabi Z, Banu JR, Yogalakshmi KN (2020) Batch fed single chambered microbial electrolysis cell for the treatment of landfill leachate. Renew Energy 153:168–174

    Article  Google Scholar 

  60. Uthirakrishnan U, Sharmila VG, Merrylin J, Kumar SA, Dharmadhas JS, Varjani S, Banu JR (2022) Current advances and future outlook on pretreatment techniques to enhance biosolids disintegration and anaerobic digestion: a critical review. Chemosphere 288:132553

    Article  Google Scholar 

  61. Sharmila VG, Gunasekaran M, Angappane S, Zhen G, Tae Yeom I, Banu JR (2019) Evaluation of photocatalytic thin film pretreatment on anaerobic degradability of exopolymer extracted biosolids for biofuel generation. Bioresour Technol 279:132–139

    Article  Google Scholar 

  62. Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190

    Article  Google Scholar 

  63. Scott F, Li M, Williams DL, Conejeros R, Hodge DB, Aroca G (2015) Corn stover semi-mechanistic enzymatic hydrolysis model with tight parameter confidence intervals for model-based process design and optimization. Bioresour Technol 177:255–265

    Article  Google Scholar 

  64. Tao G, Lestander TA, Geladi P, Xiong S (2012) Biomass properties in association with plant species and assortments I: a synthesis based on literature data of energy properties. Renew Sustain Energy Rev 16:3481–3506

    Article  Google Scholar 

  65. Tao ZH, Wang SX, Ji LX, Zheng L, He W (2013) Electrochemical investigation of the adsorption behaviour of guanine on copper in acid medium. Adv Mat Res 787:30–34

    Google Scholar 

  66. Ulas S, Diwekar UM (2004) Thermodynamic uncertainties in batch processing and optimal control. Comput Chem Eng 28:2245–2258

    Article  Google Scholar 

  67. Wang J, Ye J, Yin H, Feng E, Wang L (2012) Sensitivity analysis and identification of kinetic parameters in batch fermentation of glycerol. J Comput Appl Math 236:2268–2276

    Article  MathSciNet  MATH  Google Scholar 

  68. Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  Google Scholar 

  69. Liang Y, Lu Y, Li Q (2016) Comparative study on the performances and bacterial diversity from anaerobic digestion and aerobic composting in treating solid organic wastes. Waste Biomass Valor 8:425–432

    Article  Google Scholar 

  70. Cirne DG, Björnsson L, Alves M, Mattiasson B (2006) Effects of bioaugmentation by an anaerobic lipolytic bacterium on anaerobic digestion of lipid-rich waste. J Chem Technol Biotechnol 81:1745–1752

    Article  Google Scholar 

  71. Sharmila VG, Kavitha S, Obulisamy PK, Banu JR (2020) Production of fine chemicals from food wastes. In: Food waste to valuable resources. Elsevier, pp 163–188

    Google Scholar 

  72. Fu B, Jiang Q, Liu H-B, Liu H (2015) Quantification of viable but nonculturable Salmonella spp. and Shigella spp. during sludge anaerobic digestion and their reactivation during cake storage. J Appl Microbiol 119:1138–1147

    Article  Google Scholar 

  73. Gill AO, Holley RA (2003) Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24 °C. Int J Food Microbiol 80:251–259

    Article  Google Scholar 

  74. Roman HJ, Burgess JE, Pletschke BI (2006) Enzyme treatment to decrease solids and improve digestion of primary sewage sludge. Afr J Biotechnol 5:963–967

    Google Scholar 

  75. Das KC (2008) Co-composting of alkaline tissue digester effluent with yard trimmings. Waste Manag 28:1785–1790

    Article  Google Scholar 

  76. Pugazhendi A, Al-Mutairi AE, Jamal MT, Banu JR, Palanisamy K (2020) Treatment of seafood industrial wastewater coupled with electricity production using air cathode microbial fuel cell under saline condition. Int J Energy Res 44:12535–12545

    Article  Google Scholar 

  77. Sánchez-García M, Alburquerque JA, Sánchez-Monedero MA, Roig A, Cayuela ML (2015) Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions. Bioresour Technol 192:272–279

    Article  Google Scholar 

  78. Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Patel AK, Pant D, Banu JR, Rao CV, Kim Y-G, Yang Y-H (2020) Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol 300:122724

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaliappan Sudalyandi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sudalyandi, K., Jeyakumar, R. (2022). Hydrolysis and Assessment. In: Biofuel Production Using Anaerobic Digestion. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-3743-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3743-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3742-2

  • Online ISBN: 978-981-19-3743-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics