Skip to main content

Ultra-Thin Plasmonic Optoelectronic Devices

  • Chapter
  • First Online:
Recent Advances in Thin Film Photovoltaics

Abstract

An important challenge for lowering the cost of “solar energy” is minimising the required usage of the “active solar absorber material.” Development of ultra-thin solar cells is of paramount importance in ultimate cost reduction of solar cells—without compromising if not increasing, the efficiency of solar cells. Research in ultra-thin solar cells is fast-gaining ground. It was pointed out that basing on Thomas–Reiche–Kuhn sum rule, the amount of material required to achieve maximum optical absorption due to incident light (in the spectral region of interest for solar cells) may well be around 10 nm thick. However, it is important to devise appropriate light manipulation mechanism in conjunction with the semiconductor absorber layer of the solar cells. Plasmonics—the science and technology of confining the electric field energy in low-dimensional systems—is an important route to successfully achieve the “ultra-thin solar cells”. Plasmonics offer two routes for light manipulation—near field and far field. These mechanisms in turn enable more secondary mechanisms such as hot-carrier generation, photon up-conversion, nonlinear effects, etc. When employed optimally, these mechanisms will aid one another producing the amplifying effect on the optical absorption in the active semiconductor absorptive layer of solar cell and consequently on the efficiency of the cell. Availability of methodology and techniques for easily and cost-effectively incorporating plasmonic structure in the immediate vicinity of the semiconductor absorber of the solar cell is one of the limiting factors in achieving the ultra-thin solar cells. Plasmonic metasurfaces—2D analog of plasmonic metamaterials—are found to possess broadband optical properties required for solar cells. There is a growing body of research to implement plasmonic light trapping effects on various inorganic and organic ultra-thin solar cells. We will discuss various plasmonic light trapping mechanisms with respect to solar cells and possible directions to successful implementation in various types of industrially important solar cells.

In this chapter, we will describe the following aspects: (1) concept behind plasmonic photon management, innovative plasmonic structures to confine, scatter light and modify electric field; 2D multilayers, core–shell structures, custom-designed textures and topography; (2) characterisation methods to probe the plasmonic effects, diagnosis tools employing plasmonic effects; (3) solar cell structures, adapting fabrication process of the first-generation and second-generation solar cells in the market, to make effective use of plasmonic light trapping through both far field and near effects, absorber material consideration, assessment of optical gain compared to plasmonic loss and evolution of electronic/structural defects and shunt paths; (4) challenge of upscaling and industrial plasmonic PV fabrication tool; (5) other practical/potential applications: LED, water splitting, third- and future generation solar cells, special emphasis on up-conversion; and (6) industrial viability of the plasmonic-based devices, compared to existing scenario.

This chapter will explain how dimension on optoelectronic devices can be substantially thinned down by increasing light trapping efficiency through plasmonic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Massiot, I., Cottini, A., & Collin, S. (2020). Progress and prospects for ultrathin solar cells. Nature Energy, 5, 959–972. https://doi.org/10.1038/s41560-020-00714-4

  2. Hagglund, C., Apell, S. P., et al. (2010). Maximized Optical Absorption in Ultrathin Films and Its Application to Plasmon-Based Two-Dimensional Photovoltaics. Nano Letters, 10, 3135.

    Google Scholar 

  3. Hagglund, C., & Apell, S. P. (2010). Resource efficient plasmon-based 2D-photovoltaics with reflective support. Optic Express, 18, A343.

    Google Scholar 

  4. Green, M.A., & Bremner, S.P. (2017). Energy conversion approaches and materials for high-efficiency photovoltaics. Nature Materials, 16, 23

    Google Scholar 

  5. Yu, Z., Raman, A., & Fan, S. (2010). Fundamental limit of nanophotonic light trapping in solar cells. Proceedings of the National Academy of Sciences, 12, 17491.

    Google Scholar 

  6. Yu, Z., Raman, A., & Fan, S. (2012). Thermodynamic Upper Bound on Broadband Light Coupling with Photonic Structures. Physical Review Letters, 109, 173901.

    Google Scholar 

  7. Callahan, D. M., Munday, J. N., & Atwater, H. A. (2012). Solar Cell Light Trapping beyond the Ray Optic Limit. Nano Letters, 12, 214.

    Google Scholar 

  8. Petouhhoff, C. E., & O’Carroll, D. M. (2015). Absorption-induced scattering and surface plasmon out-coupling from absorber-absorbercoated plasmonic metasurfaces. Nature Communications, 6, 7899.

    Google Scholar 

  9. Li, J, Cushing, S. K., Meng, F., et.al. (2015). Plasmon-induced resonance energy transfer for solar energy conversion. Nature Photonics, 9, 601.

    Google Scholar 

  10. Cushing, S. K., & Wu, N. (2016). Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion. The Journal of Physical Chemistry Letters, 7(4), 666.

    Google Scholar 

  11. Sonnichsen, C., Franzel, T., Wilk, T., von Plessen, G., & Feldman, J. (2002). Drastic Reduction of Plasmon Damping in Gold Nanorods. Physical Review Letters, 88, 077402-1

    Google Scholar 

  12. Cushing, S. K, Bristow A. D., & Wu, N. (2015). Theoretical maximum efficiency of solar energy conversion in plasmonic metal–semiconductor heterojunctions. Physical Chemistry Chemical Physics, 17, 30013.

    Google Scholar 

  13. Li, J., Cushing, S. K., Meng, F., Senty, T. R., Bristow, A. D., & Wu, N. (2015). Plasmon-induced resonance energy transfer for solar energy conversion. Nature Photonics, 9, 601.

    Google Scholar 

  14. Varada, G. V., & Agarwal, G. S. (1992). Two-photon resonance induced by the dipole-dipole interaction. Physical Review A, 45, 6721.

    Google Scholar 

  15. Mandel, L., & Wolf, E. (1995). Optical coherence and quantum optics. Cambridge University Press. [15’] Sonnichsen, C., Franzl, T., Wilk, T., Plessn, G., Feldmann, J., Wilson, O., & Mulvaney, P. (2002). Physical Review Letters, 88, 0477402.

    Google Scholar 

  16. Pala, R. A., Liu, J. S. Q., Bernard, E. S., Askarov, D., Garnett, E. C., Fan, S., & Brongersma, M. L. (2013). Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells. Nature Communications, 4, 2095.

    Article  Google Scholar 

  17. Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Plasmonics for extreme light concentration and manipulation.. Nature Mater., 9, 193.

    Article  Google Scholar 

  18. Khurgin, J. (2018). Hot carriers generated by plasmons: where are they generated and where do they go from there?Faraday Discussions. https://doi.org/10.1039/C8FD00200B

    Article  Google Scholar 

  19. Besteiro, L. V., Kong, X.-T., Hartland, G., & Govorov, A. O. (2017). Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms. ACS Photonics, 4(11), 2759.

    Article  Google Scholar 

  20. Khurgin, J. B. (2020). Fundamental limits of hot carrier injection from metal in nanoplasmonics. Nanophotonics, 9(2), 453.

    Article  Google Scholar 

  21. Manjavacas, A., Liu, J.G., Kulkarni, V., & Nordlander, P. (2014). Plasmon-Induced Hot Carriers in Metallic Nanoparticles.ACS Nano. https://doi.org/10.1021/nn502445f

  22. Sunderaraman, R., Narang, P., Jermyn, A. S., Goddard, W. A., & Atwater, H. A. (2014). Theoretical predictions for hotcarrier generation from surface plasmon decay. Nature Communications, 5, 5788.

    Google Scholar 

  23. Mahan, G.D. (2000). Many-particle physics (3rd ed.). Physics of solids and liquids (Vol. Xii, 785 p.). Kluwer Scademic/Plenum Publishers.

    Google Scholar 

  24. Shabazyan, T. V. (2016). Landau damping of surface plasmons in metal nanostructures. Physical Review B, 94, 235431.

    Article  Google Scholar 

  25. Shabazyan, T. V. (2018). Surface-Assisted Carrier Excitation in Plasmonic Nanostructures. Plasmonics, 13, 757.

    Article  Google Scholar 

  26. Yablonovitch, E. (1982). Statistical ray optics. Journal of the Optical Society of America A, 72, 899.

    Article  Google Scholar 

  27. Deckman, H. W., Roxio, C. B., & Yablonovitch, E. (1983). Maximum statistical increase of optical absorption in textured semiconductor films. Optics Letters, 8, 491.

    Article  Google Scholar 

  28. Zheng, B. Y., Zhao, H., Manjavacas, A., McClain, M., Nordlander, P., & Halas, N. J. (2015). Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nature Communications, 6, 6797.

    Google Scholar 

  29. Brongersma, M. L., Halas, J. J., & Nardlander, P. (2015). Plasmon-induced hot carrier science and technology. Nature Nanotechnology, 10, 25.

    Google Scholar 

  30. Tang, H., Chen, C.-J., Huang, Z., Bright, J., Meng, G., Liu, R.-S., & Wu, M. (2020). Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective. The Journal of Chemical Physics, 152, 220901.

    Google Scholar 

  31. Wong, Y. L., Jia, H., Jian, A., Lei, D., El Abed, A. l., & Zhang, X. (2021). Enhancing plasmonic hot-carrier generation by strong coupling of multiple resonant modes. Nanoscale, 13, 2792

    Google Scholar 

  32. Naik, G.V., & Dionni, J. A. (2015). Photon Upconversion with Hot Carriers in Plasmonic Systems. http://arXiv.org/abs/1501, 04159, v1[physics: Optics] 17 January 2015.

  33. Mubeen, S., Lee, J., Singh, N., Kramer, S., Stucky, G. D., & Moskovits, M. (2013). An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotechnology, 8, 237.

    Google Scholar 

  34. Abouelela, M. M., Kawamura, G., & Matsuda, A. (2021). A review on plasmonic nanoparticle-semiconductor photocatalysts for water splitting.Journal of Cleaner Production, 294, 126200.

    Google Scholar 

  35. Valenti, M., Jonsson, M. P., Biscos, G., Schmidt-Ott, A., & Smith, W. A. (2016). Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. Journal of Materials Chemistry A, 4, 17891.

    Article  Google Scholar 

  36. Wei, Q., Wu, S., & Sun, Y. (2018). Quantum-Sized Metal Catalysts for Hot-Electron-Driven Chemical Transformation. Advanced Materials, 30, 1802082.

    Google Scholar 

  37. Kale, M. J., Avanesin, T., Yan, J., Hongliang, S., & Christfpher, P. (2014). Controlling Catalytic Selectivity on Metal Nanoparticles by Direct Photoexcitation of Adsorbate–Metal Bonds. Nano Letters, 14, 5405.

    Google Scholar 

  38. Lee, S. J., Piorek, B. D., Meinhart, C. D., & Moskovits, M. (2010). Photoreduction at a Distance: Facile, Nonlocal Photoreduction of Ag Ions in Solution by Plasmon-Mediated Photoemitted Electrons. Nano Letters 10, 1329.

    Google Scholar 

  39. Jafari, T., Moharreri, E., Amin, A. S., Miao, R., Song, W., & Suib, S. L. (2016). Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances. Molecules, 21(7), 900.

    Article  Google Scholar 

  40. Cao, Z., Yin, Y., Fu, P., Li, D., Zhou, Y., Wen, Z., Peng, Y., Wang, W., Zhou, W., & Tang, D. (2020). Branched TiO2 Nanorod Arrays Decorated with Au Nanostructure for Plasmon-Enhanced Photoelectrochemical Water Splitting. Journal of the Electrochemical Society, 167, 26509.

    Google Scholar 

  41. Chen, Y.-C., Huang, Y.-S., Huang, H., Su, P.-J., Perng, T.-P. , Chen L.-J. (2020). Photocatalytic enhancement of hydrogen production in water splitting under simulated solar light by band gap engineering and localized surface plasmon resonance of ZnxCd1-xS nanowires decorated by Au nanoparticles. Nanomaterials Energy, 67 (2020) 104225

    Google Scholar 

  42. Mascaretti, L., Dutta, A., Kment, S., Shalev, V. M., Boltasseva, A., Zboril, R., & Naldoni, A. (2019). Plasmonic Water Splitting: Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage. Advanced Materials, 31, 1970220.

    Article  Google Scholar 

  43. Subramanyam, P., Khan, T., Sinha, G. N., Suryakala, D., & Subramanyam, C. (2020). Plasmonic Bi nanoparticle decorated BiVO4/rGO as an efficient photoanode for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 45, 7779.

    Article  Google Scholar 

  44. Subramanya, P., Meena, B., Sinha, G. N., Deepa, M., & Subramanyam, C. (2020). Decoration of plasmonic Cu nanoparticles on WO3/Bi2S3 QDs heterojunction for enhanced photoelectrochemical water splitting. International Journal of Hydrogen Energy, 45, 7706.

    Article  Google Scholar 

  45. Zhao, X., Wang, W., Liang, Y., Yao, L., Fu, J., Shi, H., Tao, C., & Int, J. (2019). Three-dimensional plasmonic photoanode of Co3O4 nanosheets coated onto TiO2 nanorod arrays for visible-light-driven water splitting. Hydrogen Energy, 44, 14561.

    Article  Google Scholar 

  46. White, T. P., & Catchpole, K. R. (2012). Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Applied Physics Letters, 101, 073905.

    Article  Google Scholar 

  47. Berglund, C. N., & Spicer, W. E. (1964). Photoemission Studies of Copper and Silver: Experiment. Physical Review, 136, A1044.

    Article  Google Scholar 

  48. Sakai, N., Saski, T., Matsubara, K., & Tatsma, T. (2010). Layer-by-layer assembly of gold nanoparticles with titaniananosheets: control of plasmon resonance and photovoltaic properties. Journal of Materials Chemistry, 20, 4371.

    Google Scholar 

  49. Shiraishi, Y., et al. (2012). Platinum Nanoparticles Supported on Anatase Titanium Dioxide as Highly Active Catalysts for Aerobic Oxidation under Visible Light Irradiation. ACS Catalysis, 2, 1984.

    Article  Google Scholar 

  50. Wu, F., et al. (2012). Photocatalytic Activity of Ag/TiO2 Nanotube Arrays Enhanced by Surface Plasmon Resonance and Application in Hydrogen Evolution by Water Splitting. Plasmonics, 8, 501.

    Article  Google Scholar 

  51. Chen, H., et al. (2012). Plasmon Inducing Effects for Enhanced Photoelectrochemical Water Splitting: X-ray Absorption Approach to Electronic Structures. ACS Nano, 6, 7362.

    Article  Google Scholar 

  52. Reineck, P., Brick, D., Mulvancy, P., & Bach, U. (2016). Plasmonic Hot Electron Solar Cells: The Effect of Nanoparticle Size on Quantum Efficiency. Journal of Physical Chemistry Letters, 7, 4137.

    Article  Google Scholar 

  53. Liu, D., Yang, D., Gao, Y., Ma, J., Long, R., Wang, C., & Xiong, Y. (2016). Flexible Near-Infrared Photovoltaic Devices Based on Plasmonic Hot-Electron Injection into Silicon Nanowire Arrays. Angewandte Chemie International Edition, 55, 4577.

    Google Scholar 

  54. Lana-Villarrel, T., & Gomez, R. (2005). Tuning the photoelectrochemistry of nanoporous anatase electrodes by modification with gold nanoparticles: Development of cathodic photocurrents. Chemical Physics Letters, 414, 489.

    Article  Google Scholar 

  55. Yu, K., Tian, Y., & Tatsuma, T. (2006). Size effects of gold nanaoparticles on plasmon-induced photocurrents of gold–TiO2 nanocomposites. Physical Chemistry Chemical Physics: PCCP, 8, 5417.

    Article  Google Scholar 

  56. Du, L., Furube, A., Hara, K., Kotah, R., & Tachiya, M. (2013). Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. Journal of Photochemical & Photobiological Sciences, C15, 1687.

    Google Scholar 

  57. Du, L., et al. (2009). Plasmon-Induced Charge Separation and Recombination Dynamics in Gold−TiO2 Nanoparticle Systems: Dependence on TiO2 Particle Size. Journal of Physical Chemistry C, 113, 6454.

    Article  Google Scholar 

  58. Langhammer, C., Yuan, Z., Zoric, I., & Kasemo, B. (2006). Plasmonic Properties of Supported Pt and Pd Nanostructures. Nano Letters, 6, 833.

    Article  Google Scholar 

  59. Nishijima, Y., et al. (2012). Near-Infrared Plasmon-Assisted Water Oxidation. Journal of Physical Chemistry Letters, 3, 1248.

    Article  Google Scholar 

  60. Yu, K, Sakai, N., Tatsuma, T. (2008). Plasmon Resonance-Based Solid-State Photovoltaic Devices. Electrochemistry Communications, 76, 161.

    Google Scholar 

  61. Takahashi, Y., & Taisuma, T. (2010). Electrodeposition of thermally stable gold and silver nanoparticle ensembles through a thin alumina nanomask. Nanoscale, 2, 1494.

    Article  Google Scholar 

  62. Wang, F., & Melosh, N. A. (2011). Plasmonic Energy Collection through Hot Carrier Extraction. Nano Letters, 11, 5426.

    Article  Google Scholar 

  63. Furube, A., Du, L., Hara, K., Katoh, R., & Tachiya, M. (2007). Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO2 Nanoparticles. Journal of the American Chemical Society, 129, 14852.

    Google Scholar 

  64. Cushing, S. K., Chen, C. J., Dong, C. L., Kong, X. T., Govorov, A. O., Liu, R. S., & Wu, N. (2018). Tunable Nonthermal Distribution of Hot Electrons in a Semiconductor Injected from a Plasmonic Gold Nanostructure. ACS Nano, 12, 7117.

    Google Scholar 

  65. Callahan, D. M, Munday, J. M., Atwater, H. A. (2012). Solar Cell light trapping beyond the ray optic limit. Nano Letters, 12, 214.

    Google Scholar 

  66. Forster, T. (1948). Intermolecular Energy Migration and Fluorescence. Annalen der Physik, 437, 55.

    Article  Google Scholar 

  67. Lunz, M., et al. (2011). Surface Plasmon Enhanced Energy Transfer between Donor and Acceptor CdTe Nanocrystal Quantum Dot Monolayers. Nano Letters, 11, 3341.

    Article  Google Scholar 

  68. Pinchuk, A. (2003). Kreibig. New Journal of Physics, 5, 151.

    Article  Google Scholar 

  69. Olsen, L. C., Bohara, R. C., & Urie, M. W. (1979). Explanation for low‐efficiency Cu2O Schottky‐barrier solar cells. Applied Physics Letters, 34, 47.

    Article  Google Scholar 

  70. Meng, F., Cushing, S. K., Li, J., Hao, S., & Wu, N. (2015). Enhancement of Solar Hydrogen Generation by Synergistic Interaction of La2Ti2O7 Photocatalyst with Plasmonic Gold Nanoparticles and Reduced Graphene Oxide Nanosheets. ACS Catalysis, 5, 1949.

    Article  Google Scholar 

  71. Li, J., Cushing, S. K., Bright, J., Meng, F., Senty, T. R., Zheng, P., Bristow, A. D., & Wu, N. (2013). Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catalysis, 3, 47.

    Article  Google Scholar 

  72. Thimsen, E., Le Formal, F., Gratzel, M., & Warren, S. C. (2011). Influence of Plasmonic Au Nanoparticles on the Photoactivity of Fe2O3 Electrodes for Water Splitting.Nano Letters, 11, 35.

    Google Scholar 

  73. Gao, H., Liu, C., Jeong, H. E., & Yang, P. (2011). Plasmon-Enhanced Photocatalytic Activity of Iron Oxide on Gold Nanopillars. ACS Nano, 6, 234.

    Article  Google Scholar 

  74. Awazu, K., FuJimaki, M., Rockstuhl, C., Tominaga, J., Murakami, H., Ohki, Y., Yoshida, N., & Watanabe, T. A. (2008). A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Journal of the American Chemical Society, 130, 1676.

    Article  Google Scholar 

  75. Xinyuan You, S. (2018). Ramakrishna and Tamar Seideman. Unified theory of plasmon-induced resonance energy transfer and hot electron injection processes for enhanced photocurrent efficiency. The Journal of Chemical Physics, 149, 174304.

    Google Scholar 

  76. Schullar, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9, 193.

    Google Scholar 

  77. Pala, R. A, Liu, J. S. Q., Barnard, E. S., Askarov, D., Garnett, E. C., Fan, S., & Brongersma, M. L. (2013). Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells. Nature Communications, 4, 2095.

    Google Scholar 

  78. Catchpole, K. R., & Polman, A. (2008). Plasmonic solar cells. Opt. Express, 6, 21783.

    Google Scholar 

  79. Ferry, V. E., Verschuuren, M. A., Li, H., B.T, Verhagen, E, Walters R. J., Schropp R.E.I, Atwater H. A., Polman A. (2010). Light trapping in ultrathin plasmonic solar cells. Opti. Express, 18, A 237

    Google Scholar 

  80. Li, J., Cushing, S. K., Zheng, P., Meng, F., Chu, D., & Wu, N. (2013). Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nature Communications, 4, 2651.

    Article  Google Scholar 

  81. Li, Y.-F., Kou, Z.-L., Feng, J., & Bo-Sun, H. (2020). Plasmon-enhanced organic and perovskite solar cells with metal nanoparticles. Nanophotonics, 9(10), 3111.

    Article  Google Scholar 

  82. Javed, H. M. A., Sarfraz, M., Nisar, M. Z., Qureshi, A. A., & Uallah, S. (2021). Plasmonic Dye-Sensitized Solar Cells: Fundamentals, Recent Developments, and Future Perspectives. ChemistrySelect, 6(34), 9337.

    Google Scholar 

  83. Pendry, J. B., Schurig, D., Smith, D. R. (2006) Controlling Electromagnetic Fields. Science 312, 1780–1782.

    Google Scholar 

  84. Garcia-Vidal, F. J., Martin-Moreno, L, & Pendry, J. B. (2005). Surfaces with holes in them: new plasmonic metamaterials. Journal of Optics A, 7(2), s97.

    Google Scholar 

  85. Zhang, B., Hendrickson, J., & Guo, J. (2013). Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures. JOSA B, 30(3), 656.

    Google Scholar 

  86. Jang, M., Horie, Y., Shibukawa, A., Brake, J., Liu, Y., Kamil, S., & Yang, C. (2018). Wavefront shaping with disorderengineered metasurfaces. Nature Photonics, 12(2), 84.

    Article  Google Scholar 

  87. Nagarjan, A., Vivek, K., Shah, M., Acanta, V. G., & Gerini, G. (2018). A Broadband Plasmonic Metasurface Superabsorber at Optical Frequencies: Analytical Design Framework and Demonstration. Advanced Optical Materials, 6(16), 1800253.

    Article  Google Scholar 

  88. Pacific, D., Lezec H. J., Sweaktlockm L. A., Waters, R. J., Atwater H. A. (2008). Universal optical transmission features in periodic and quasiperiodic hole arrays. Optic Express, 16(12), 9222.

    Google Scholar 

  89. Achanta, V. G. (2015). Plasmonic Quasicrystals. Progress Quantum Electronics, 39, 1.

    Article  Google Scholar 

  90. Reilly, T. H., Tenent, R. C., Barnes, T. M., Rowlemn, K. L., & Van de Lagemaat, J. (2010). Controlling the Optical Properties of Plasmonic Disordered Nanohole Silver Films. ACS Nano, 4(2), 615.

    Google Scholar 

  91. Pwtoukhoff, C. E., & O’Carroll, D. M. (2015). Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces. Nature Communications, 6, 7899.

    Article  Google Scholar 

  92. Akselrod, G. M., Haung, J., Hoang, T. B., Bowen, P. T., Su, L., Smith, D. R., & Mikkelsen, (2015). Large-Area Metasurface Perfect Absorbers from Visible to Near-Infrared. Advanced Materials, 27(48), 8028. [93-a] Arefinia, Z., & Samajdar, D. P. (2021). Novel semi‑analytical optoelectronic modeling based on homogenization theory for realistic plasmonic polymer solar cells. Scientific Reports, 11, 3261.

    Google Scholar 

  93. Piragash Kumar, R. M. (2021). Development of a facile nanofabrication technique to prepare broadband plasmonic metasurfaces for photovoltaic and biosensing applications. Doctoral Thesis, Manipal Institute of Technology, MAHE, Manipal. (Unpublished).

    Google Scholar 

  94. Piragash Kumar, R. M., Venkatesh, A., & Moorthy, V. H. S. (2019). Nanopits based novel hybrid plasmonic nanosensor fabricated by a facile nanofabrication technique for biosensing. Materials Research Express, 6, 1150b6.

    Google Scholar 

  95. Kumar, R. M. P., Venkatesh, A., & Moorthy, V. H. S. (2019) Wet-chemical etching: a novel nanofabrication route to prepare broadband random plasmonic metasurfaces. Plasmonics, 14, 365–374.

    Google Scholar 

  96. Kumar, R. M. P., Venkatesh, A., & Moorthy, V. H. S. (2020). Large area and low cost nanoholes-based plasmonic back reflector fabricated by a simple nanofabrication technique for photovoltaics applications. Nano-Structures & Nano-Objects, 21, 100406.

    Google Scholar 

  97. Le Perchec, J., Desieres, Y., & Espiau de Lamaestre, R. (2009). Plasmon-based photosensors comprising a very thin semiconducting region. Applied Physics Letters, 94, 181104.

    Article  Google Scholar 

  98. Xiao, S., Wang, T., Jiang, X., Wang, B., & Xu, C. (2017). A Spectrally Tunable Plasmonic Photosensor with an Ultrathin Semiconductor Region. Plasmonics. https://doi.org/10.1007/s11468-017-0586-1

  99. Ding, Y., Cheng, Z., Zhu, X., Yvind, K., Dong, J., Galilli, M., Hu, H., Asger Mortensen, N., Xiao, S., & Oxenlowe, L. K. (2020). Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics, 9(2), 317.

    Google Scholar 

  100. Tang, L., et al. (2006). C-shaped nanoaperture-enhanced germanium photodetector. Opticals Letters, 31, 1519.

    Google Scholar 

  101. Nordin, L., Petluru, P., Kamboj, A., Muthowski, A. J., & Wasserman, D. (2021). Ultra-Thin All-Epitaxial Plasmonic Detectors. http://arXiv.org/abs/2107.04143 V1 [Physics.optics] 8 July 2021.

  102. Leuthold, J., Koos, C., & Freude, W. (2010). Nonlinear silicon photonics. Nature Photonics, 4, 535.

    Google Scholar 

  103. Idris, N. M., Gnanasammandhan, M. K., Zhang, J., Ho, P. C., Mahendran, R., & Zhang, Y. (2012). In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nature Medicine, 18, 1580.

    Article  Google Scholar 

  104. Blumenthal, T., Meruga, J., May, S., Keller, J., Cross, W., Ankireddy, K., Vannam, S., & Luu, Q. N. (2012). Patterned direct-write and screen-printing of NIR-to-visible upconverting inks for security applications. Nanotechnology, 23, 185305.

    Article  Google Scholar 

  105. Zhang, C., Zhou, H.-P., Liao, L.-Y., Feng, W., Sun, W., Li, Z.-X., Xu, C.-H., Fang, C.-J., Sun, L. D., Zhang, Y., & Yan, C. (2010). Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout. Advanced Materials, 22, 633.

    Google Scholar 

  106. Hilderbrand, S. A., Shao, F., Salthouse, C., Mahmood, U., & Weissleder, R. (2009). Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chemical Communications, 4188.

    Google Scholar 

  107. Atre, A. C., & Dionne, J. A. (2011). Realistic upconverter-enhanced solar cells with non-ideal absorption and recombination efficiencies. Journal of Applied Physics, 110, 034505.

    Google Scholar 

  108. Herter, B., Wolf, S., Fischer, S., Gutman, J., Blasi, B., & Goldschmidt, J. C. (2013). Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states – a simulation-based analysis. Optic Express, 21, A883.

    Article  Google Scholar 

  109. Zou, W., Visser, C., Maduro, J.A., Pshenichnikov, M. S., & Hummelen, J. C. (2012). Broadband dye-sensitized upconversion of near-infrared light. Nature Photonics, 6, 560.

    Google Scholar 

  110. Pan, A. C., Del Canizo, C., Canovas, E., Santos, N. M., Leitao, J., & Luque, A. (2010). Enhancement of up-conversion efficiency by combining rare earthdoped phosphors with PbS quantum dots. Solar Energy Materials and Solar Cells, 94, 1923.

    Google Scholar 

  111. Chen, H., Lee, S. M., Montenegro, A., Kang, D. K., Gai, B., Lim, H., Dutta, C., He, W., Lee, M. L., Benderskii, A., & Yoon, J. (2018). Plasmonically Enhanced Spectral Upconversion for Improved Performance of GaAs Solar Cells under Nonconcentrated Solar Illumination. ACS Photonics, 5, 4289.

    Google Scholar 

  112. Wu, D. M., Garcia-Etxarri, A., Salleo, A., & Dionne, J. A. (2014). Plasmon-Enhanced Upconversion. The Journal of Physical Chemistry Letters, 5, 4020.

    Google Scholar 

  113. De Wild, J., Meijerink, A., Rath, J. K., van Sark, W. G. J. H. M., & Schropp, R. E. I. (2011). Upconverter solar cells: materials and applications. Energy & Environmental Science, 4, 4835.

    Article  Google Scholar 

  114. Naik, G. V., Welch, A. J., Briggs, J., Solomon, M., & Dionne, J. A. (2017). Hot-Carrier-Mediated Photon Upconversion in Metal-Decorated Quantum Wells. Nano Letters.

    Google Scholar 

  115. ITRPV report 2021.

    Google Scholar 

  116. Lide, D. R. (2005). CRC handbook of chemistry and physics (Vol. 85). CRC Press.

    Google Scholar 

  117. https://taiyangnews.info/markets/china-pv-news-snippets-75/ (2022).

  118. Giteau, M., de Moustier, E., Suchet, D., Esmaielpour, H., Sodabanlu, H., Watanabe, K., Collin, S., Guillemoles, J.-F., & Okada, Y. (20) Identification of surface and volume hot-carrier thermalization mechanisms in ultrathin GaAs layers. Journal of Applied Physics, 128, 193102.

    Google Scholar 

  119. Ferry, D. K., Goodnick, S. M., Whiteside, V. R., & Sellers, I. R. (2020). Challenges, myths, and opportunities in hot carrier solar cells. Journal of Applied Physics, 128, 220903.

    Article  Google Scholar 

  120. Besteiro, L. V., Cortés, E., Ishii, S., Narang, P., & Oulton, R. F. (2021). Hot electron physics and applications. Journal of Applied Physics, 129, 150401.

    Article  Google Scholar 

  121. Esmaielpour, H., Durant, B. K., Dorman, K. R., Whiteside, V. R., Garg, J., Mishima, T. D., Santos, M. B., Sellers, I. R., Guillemoles, J.-F., & Suchet, D. (2021). Hot carrier relaxation and inhibited thermalization in superlattice heterostructures: The potential for phonon management. Applied Physics Letters, 118, 213902.

    Article  Google Scholar 

  122. Nguyen, D.-T., Lombez, L., Gibelli, F., Boyer-Richard, S., Le Corre, A., et al. (2018). Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature. Nature Energy, 3, 236–242.

    Google Scholar 

  123. Lopes, T. S., Cunha, J. M. V., Bose, S., Barbosa, J. R. S., Borme, J., Donzel-Gargand, O., Rocha, C., Silva, R., Hultqvist, A., Chen, W.-C., Silva, A. G., Edoff, M., Fernandes, P. A., Pedro, A., & Salomé, M. P. (2019). Rear optical reflection and passivation using a nanopatterned metal/dielectric structure in thin-film solar cells. IEEE Journal of Photovoltaics, 9, 1421.

    Google Scholar 

  124. Elrabiaey, M. A., Hussein, M., Hameed, M. F. O., & Obayya, S. S. A. (2020). Light absorption enhancement in ultrathin film solar cell with embedded dielectric nanowires. Scientific Reports, 10, 17534

    Google Scholar 

  125. Prajapati, A., & Shalev, G. (2021). Overcoming the challenge of high surface recombination in thin-film photovoltaic cells based on subwavelength arrays for elevated light trapping. Solar RRL, 5, 2100379.

    Article  Google Scholar 

  126. Oliveira, A. J. N., de Wild, J., Oliveira, K., Valença, B.A., Teixeira, J. P., Guerreiro, J. R. L., Abalde-Cela, S., Lopes, T. S., Ribeiro, R. M., Cunha, J. M. V., Curado, M. A., Monteiro, M., Violas, A., Silva, A. G., Prado, M., Fernandes, P.A., Vermang, B., & Salomé, P. M. P. (2020). Encapsulation of nanostructures in a dielectric matrix providing optical enhancement in ultrathin solar cells. Solar RRL, 4, 2000310.

    Google Scholar 

  127. Sun, T., Tu, J., Cao, L., Fu, T., Li, Q., Zhang, F., Xiao, G., Chen, Y., Li, H., Liu, X., Yu, Z., Li, Y., & Zhao, W. (2020). Sidewall profile dependent nanostructured ultrathin solar cells with enhanced light trapping capabilities. IEEE Photonics Journal, 12, 8400112.

    Google Scholar 

  128. Takemoto, A., Araki, T., Noda, Y., Uemura, T., Yoshimoto, S., Abbel, R., Rentrop, C., van den Brand, J., & Sekitani, T. (2019). Fine printing method of silver nanowire electrodes with alignment and accumulation. Nanotechnology, 30, 37LT03.

    Google Scholar 

  129. Li, H. B. T., Franken, R. H., Rath, J. K., Schropp, R. E. I. (2009). Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n–i–p solar cells. Solar Energy Materials & Solar Cells, 93, 338–349.

    Google Scholar 

  130. Sai, H., Kanamori, Y., & Kondo, M., Flattened light-scattering substrate and its application to thin-film silicon solar cells. Japanese Journal of Applied Physics, 51, 10NB07.

    Google Scholar 

  131. Isabella, O., Sai, H., Kondo, M., & Zeman, M. (2012). Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells. Progress in Photovoltaics Research and Application, 2014(22), 671–689.

    Google Scholar 

  132. Uddin, M. S., Vijayan, C., & Rath, J. K. (2021). Optical modelling of photonic and geometrical structures used for light management in thin-film solar cells. Materials Today: Proceedings, 39, 1974–1977.

    Google Scholar 

  133. Sai, H., Mizuno, H., Makita, K., & Matsubara, K. (2017). Light absorption enhancement in thinfilm GaAs solar cells with flattened light scattering substrate. Journal of Applied Physics, 122, 123103.

    Article  Google Scholar 

  134. Knoesen, D., Schropp, R. E. I., & van der Weg, W. F. (1995). Structural defects in thin film amorphous silicon films deposited on textured TCO material. MRS Online Proceedings Library, 377, 597–602

    Google Scholar 

  135. de Jong, M. M., Sonneveld, P. J., Baggerman, J., van Rijn, C. J. M., Rath, J. K., & Schropp, R. E. I. (2014). Utilization of geometric light trapping in thin film silicon solar cells: Simulations and experiments. Progress Photovoltaics Research and Applications, 22, 540–547.

    Article  Google Scholar 

  136. Sutter, J., Tockhorn, P., Wagner, P., Jager, K., Al-Ashouri, A., Stannowski, B., Albrecht, S., & Becker, C. (2021). Periodically nanostructured perovskite/silicon tandem solar cells with power conversion efficiency exceeding 26%. In 2021 IEEE 48 th Photovoltaic Specialists Conference (PVSC). 978-1-6654-1922-2/21/$31.00 ©2021 IEEE. https://doi.org/10.1109/PVSC43889.2021.9518715

  137. Franken, R. H., Stolk, R. L., Li, H., van der Werf, C. H. M., Rath, J. K., & Schropp, R. E. I. (2007). Understanding light trapping by light scattering textured back electrodes in thin film -type silicon solar cells. Journal of Applied Physics, 102, 014503.

    Article  Google Scholar 

  138. Kuang, Y., van Lare, M. C., Veldhuizen, L. W., Polman, A., Rath, J. K., & Schropp, R. E. I. (2015). Efficient nanorod-based amorphous silicon solar cells with advanced light trapping. Journal of Applied Physics, 118, 185307.

    Article  Google Scholar 

  139. Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 32, 510–519.

    Article  Google Scholar 

  140. Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., & Sugimoto, H. (2019, June 19). Cd-free Cu (In,Ga)(Se,S)2 thin-film solar cell with a new world record efficiancy of 23.35%. In 46th IEEE PVSC, Chicago, IL.

    Google Scholar 

  141. Boukortt, N. E. I., Salvatore, P., Adouane, M., & Rawan, A. H. (2021). Numerical optimization of ultrathin CIGS solar cells with rear surface passivation. Solar Energy, 220, 590–597.

    Google Scholar 

  142. Boukortt, N. E. I. (2020). Numerical optimization of 0.5‐μm‐thick Cu (In1−xGax) Se2 solar cell. Optik—International Journal for Light and Electron Optics, 200, 163409.

    Google Scholar 

  143. Wang, Y.-C., Chen, C.-W., Su, T.-Y., Yang, T.-Y., Liu, W.-W., Cheng, F., Wang, Z. M., & Chueh, Y.-L. (2020). Design of suppressing optical and recombination losses in ultrathin CuInGaSe2 solar cells by Voronoi nanocavity arrays. Nano Energy, 78, 105225.

    Google Scholar 

  144. Shin, M. J., Lee, A., Cho, A., Kim, K., Ahn, S. K., Park, J. H., Yoo, J., Yun, J. H., Gwak, J., Shin, D., Jeong, I., & Cho, J.-S. (2021). Semitransparent and bifacial ultrathin Cu(In,Ga)Se2 solar cells via a single-stage process and light-management strategy. Nano Energy, 82, 105729.

    Google Scholar 

  145. Lopes, T. S., de Wild, J., Rocha, C., Violas, A., Cunha, J. M.V., Teixeira, J. P., Curado, M. A., Oliveira, A. J. N., Borme, J., Birant, G., Brammertz, G., Fernandes, P. A., Vermang, B., & Salomé, P. M. P. (2021). On the importance of joint mitigation strategies for front, bulk, and rear recombination in ultrathin Cu(In,Ga)Se2 solar cells. ACS Applied Materials Interfaces, 13, 27713−27725.

    Google Scholar 

  146. Raja, W., Aydin, E., Allen, T. G., & De Wolf, S. (2021). 3-D modeling of ultrathin solar cells with nanostructured dielectric passivation: Case study of chalcogenide solar cells. Advanced Theory Simulations, 2100191.

    Google Scholar 

  147. Ahmad, F., Anderson, T. H., Monk, P. B., & Lakhtakia, A. (2019). Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading. Applied Optics, 58(22), 6067.

    Article  Google Scholar 

  148. Boukortt, N. E. I., AlAmri, A. M., Bouhjar, F., & Bouhadiba, K. (2021). Investigation and optimization of ultrathin Cu(In,Ga)Se2 solar cells by using silvaco-TCAD tools. Journal of Materials Science: Materials in Electronics, 32, 21525–21538.

    Google Scholar 

  149. de Wild, J., Birant, G., Brammertz, G., Meuris, M., Poortmans, J., & Vermang, B. (2021). Ultrathin Cu(In, Ga)Se2 solar cells with Ag/AlOx passivating back reflector. Energies, 14, 4268. https://doi.org/10.3390/en14144268

    Article  Google Scholar 

  150. Shin, M. J., Park, S., Lee, A., Park, S. J., Cho, A., Kim, K., Ahn, S. K., Park, J. H., Yoo, J., Shin, D., Jeong, I., Yun, J. H., Gwak, J., & Cho, J.-S. (2021). Bifacial photovoltaic performance of semitransparent ultrathin Cu(In,Ga)Se2 solar cells with front and rear transparent conducting oxide contacts. Applied Surface Science, 535, 147732.

    Google Scholar 

  151. Cunha, J. M. V., Oliveira, K., Lontchi, J., Lopes, T. S., Curado, A. A., Barbosa, J. R. S., Vinhais, C., Chen, W.-C., Borme, J., Fonseca, H., Gaspar, J., Flandre, D., Edoff, M., Silva, A. G., Teixeira, J. P., Fernandes, P. A., & Salomé, P. M. P. (2021). High-performance and industrially viable nanostructured SiOx layers for interface passivation in thin film solar cells. Solar RRL, 5, 2000534.

    Google Scholar 

  152. Onwudinanti, C., Vismara, R., Isabella, O., Grenet, L., Emieux, F., & Zeman, M. (2016). Advanced light management based on periodic textures for Cu(In, Ga)Se2 thin-film solar cells. Optics Express, 24(6), A693. https://doi.org/10.1364/OE.24.00A693

    Article  Google Scholar 

  153. Rezaei, N., Isabella, O., Procel, P., Vroon, Z., & Zeman, M. (2019). Optical study of back-contacted CIGS solar cells. Optics Express, 27(8), A269.

    Article  Google Scholar 

  154. Gouillart, L., Cattoni, A., Chen, W.-C., Goffard, J., Riekehr, L., Keller, J., Jubault, M., Naghavi, N., Edoff, M., & Collin, S. (2021). Interface engineering of ultrathin Cu(In, Ga)Se2 solar cells on reflective back contacts. Progress Photovoltaics Research and Applications, 29, 212–221.

    Article  Google Scholar 

  155. Schneider, T., Tröndle, J., Fuhrmann, B., Syrowatka, F., Sprafke, A., & Scheer, R. (2020). Ultrathin CIGSe solar cells with integrated structured back reflector. Solar RRL, 4, 2000295.

    Article  Google Scholar 

  156. Gouillart, L., Cattoni, A., Chen, W.-C., Zeitouny, J., Riekehr, L., Keller, J., Jubault, M., & Naghavi, N. (2020). Ultrathin Cu(In,Ga)Se2 solar cells with Ag-based reflective back contacts. In 2020 IEEE PVSC (p. 1481).

    Google Scholar 

  157. Ohshita, Y., Onishi, K., Yokogawa, R., Nishihara, T., Kamioka, T., Nakamura, K., Kawatsu, T., Nagai, T., Yamada, N., Miyashita, Y., & Ogura, A. (2019). Ultra-thin lightweight bendable crystalline SI solar cells for vehicles. In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (p. 1131). IEEE.

    Google Scholar 

  158. Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., Fujita, K., & Maruyama, E. (2014). 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE Journal of Photovoltaics, 4 (1), 96–99.

    Google Scholar 

  159. Green, M. A., Dunlop, E. D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., & HaoProg, X. (2021). Solar cell efficiency tables (Version 58). Photovoltaics Research Application, 29, 657–667.

    Article  Google Scholar 

  160. Kang, Y., Deng, H., Chen, Y., Huo, Y., Jia, J., Zhao, L., Zaidi, Z., Zang, K., & Harris, J. S. (2017). Titanium dioxide hole-blocking layer in ultra-thin-film crystalline silicon solar cells. https://doi.org/10.1109/JPHOT.2019.2947582

  161. Bergmann, R. B., Rinke, T. J., Wagner, T. A., & Werner, J. H. (2001). Thin film solar cells on glass based on the transfer of monocrystalline Si films. Solar Energy Materials & Solar Cells, 65, 355–361.

    Google Scholar 

  162. Bellanger, P., Slaoui, A., Roques, S., Ulyashin, A. G., Debucquoy, M., Straboni, A., Sow, A., Salinesi, Y., Costa, I., & Serra, J. M. (2018). Silicon foil solar cells on low cost supports. Journal of Renewable Sustainable Energy, 10, 023502.

    Article  Google Scholar 

  163. Rosell, A., Martín, I., Garín, M., López, G., & Alcubilla, R. (2020). Textured PDMS films applied to thin crystalline silicon solar cells. IEEE Journal of Photovoltaics, 10, 351.

    Article  Google Scholar 

  164. Tan, X.-Y., Sun, L., Zhang, G.-R., Deng, C., Tu, Y.-T., & Guan, L. (2019). Absorption enhancement of ultrathin crystalline silicon solar cells with dielectric Si3N4 nanostructures. Communications in Theoretical Physics, 71, 1346–1352.

    Google Scholar 

  165. Tanga, Q., Shen, H., Yao, H., Gao, K., Ge, J., & Liu, Y. (2020). Investigation of optical and mechanical performance of inverted pyramid based ultrathin flexible c-Si solar cell for potential application on curved surface. Applied Surface Science 504, 144588.

    Google Scholar 

  166. Lee, Y., Woo, Y., Lee, D.-K., & Kim, I. (2020). Fabrication of quasi-hexagonal Si nanostructures and its application for flexible crystalline ultrathin Si solar cells. Solar Energy, 208, 957–965.

    Article  Google Scholar 

  167. Atalay, I. A., Babayigit, C., Alpkiliç, A. M., Yilmaz, Y. A., & Kurt, H. (2019). Surface texturing with multi-objective particle swarm optimization for absorption enhancement in silicon photovoltaics. In 2019 IEEE, ICTON 2019.

    Google Scholar 

  168. Wang, C., Zhao, S., Bian, F., Du, D., Wang, C., & Xu, Z. (2020). Absorption enhancement of ultrathin crystalline silicon solar cells with frequency upconversion nanosphere arrays. Communications in Theoretical Physics, 72, 015501.

    Google Scholar 

  169. Sobhani, F., Heidarzadeh, H., & Bahador, H. (2020). Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles. Chinese Physics B, 29(6), 068401.

    Article  Google Scholar 

  170. Sobhani, F., Heidarzadeh, H., & Bahador, H. (2020). Efficiency enhancement of an ultra-thin film silicon solar cell using conical-shaped nanoparticles: Similar to superposition (top, middle, and bottom). Optical and Quantum Electronics, 52, 387.

    Article  Google Scholar 

  171. Gezgin, S. Y., Houimi, A., Mercimek, B., & Kiliç, H. S. (2021). The effect of CZTS ultrathin film thickness on the electrical characteristic of CZTS/Si heterojunction solar cells in the darkness and under the illumination conditions. Silicon. https://doi.org/10.1007/s12633-020-00847-x

  172. Gezgin, S. Y., Houimi, A., & Kiliç, H. S. (2019). Production and photovoltaic characterisation of n-Si/p-CZTS heterojunction solar cells based on a CZTS ultrathin active layers. Optik—International Journal for Light and Electron Optics, 199, 163370.

    Google Scholar 

  173. Mirzaei, M., Hasanzadeh, J., & Ziabari, A. A. (2021). Significant efficiency enhancement in ultrathin CZTS solar cells by combining Al plasmonic nanostructures array and antireflective coatings. Plasmonics, 16, 1375–1390.

    Google Scholar 

  174. Kim, T. S., Kim, H. J., Geum, D.-M., Han, J.-H., Kim, I. S., Hong, N., Ryu, G. H., Kang, J. H., Choi, W. J., & Yu, K. J. (2021). Ultra-lightweight, flexible InGaP/GaAs tandem solar cells with a dual-function encapsulation layer. ACS Applied Materials & Interfaces, 13, 13248−13253.

    Google Scholar 

  175. Tavakoli, N., & Alarcon-Llado, E. (2019). Combining 1D and 2D waveguiding in an ultrathin GaAs NW/Si tandem solar cell. Optics Express, 27, A909.

    Article  Google Scholar 

  176. Buencuerpo, J., Llorens, J. M., Ripalda, J. M., Steiner, M. A., & Tamboli, A. C. (2021). Engineering the reciprocal space for ultrathin GaAs solar cells. Optics & Laser Technology, 142, 107224.

    Article  Google Scholar 

  177. Yang, D., Zhang, T., Wang, C., Yu, T., Wang, J., & Xu, Z. (2019). Enhanced electro-optical properties of TiO2 nanocone arrays for ultrathin GaAs solar cells. Optics Communications, 452, 281–285.

    Google Scholar 

  178. Park, S., Simon, J., Schulte, K. L., Ptak, A. J., Wi, J.-S., Young, D. L., & Oh, J. (2019). Germanium-on-nothing for epitaxial liftoff of GaAs solar cells. Joule, 3, 1782–1793.

    Google Scholar 

  179. Raj, V., Rougieux, F., Fu, L., Tan, H. H., & Jagadish, C. (2020). Design of ultrathin InP solar cell using carrier selective contacts. IEEE Journal of Photovoltaics, 10, 1657.

    Google Scholar 

  180. Buencuerpo, J., Geisz, J. F., Steiner, M. A., & Tamboli, A. C. (2019). Enabling ultrathin III–V solar cells using dual photonic crystals. In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (p. 0001). IEEE.

    Google Scholar 

  181. Giteau, M., Watanabe, K., Miyashita, N., Sodabanlu, H., Atlan, F., Suchet, D., Collin, S., Guillemoles, J.-F., & Okada, Y. (2020). Fabrication and optical characterization of ultrathin III-V transferred heterostructures for hot-carrier absorbers. https://doi.org/10.1117/12.2544537

  182. Massiot, I., Cattoni, A., & Collin, S. (2020). Progress and prospects for ultrathin solar cells. Nature Energy, 5, 959–972.

    Article  Google Scholar 

  183. Xiao, J., Fang, H., Su, R., Li, K., Song, J., Krauss, T. F., Li, J. & Martins, E. R. (2018). Paths to light trapping in thin film GaAs solar cells. Optics Express, 26, A341.

    Google Scholar 

  184. van Eerden, M., Bauhuis, G. J., Mulder, P., Gruginskie, N., Passoni, M., Andreani, L. C., Vlieg, E., & Schermer, J. J. (2020). A facile light-trapping approach for ultrathin GaAs solar cells using wet chemical etching. Progress Photovoltaics Research and Applications, 28, 200–209.

    Article  Google Scholar 

  185. Chen, H.-L., Cattoni, A., De Lépinau, R., Walker, A. W., Höhn, O., Lackner, D., Siefer, G., Faustini, M., Vandamme, N., Goffard, J., Behaghel, B., Dupuis, C., Bardou, N., Dimroth, F., & Collin, S. (2019). A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror. Nature Energy, 4, 761–767

    Google Scholar 

  186. Buencuerpo, J., Steiner, M. A., & Tamboli, A. C. (2020). Optically-thick 300 nm GaAs solar cells using adjacent photonic crystals. Optics Express, 28, 13845.

    Article  Google Scholar 

  187. Khan, A. D., Khan, A.D., Subhan, F. E., & Noman, M. (2019). Efficient light management in ultrathin crystalline GaAs solar cell based on plasmonic square nanoring arrays. Plasmonics, 14, 1963–1970.

    Google Scholar 

  188. van Eerden, M., Caris, Y., van Gastel, J., Bauhuis, G., Vlieg, E., & Schermer, J. (2020). Exploring the Franz-Keldysh effect in ultra-thin GaAs solar cells. In 2020 47th IEEE Photovoltaic Specialists Conference (PVSC) (p. 2692).

    Google Scholar 

  189. Aeberhard, U. (2020). Microscopic approach to reciprocity and photon recycling in ultrathin solar cells. In 2020 47th IEEE Photovoltaic Specialists Conference (PVSC) (p. 39).

    Google Scholar 

  190. First Solar Press Release. First Solar Achieves yet another cell conversion efficiency world record, 24 February 2016.

    Google Scholar 

  191. Ramanujam, J., Verma, A., González-Díaz, B., Guerrero-Lemus, R., del Cañizo, C., García-Tabarés, E., Rey-Stolle, I., Granek, F., Korte, L., Tucci, M., Rath, J., Singh, U. P., Todorov, T., Gunawan, O., Rubio, S., Plaza, J. L., Diéguez, E., Hoffmann, B., Christiansen, S., Cirlin, G. E. (2016). Inorganic photovoltaics—Planar and nanostructured devices. Progress in Materials Science, 82, 294–404.

    Google Scholar 

  192. Hu, A., Zhou, J., Zhong, P., Qin, X., Zhang, M., Jiang, Y., Wu, X., & Yang, D. (2021). High-efficiency CdTe-based thin-film solar cells with unltrathin CdS:O window layer and processes with post annealing. Solar Energy, 214, 319–325.

    Google Scholar 

  193. He, F., Li, J., Lin, S., Long, W., Wu, L., Hao, X., Zhang, J., & Feng, L. (2021). Semitransparent CdTe solar cells with CdCl2 treated absorber towards the enhanced photovoltaic conversion efficiency. Solar Energy, 214, 196–204.

    Google Scholar 

  194. Gutierrez, Z.‑B.K, Zayas‑Bazán, P.G., de Moure‑Flores, F., Jiménez‑Olarte, D., Sastré‑Hernández, J., Hernández‑Gutiérrez, C. A., Aguilar‑Hernández, J. R., Mejía‑García, C., Morales‑Acevedo, A., & Contreras‑Puente, G. (2019). Development of a CdCl2 thermal treatment process for improving CdS/CdTe ultrathin solar cells. Journal of Materials Science: Materials in Electronics, 30, 16932–16938.

    Google Scholar 

  195. He, F., Lin, S., Wu, L., Hao, X., Zhao, D., Zhang, J., & Feng, L. (2021). Plasma etching: A strategy to enhance the photovoltaic conversion efficiency of ultrathin CdTe solar cells. Journal of Physics D: Applied Physics, 54, 374002 (7pp.).

    Google Scholar 

  196. Shukla, V., & Panda, G. (2020). Numerical modelling of ultrathin CdTe solar cell with back surface field layer. IOP Conference Series: Materials Science and Engineering, 872, 012106.

    Google Scholar 

  197. Elshorbagy, M. H., Sánchez, P. A., Cuadrado, A., Alda, J., & Esteban, Ó. (2021). Resonant nano-dimer metasurface for ultra-thin a-Si: H solar cells. Scientific Reports, 11, 7179.

    Article  Google Scholar 

  198. Ferhati, H., Djeffal, F., Boubiche, N., Benhaya, A., Faerber, J., Le Normand, F., Javahiraly, N., & Fix, T. (2021). Absorption enhancement in amorphous Si by introducing RF sputtered Ti intermediate layers for photovoltaic applications. Materials Science and Engineering B, 269, 115152.

    Article  Google Scholar 

  199. Ferry, V. E., Verschuuren, M. A., Li, h. B. T., Schropp, R. E. I., Atwater, H. A., & Polman, A. (2009). Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Applied Physics Letters, 95, 183503.

    Google Scholar 

  200. Mahmoud, H. (2020). Elshorbagy, Eduardo López-Fraguas, José Manuel Sánchez-Pena, Braulio García-Cámara, Ricardo Vergaz, Boosting ultrathin aSi-H solar cells absorption through a nanoparticle crosspacked metasurface. Solar Energy, 202, 10–16.

    Article  Google Scholar 

  201. de Vrijer, T., Parasramka, H., Roerink, S. J., & Smets, A. H. M. (2021). An expedient semi-empirical modelling approach for optimal bandgap profiling of stoichiometric absorbers: A case study of thin film amorphous silicon germanium for use in multijunction photovoltaic devices. Solar Energy Materials & Solar Cells, 225, 111051.

    Google Scholar 

  202. Zambrano, R. J., Rubinelli, F. A., Arnoldbik, W. M., Rath, J. K., & Schropp, R. E. I. (2004). Computer-aided band gap engineering and experimental verification of amorphous silicon–germanium solar cells. Solar Energy Materials & Solar Cells, 81, 73–86.

    Google Scholar 

  203. Meddeb, H., Osterthun, N., Gotz, M., Sergeev, O., Gehrke, K., Vehse, M., & Agert, C. (2020). Quantum confinement-tunable solar cell based on ultrathin amorphous germanium. Nano Energy, 76, 105048.

    Article  Google Scholar 

  204. Parrott, E. S., Patel, J. B., Haghighirad, A.-A., Snaith, H. J., Johnston, M. B., & Herz, L. M. (2019). Growth modes and quantum confinement in ultrathin vapour-deposited MAPbI3 films. Nanoscale, 11, 14276.

    Article  Google Scholar 

  205. Biesold, G. M., Liang, S., Wagner, B. K., Kang, Z., & Lin, Z. (2021). Continuous production of ultrathin organic–inorganic Ruddlesden–Popper perovskite nanoplatelets via a flow reactor. Nanoscale, 13, 13108.

    Google Scholar 

  206. Xu, M.-F., Jin, M.-F., Xu, T., Wang, C.-N., & Zhai, Z.-C. (2021). Ultrathin perovskite based solar cells with the efficiency enhanced by charge transfer process. Organic Electronics, 89, 106025.

    Google Scholar 

  207. He, X., Guo, Y., Liu, J., Li, X., & Qi, J. (2019). Fabrication of peanut-like TiO2 microarchitecture with enhanced surface light trapping and high specific surface area for high-efficiency dye sensitized solar cells. Journal of Power Sources, 423, 236–245.

    Article  Google Scholar 

  208. Ma, X., Ma, B., Yu, T., Xu, X., Zhang, L., Wang, W., Cao, K., Deng, L., Chen ,S., & Huang, W. (2019). Indepth studies on working mechanism of plasmon-enhanced inverted perovskite solar cells incorporated with Ag@SiO2 core−shell nanocubes. ACS Applied Energy Materials, 2, 3605−3613.

    Google Scholar 

  209. Heidarzadeh, H., & Tavousi, A. (2021). Design of an LSPR-enhanced ultrathin CH3NH3PbX3 perovskite solar cell incorporating double and triple coupled nanoparticles. Journal of Electronic Materials, 50, 1817.

    Article  Google Scholar 

  210. Zheng, L., Li, M., Dai, S., Wu, Y., Cai, Y., Zhu, X., Ma, S., Yun, D., & Li, J.-F. (2021). Ag nanowires embedded ZnO for semitransparent organic solar cells with 13.76% efficiency and 19.09% average visible transmittance. The Journal of Physical Chemistry C, 125, 18623−18629.

    Google Scholar 

  211. Sannicolo, T., Chae, W. H., Mwaura, J., Bulović, V., & Grossman, J. C. (2021). Silver nanowire back electrode stabilized with graphene oxide encapsulation for inverted semitransparent organic solar cells with longer lifetime. ACS Applied Energy Materials, 4, 1431−1441.

    Google Scholar 

  212. Huang, Z.-W., Hong, Y.-H., Du, Y.-J., Kuo, T.-J., Huang, C.-C., Kao, T.S., & Ahn, H. (2021). Terahertz analysis of CH3NH3PbI3 perovskites associated with graphene and silver nanowire electrodes. ACS Applied Materials Interfaces, 13, 9224−9231.

    Google Scholar 

  213. Xie, M., Wang, J., Kang, J., Zhang, L., Sun, X., Han, K., Luo, Q., Lin, J., Shi, L., & Ma, C.-Q. (2019). Super-flexible perovskite solar cells with high power-per-weight on 17μmthick PET substrate utilizing printed Ag nanowires bottom and top electrodes. Flexible and Printed Electronics, 4, 034002.

    Google Scholar 

  214. Wang, C., & Zhang, Z. (2021). Broadband optical absorption enhancement in hybrid organic–inorganic perovskite metasurfaces. AIP Advances, 11, 025107. https://doi.org/10.1063/5.0037367

    Article  Google Scholar 

  215. He, J., Zhou, Y., Li, C.-Y., Xiong, B., Jing, H., Peng, R., & Wang, M. (2021). Metasurface-assisted broadband optical absorption in ultrathin perovskite films. Optics Express, 29, 19170.

    Google Scholar 

  216. Chen, M., Xue, T., Tian, Q., Xu, Z., & Liu, S. F. (2021). Tapered coaxial arrays for photon- and plasmon-enhanced light harvesting in perovskite solar cells: A theoretical investigation using the finite element method. ChemPlusChem, 86, 858–864.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Rath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rath, J.K., Venkatesh, A., Moorthy, V.H.S. (2022). Ultra-Thin Plasmonic Optoelectronic Devices. In: Singh, U.P., Chaure, N.B. (eds) Recent Advances in Thin Film Photovoltaics. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-3724-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3724-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3723-1

  • Online ISBN: 978-981-19-3724-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics