Skip to main content

Advancement in Copper Indium Gallium Diselenide (CIGS)-Based Thin-Film Solar Cells

  • Chapter
  • First Online:
Recent Advances in Thin Film Photovoltaics

Part of the book series: Advances in Sustainability Science and Technology ((ASST))

Abstract

Copper indium gallium selenide (CIGS)-based solar cells have received worldwide attention for solar power generation. It is an efficient thin-film solar cell having achieved more than 23% efficiency on laboratory scale, which is comparable to crystalline silicon (c-Si) wafer-based solar cells. CIGS solar cells have also achieved more than 20% efficiency on flexible polyimide substrate making it most suitable thin-film solar cells. One of the major challenge for small area devices is precise control of stoichiometry and efficiency over CIGS film. For industrial production, apart from stoichiometry and efficiency, high-throughput, reproducibility, low-cost and process tolerance are of much importance in commercializing the technology. In this chapter, after briefly reviewing the history of chalcopyrite system, graded bandgap, effects of sodium distribution in CIGS layer, growth of CIGS layer using various techniques, role of buffer layer and their alternatives, transparent conducting oxides, progress related to flexible solar cells and factors affecting the cell efficiency will be are discussed. Further, options for efficiency improvement, challenges and future prospects of CIGS solar cells will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., & Sugimoto, H. (2019). Cd-Free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics, 9, 1863–1867.

    Google Scholar 

  2. Reinhard, P., Chirilă, A., Blösch, P., Pianezzi, F., Nishiwaki, S., Buechel, S., & Tiwari, A. N. (2013). Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. IEEE Journal of Photovoltaics, 3, 572–580.

    Google Scholar 

  3. Chirilă, A., Reinhard, P., Pianezzi, F., et al. (2013). Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nature Materials, 12, 1107–1111.

    Article  Google Scholar 

  4. Zhang, C., Qi, T., Wang, W., Zhao, C., Xu, S., Ma, M., Feng, Y., Li, W., Chen, M., Yang, C., & Li, W. (2021). High efficiency CIGS solar cells on flexible stainless steel substrate with SiO2 diffusion barrier layer. Solar Energy, 230, 1033–1039.

    Article  Google Scholar 

  5. Hahn, H., Frank, G., Klingler, W., Meyer, A., & Strger, G. (1953) Fiber einige tern/ire Chalko genidemit Chalkopyritstruktur. Z. Anorg.. Allg. Chernie, 271, 153.

    Google Scholar 

  6. Wagner, S., Shay, J. L., Migliorato, P., & Kasper, H. M. (1974). CuInSe2/CdS heterojunction photovoltaic detectors. Applied Physics Letters, 25, 434.

    Article  Google Scholar 

  7. Kazmerski, L. L., White, F. R., & Morgan, G. K. (1976). Thin film CuInSe2/CdS heterojunction solar cells. Applied Physics Letters, 29, 268–270.

    Article  Google Scholar 

  8. Mickelsen, R. A., & Chen, W. S. (1981). Development of a 9.4% efficient thin-film CuInSe2/CdS solar cell. In 15th photovoltaic specialists conference (pp. 800–804).

    Google Scholar 

  9. Tuttle, J. R., Contreras, M. A., & Gillespie, T. J., et al. (1995). Accelerated publication 17.1% efficient Cu (In, Ga)Se2-based thin-film solar cell. Progress in Photovoltaics: Research and Applications, 3, 235–238.

    Google Scholar 

  10. Contreras, M. A., Egaas, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F., & Noufi, R. (1999). Progress toward 20% efficiency in Cu(In, Ga)Se2 polycrystalline thin-film solar cells. Progress in Photovoltaics: Research and Applications, 7, 311–316.

    Article  Google Scholar 

  11. Repins, I., Contreras, M., & Romero, M. et al. (2008). Characterization of 19.9%-efficient CIGS absorbers. In: 2008 33rd IEEE photovoltaic specialists conference (pp. 1–6).

    Google Scholar 

  12. Kato, T., Wu, J. L., Hirai, Y., Sugimoto, H., & Bermudez, V.: Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu (In, Ga)(Se, S)2. IEEE Journal of Photovoltaics, 9, 325–330

    Google Scholar 

  13. Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., & Sugimoto, H. (2019). Cd-free Cu (In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics, 9, 1863–1867.

    Google Scholar 

  14. Shafarman, W., Sieventritt, S., & Stolt, L. (2011). Cu(InGa)Se2 solar cells. In A. Luque, & S. Hegedus, (Eds.), Handbook of photovoltaic science and engineering, (2nd ed., pp. 546–599, 2011). Wiley.

    Google Scholar 

  15. Schock, H.-W. (2004). Properties of chalcopyrite-based materials and film deposition for thin-film solar cells. Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  16. Xue, T., Tang, H., Ling, F., Li, X. K., Wan, F. C., Lu, W. J., Rui, Z. Y., & Feng, Y. D. (2014). Phase equilibrium of a CuInSe2–CuInS2 pseudobinary system studied by combined first-principles calculations and cluster expansion Monte Carlo simulations. Materials Science in Semiconductor Processing, 25, 251–257.

    Google Scholar 

  17. Ramanujam, J., & Singh, U. P. (2017). Copper indium gallium selenide based solar cells—a review. Energy & Environmental Science, 10, 1306–1319.

    Article  Google Scholar 

  18. Kodigala, SubbaRamaiah. (2010). Cu(InGa)Se based thin film solar structural properties of I–III–VI2 absorbers. Thin Films and Nanostructures, 35, 115–194.

    Google Scholar 

  19. Tinoco, T., Rincón, C., Quintero, M., & Sánchez Pérez, G. (1991). Phase diagram and optical energy gaps for CuInyGa1−ySe2 alloys. Physica Status Solidi A, 124, 427

    Google Scholar 

  20. Zhai, J., Cao, H., Zhao, M., Wang, C., Li, Y., Tong, H., Li, Z., Yin, S., & Zhuang, D. (2021). Smooth and highly-crystalline Ag-doped CIGS films sputtered from quaternary ceramic targets. Ceramics International, 47, 2288–2293.

    Article  Google Scholar 

  21. Yang, X.-Y. (2019). Photoenergy and thin film materials, brief review on Copper Indium Gallium Diselenide (CIGS) Solar Cells. In Photoenergy and thin film materials (Chap. 4, pp. 157–192).

    Google Scholar 

  22. Wasim, S. M., Rincon, C., Marin, G., Marquez, R., Sanchez Perez, R., Guevara, R., Delgado, J.M., & Nieves, L. (2001). Growth, structural characterization, and optical bandgap anomaly in Cu-IIh-VI5 and Cu-III5-VIs ternary compounds. Materials Research Society Symposium Proceedings, 668.

    Google Scholar 

  23. Asaduzzaman, M., Hasan, M., & Bahar, A. N. (2016). An investigation into the effects of band gap and doping concentration on Cu(In, Ga)Se2 solar cell efficiency. Springer Plus, 5, 578.

    Article  Google Scholar 

  24. Zhang, L., Zhuang, D., Zhao, M., Gong, Q., Guo, L., Ouyang, L., Sun, R., Wei, Y., & Zhan, S. (2017). The effects of annealing temperature on CIGS solar cells by sputtering from quaternary target with Se-free post annealing. Applied Surface Science, 413, 75–180.

    Google Scholar 

  25. Stolt, L., Hedström, J., Kessler, J., Ruckh, M., Velthaus, K., & Schock, H. (1993). ZnO/CdS/CuInSe2 thin-film solar cells with improved performance. Applied Physics Letters, 62, 597–599.

    Article  Google Scholar 

  26. Repins, I., Glynn, S., Duenow, J., Coutts, T. J., Metzger, W., & Contreras, M. A. (2009). Required materials properties for high-efficiency CIGS modules, NREL/CP-520 46235.

    Google Scholar 

  27. Shen, J. (2006). Ternary alloy systems selected semiconductor systems Landolt–Böernstein: Numerical data and functional relationships in science and technology—New Series IV/11C1, Springer, p. 319.

    Google Scholar 

  28. Boehnke, U.-C., & Kühn, G. (1987). Journal of Materials Science, 22, 1635.

    Article  Google Scholar 

  29. Haalboom, T., Godecke, T., Ernst, F., Riihle, R., Herberholz, R., Schock, H.-W., Beilharz, C., & Benz, K. W. (1998). Institute of Physics Conference Series, 152E, 249.

    Google Scholar 

  30. Nishiwaki, S., Satoh, T., Hayashi, S., Hashimoto, Y., Negami, T., & Wada, T. (1999). Journal of Materials Research, 14, 4514.

    Article  Google Scholar 

  31. Ider, M., Pankajavalli, R., Zhuang, W., Shen, J. Y., & Anderson, T. J. (2014). Thermochemistry of the Cu2Se–In2Se3 system. Journal of Alloys and Compounds, 604, 363–372.

    Article  Google Scholar 

  32. Schock, H.-W. Properties of chalcopyrite-based materials and film deposition for thin-film solar cells.

    Google Scholar 

  33. Ider, M., Pankajavalli, R., Zhuang, W., Shen, J. Y., & Anderson, T. J. (2014). Journal of Alloys and Compounds, 604, 363.

    Article  Google Scholar 

  34. Herberholz, R., Rau, U., Schock, H.-W., Haalboom, T., Godecke, T., Ernst, F., Beilharz, Benz, K.W., & Cahen, D. (1999) European Physics Journal AP, 6, 131.

    Google Scholar 

  35. Queisser, H. J., & Haller, E. E. (1998). Science, 281, 945–950.

    Article  Google Scholar 

  36. Noufi, R., Axton, R., Herrington, C., & Deb, S. K. (1984). Electronic properties versus composition of thin films of CuInSe2. Applied Physics Letters, 45, 668.

    Article  Google Scholar 

  37. Spindler, C., Babbe, F., Wolter, M. H., Ehre´, F., Santhosh, K., Hilgert, P., Werner, F., & Siebentritt, S. (2019). Physics Review Materials, 3, 090302.

    Google Scholar 

  38. Zhang, S. B., Wei, S. H., Zunger, A., & Katayama-Yoshida, H. (1998). Physical Review B, 57, 9642.

    Article  Google Scholar 

  39. Hornung, M., Benz, K. W., Margulis, L., Schmid, D., & Schock, H.-W. (1995). Growth of bulk Cu0.85In1.05Se2 and characterization on a micro scale. Journal of Crystal Grawth, 154, 315.

    Google Scholar 

  40. Godecke, T., Haalboom, T., & Ernst, F. (2000). Phase Equilibria of Cu-In-Se. Zeitschrift fuer Metallkunde, 91, 622–662.

    Google Scholar 

  41. Witte, W., Abou-Ras, D., & Hariskos, D. (2016). Physica Status Solidi RRL, 10, 300–304.

    Article  Google Scholar 

  42. Bröker, S., Kück, D., Timmer, A., Lauermann, I., Ümsür, B., Greiner, D., Kaufmann, C. A., & Mönig, H. (2015). ACS Applied Materials & Interfaces, 7, 13062–13072.

    Google Scholar 

  43. Elizabeth, A., Sahoo, S. K., Lockhorn, D., Timmer, A., Aghdassi, N., Zacharias, H., Kühne, T. D., Siebentritt, S., Mirhosseini, H., & Mönig, H. (2020). Physics Review Materials, 4, 063401.

    Google Scholar 

  44. Schmid, D., Ruckh, M., Grunwald, F., & Schock, H.-W. (1993). Journal of Applied Physics, 73, 2902.

    Article  Google Scholar 

  45. Yoon, J.-H., Kim, J.-H., Kim, W. M., Park, J.-K., Baik, Y.-J., Seong, T.-Y., & Jeong, J.-H. (2014). Progress in Photovoltaics, 22, 90–96.

    Article  Google Scholar 

  46. Pang, J., Cai, Y., He, Q., Wang, H., Jiang, W., He, J., Yu, T., Liu, W., Zhang, Y., & Sun, Y. (2012). Physics Procedia, 32, 372–378.

    Article  Google Scholar 

  47. He, Z., Liu, Y., Lin, S., Shi, S., Sun, S., Pang, J., Zhou, Z., Sun, Y., & Liu, W. (2020). ACS Applied Energy Materials, 3, 3408–3414.

    Article  Google Scholar 

  48. Minemoto, T., Matsui, T., Takakura, H., Hamakawa, Y., Negami, T., Hashimoto, Y., Uenoyama, T., & Kitagawa, M. (2001). Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation.

    Google Scholar 

  49. Huang, Y., Gao, S., Tang, Y., Ao, J., Yuan, W., & Lu, L. (2016). The multi-functional stack design of a molybdenum back contact prepared by pulsed DC magnetron sputtering. Thin Solid Films, 616, 820–827.

    Article  Google Scholar 

  50. Orgassa, K., Schock, H. W., & Werner, J. H. (2003). Alternative back contact materials for thin film Cu(In, Ga)Se2 solar cells. Thin Solid Films, 431–432, 387–391.

    Article  Google Scholar 

  51. Li, W., Yan, X., Aberle, A. G., & Venkataraj, S. (2016). Analysis of microstructure and surface morphology of sputter deposited molybdenum back contacts for CIGS solar cells. Procedia Engineering, 139, 1–6.

    Article  Google Scholar 

  52. Romeo, A., Terheggen, M., Abou-Ras, D., et al. (2004). Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 12, 93–111.

    Google Scholar 

  53. Tiwari, A. N., Krejci, M., Haug, F.-J., & Zogg, H. (1999). 12.8% efficiency Cu(In,Ga)Se2 solar cell on a flexible polymer sheet. Progress in Photovoltaics: Research and Applications, 7, 393–397.

    Google Scholar 

  54. Jackson, P., Würz, R., Rau, U., et al. (2007). High quality baseline for high efficiency, Cu(In1−xGax)Se2 solar cells. Progress in Photovoltaics: Research and Applications, 15, 507–519.

    Article  Google Scholar 

  55. Nakada, T., Hirabayashi, Y., Tokado, T., Ohmori, D., & Mise, T. (2004). Solar Energy, 77, 739–747

    Google Scholar 

  56. Ramanujam, J., & Singh, U. P. (2017). Copper indium gallium selenide based solar cells—a review. Energy and Environmental Science, 10, 1306.

    Google Scholar 

  57. Repins, I., Contreras, M. A., Egaas, B., DeHart, C., Scharf, J., Perkins, C. L., To, B., & Noufi, R. (2008). 19⋅9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81⋅2% fill factor. Progress in Photovoltaics: Research and Applications, 16, 235–239.

    Article  Google Scholar 

  58. Delahoy, A. E., Chen, L., Akhtar, M., Sang, B., & Guo, S. (2004). New technologies for CIGS photovoltaics. Solar Energy, 77, 785–793.

    Article  Google Scholar 

  59. Kushiya, K., Tachiyuki, M., Nagoya, Y., Fujimaki, A., Sang, B., Okumura, D., Satoh, M., & Yamase, O. (2001). Progress in large-area Cu(InGa)Se2-based thin-film modules with a Zn(O, S, OH)x buffer layer. Solar Energy Materials and Solar Cells, 67, 11–20.

    Article  Google Scholar 

  60. Zhang, H. X., & Hong, R. J. (2016). CIGS absorbing layers prepared by RF magnetron sputtering from a single quaternary target. Ceramics International, 42, 14543–14547.

    Article  Google Scholar 

  61. Niki, S., Contreras, M., Repins, I., Powalla, M., Kushiya, K., Ishizuka, S., & Matsubara, K. (2010). Progress in Photovoltaics: Research and Applications, 18, 453–466.

    Article  Google Scholar 

  62. Ramanathan, K., Contreras, M. A., Perkins, C. L., Asher, S., Hasoon, F. S., Keane, J., Young, D., Romero, M., Metzger, W., Noufi, R., Ward, J., & Duda, A. (2003). Progress in Photovoltaics: Research and Applications, 11, 225–230.

    Article  Google Scholar 

  63. Chen, S. C., Hsieh, D. H., Jiang, H., et al. (2014). Growth and characterization of Cu(In, Ga)Se2 thin films by nanosecond and femtosecond pulsed laser deposition. Nanoscale Research Letters, 9, 280.

    Article  Google Scholar 

  64. Tsai, M.-G., Tung, H.-T., Chen, I.-G., Chen, C.-C., Wu, Y.-F., Qi, X., Hwu, Y., Lin, C.-Y., Wu, P.-H., & Cheng, C.-W. (2013). Annealing effect on the properties of Cu(In0.7Ga0.3) Se2 thin films grown by femtosecond pulsed laser deposition. Journal of American Ceramic Society, 96, 2419–2423.

    Article  Google Scholar 

  65. He, X., Ercius, P., Varley, J., Bailey, J., Zapalac, G., Nagle, T., Poplavskyy, D., Mackie, N., Bayman, A., Lordi, V., & Rockett, A. (2019). The role of oxygen doping on elemental intermixing at the PVD-CdS/Cu (InGa)Se2 heterojunction. Progress in Photovoltaics: Research and Applications, 27, 255–263.

    Article  Google Scholar 

  66. Venkatachalam, M., Kannan, M. D., Jayakumar, S., Balasundaraprabhu, R., & Muthukumarasamy, N. (2008). Effect of annealing on the structural properties of electron beam deposited CIGS thin films. Thin Solid Films, 516, 6848–6852.

    Article  Google Scholar 

  67. Park, J.-H., Afzaal, M., Kemmler, M., O’Brien, P., Otway, D. J., Raftery, J., & Waters, J. (2003). The deposition of thin films of CuME2 by CVD techniques (M = In, Ga and E= S, Se). Journal of Materials Chemistry, 13, 1942.

    Article  Google Scholar 

  68. Choi, I. H., & Lee, D. H. (2007). Preparation of CuIn1-xGaxSe2 films by metalorganic chemical vapor deposition using three precursors. Thin Solid Films, 515, 4778–4782.

    Article  Google Scholar 

  69. Nakada, T., Furumi, K., & Kunioka, A. (1999). High-efficiency cadmium-free Cu(In, Ga)Se2 thin-film solar cells with chemically deposited ZnS buffer layers. IEEE Transactions on Electron Devices, 46, 2093–2097.

    Article  Google Scholar 

  70. Guenoun, K., Djessas, K., & Masse, G. (1998). Journal of Applied Physics, 84, 589–595.

    Article  Google Scholar 

  71. Galindo, H., et al. (1989). Thin Solid Films, 170, 227–234.

    Article  Google Scholar 

  72. Lee, D. Y., Park, S., & Kim, J. (2011). Current Applied Physics, 11, S88–S89.

    Article  Google Scholar 

  73. Guillemoles, J., et al. (1996). Journal of Applied Physics, 79, 7293–7302.

    Article  Google Scholar 

  74. Guo, Q., Ford, G. M., Agrawal, R., & Hillhouse, H. W. (2013). Progress in Photovoltaics, 21, 3141–3158.

    Article  Google Scholar 

  75. Kapur, V. K., Bansal, A., Le, P., & Asensio, O. I. (2003). Thin Solid Films, 431(432), 53–57.

    Article  Google Scholar 

  76. Wang, W., Su, Y. W., & Chang, C. H. (2011). Solar Energy Materials and Solar Cells, 95, 2616–2620.

    Article  Google Scholar 

  77. Abernathy, C., et al. (1984). Applied Physics Letters, 45, 890.

    Article  Google Scholar 

  78. Ramanujam, J., et al. (2020). Flexible CIGS, CdTe and a-Si: H based thin film solar cells: A review. Progress in Materials Science, 110, 100619.

    Article  Google Scholar 

  79. Kim, S.-T., et al. (2021). Effect of sodium doped Mo layer as a controllable sodium reservoir and diffusion barrier for flexible CIGS solar cells. Energy Reports, 7, 2255–2261.

    Article  Google Scholar 

  80. Powalla, M., Voorwinden, G., Hariskos, D., Jackson, P., & Kniese, R. (2009). Highly efficient CIS solar cells and modules made by the co-evaporation process. Thin Solid Films, 517, 2111–2114.

    Article  Google Scholar 

  81. Islam, M. M., Ishizuka, S., Yamada, A., Sakurai, K., Niki, S., Sakurai, T., & Akimoto, K. (2009). CIGS solar cell with MBE-grown ZnS buffer layer. Solar Energy Materials and Solar Cells, 93, 970–972.

    Article  Google Scholar 

  82. Poudel, D., Belfore, B., Karki, S., Rajan, G., Soltanmohammad, S., Rockett, A., & Marsillac, S. (2021). Assessment of Cu(In, Ga)Se2 solar cells degradation due to water ingress effect on the CdS buffer layer. Journal of Energy and Power Technology, 3(1), 9.

    Article  Google Scholar 

  83. Siebentritt, S., Kampschulte, T., Bauknecht, A., et al. (2002). Cd-free buffer layers for CIGS solar cells prepared by a dry process. Solar Energy Materials and Solar Cells, 7, 447–457.

    Article  Google Scholar 

  84. Yousfi, E. B., Weinberger, B., Donsanti, F., Cowache, P., & Lincot, D. (2001). Atomic layer deposition of zinc oxide and indium sulfide layers for Cu(In, Ga)Se2 thin-film solar cells. Thin Solid Films, 387, 29–32.

    Article  Google Scholar 

  85. Spiering, S., Hariskos, D., Powalla, M., Naghavi, N., & Lincot, D. (2003). CD-free Cu(In, Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD. Thin Solid Films, 431, 359–363.

    Article  Google Scholar 

  86. Buecheler, S., Corica, D., Guettler, D., et al. (2009). Ultrasonically sprayed indium sulfide buffer layers for Cu(In, Ga)(S, Se)2 thin-film solar cells. Thin Solid Films, 517, 2312–2315.

    Article  Google Scholar 

  87. Ohtake, Y., Kushiya, K., Ichikawa, M., Yamada, A., & Konagai, M. (1995). Polycrystalline Cu(In, Ga)Se2 thin-film solar cells with ZnSe buffer layers. Japanese Journal of Applied Physics, 34, 5949–5955.

    Article  Google Scholar 

  88. Ennaoui, A., Siebentritt, S., Lux-Steiner, M. Ch., Riedl, W., Karg, F. (2001). High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers. Solar Energy Materials and Solar Cells, 67, 31–40.

    Google Scholar 

  89. Ohtake, Y., Chaisitsak, S., Yamada, A., & Konagai, M. (1998). Characterization of ZnInxSey, thin films as a buffer layer for high efficiency Cu(InGa)Se2 thin-film solar cells. Japanese Journal of Applied Physics, 37(6), 3220–3225.

    Article  Google Scholar 

  90. https://www.zsw-bw.de/en/newsroom/news/news-detail/news/detail/News/zsw-produces-world-record-solar-cell.html

  91. Hariskos, D., Menner, R., Jackson, P., Paetel, S., Witte, W., Wischmann, W., Powalla, M., Bürkert, L., Kolb, T., Oertel, M., Dimmler, B., & Fuchs, B. (2012). New reaction kinetics for a high-rate chemical bath deposition of the Zn(S, O) buffer layer for Cu(In, Ga)se2-based solar cells. Progress in Photovoltaics: Research and Applications, 20, 534–542.

    Article  Google Scholar 

  92. Klenk, R., Steigert, A., Rissom, T., Greiner, D., Kaufmann, C.A., Unold, T., & Lux-Steiner, M.C.: Junction formation by Zn(O, S) sputtering yields CIGSe-based cells with efficiencies exceeding 18%. Progress in Photovoltaics. Research and Applications (2013).

    Google Scholar 

  93. Lindahl, J., Keller, J., Donzel-Gargand, O., Szaniawski, P., Edoff, & Törndahl, T. (2016). Deposition temperature induced conduction band changes in zinc tin oxide buffer layers for Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 144, 684–690.

    Google Scholar 

  94. Koprek, A., et al. (2017). Cd and impurity redistribution at the CdS/CIGS interface after annealing of CIGS-based solar cells resolved by atom probe tomography. IEEE Journal of Photovoltaics, 7, 313–321.

    Article  Google Scholar 

  95. Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., & Sugimoto, H. (2019). Cd-free Cu(in, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics, 9, 1863–1867.

    Article  Google Scholar 

  96. Pan, J. et al. (2009). Proceedings of the 34th IEEE photovoltaic specialists conference (Vol. 34, pp. 345–349).

    Google Scholar 

  97. Aviles, T., et al. (2011). Recent developments in amorphous sputterred ITO thin films acting as transparent front contact layer of CIGS solar cells for energy autonomous wireless microsystems. In 2011 37th IEEE Photovoltaic Specialists Conference (001235–001237).

    Google Scholar 

  98. Kawakita, S., et al. (2003). Super radiation tolerance of CIGS solar cells demonstrated in space by MDS-1 satellite. In 3rd World Conference on Photovoltaic Energy Conversion (Vol. 1, pp. 693–696).

    Google Scholar 

  99. Başol, B. M., Kapur, V. K., Halani, A., & Leidholm, C. (1993). Copper indium diselenide thin film solar cells fabricated on flexible foil substrates. Solar Energy Materials and Solar Cells, 29, 163–173.

    Article  Google Scholar 

  100. Başol, B. M., Kapur, V. K., Leidholm, C. R., Halani, A., & Gledhill, K. (1996). Flexible and light weight copper indium diselenide solar cells on polyimide substrates. Solar Energy Materials and Solar Cells, 43, 93–98.

    Article  Google Scholar 

  101. Niki, S., Contreras, M., Repins, I., Powalla, M., Kushiya, K., Ishizuka, S., & Matsubara, K. (2010). CIGS absorbers and processes. Progress in Photovoltaics: Research and Applications, 18, 453–466.

    Article  Google Scholar 

  102. Reinhard, P., Chirilă, A., Blösch, P., Pianezzi, F., Nishiwaki, S., Buechelers, S., & Tiwari, A. N. (2012). Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. In 2012 IEEE 38th photovoltaic specialists conference (PVSC) (Part 2, pp. 1–9).

    Google Scholar 

  103. Pianezzi, F., Chirilă, A., Blösch, P., et al. (2012). Electronic properties of Cu (In, Ga)Se2 solar cells on stainless steel foils without diffusion barrier. Progress in Photovoltaics: Research and Applications, 20, 253–259.

    Article  Google Scholar 

  104. Chirilă, A., et al. (2013). Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nature Materials, 12, 1107–1111.

    Article  Google Scholar 

  105. https://newatlas.com/energy/efficiency-record-flexible-cigs-solar-cells-empa/

  106. Romain, C., et al. (2019). Advanced alkali treatments for high-efficiency Cu(In,Ga)Se2 solar cells on flexible substrates. Advanced Energy Materials, 9, 1900408.

    Google Scholar 

  107. https://newatlas.com/energy/efficiency-record-flexible-cigs-solar-cells-empa/. (Same as Z7)

  108. https://pv-magazine.com/2019/07/23/miasole-hits-20-56-efficiency-with-flexible-cigs-technology. Accessed May 28, 2020.

  109. Kim, M., Kim, K.-B., Jeon, C.-W., Lee, D., Lee, S.-N., Lee, J.-M., & Lee, H.-C. (2015). CIGS solar cell devices on steel substrates coated with Na containing AlPO4. Journal of Physics and Chemistry of Solids, 86, 223–228.

    Google Scholar 

  110. Kim, K.-B., Kim, M., Lee, H. C., Park, S.-W., & Jeon, C. W. (2017). Copper indium gallium selenide (CIGS) solar cell devices on steel substrates coated with thick SiO2-based insulating material. Materials Research Bulletin, 85, 168–175.

    Google Scholar 

  111. Wang, W., Zhang, C., Hu, B., Su, W., Xu, S., Ma, M., Feng, Y., Li, W., Chen, M., Yang, C., & Li, W. (2021). Influence of alkali element post-deposition treatment on the performance of the CIGS solar cells on flexible stainless steel substrates. Materials Letters, 302, 130410.

    Google Scholar 

  112. Misra, P., Atchuta, S.R., Mandati, S., Sarada, B.V., Rao, T.N., & Sakthivel, S.: A non-vacuum dip coated SiO2 interface layer for fabricating CIGS solar cells on stainless steel foil substrates. Solar Energy, 214, 471–477.

    Google Scholar 

  113. Shen, X., Yang, M., Zhang, C., Qiao, Z., Wang, H., & Tang, C. (2018). Utilizing magnetron sputtered AZO-ITO bilayer structure as transparent conducting oxide for improving the performance of flexible CIGS solar cell. Superlattices and Microstructures, 123, 251–256.

    Google Scholar 

  114. Kim, K., Kim, J., Gang, M. G., Kim, S.-E., Song, S., Cho, Y., Shin, D., Eo, Y-J., Jeong, I., Ahn, S. K., Cho, A., Kim, J., Yoon, S., Choi, P.-P., Jo, W., Kim, J. H., Gwak, J., & Yun, J. H. (2019). A simple and robust route toward flexible CIGS photovoltaic devices on polymer substrates: Atomic level microstructural analysis and local optoelectronic investigation. Solar Energy Materials and Solar Cells, 195, 280–290.

    Google Scholar 

  115. Sima, J.-K., Kang, S., Nandi, R., Jo, J.-Y., Jeong, K.-W., & Lee, C.-R. (2018). Implementation of graphene as hole transport electrode in flexible CIGS solar cells fabricated on Cu foil. Solar Energy, 162, 357–363.

    Article  Google Scholar 

  116. Gerthoffer, A., Roux, F., Emieux, F., Faucherand, F., Fournier, H., Grenet, L., & Perraud, S. (2015). CIGS solar cells on flexible ultra-thin glass substrates: Characterization and bending test. Thin Solid Films, 592, 99–104.

    Article  Google Scholar 

  117. Wiedeman, S., Beck, M. E., Butcher, R., Repins, I., Gomez, N., Joshi, B., Wendt, R. G., & Britt, J. S. (2002) CIGS module development on flexible substrates. In Proceedings of 29th IEEE photovoltaic specialists conference (Vol. 29, pp. 575–578).

    Google Scholar 

  118. Hashimoto, Y., Satoh, T., Shimakawa, S., Negami, T. (2003) High efficiency CIGS solar cell on flexible stainless steel. In Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (Vol. 3, pp. 574–577).

    Google Scholar 

  119. Kaufmann, C. A., Neisser, A., Klenk, R., & Scheer, R. (2005). Transfer of Cu(In, Ga)Se2 thin film solar cells to flexible substrates using an in situ process control. Thin Solid Films, 480(481), 515–519.

    Article  Google Scholar 

  120. Bremaud, D., Rudmann, D., Kaelin, M., Ernits, K., Bilger, G., DÖbeli, M., Zogg, H., & Tiwari, A. N. (2007). Flexible Cu(In,Ga)Se2 on Al foils and the effects of Al during chemical bath deposition. Thin Solid Films, 515, 5857–5861.

    Google Scholar 

  121. Hanket, G. M., Singh, U. P., Eser, E., Shafarman, W. N., Birkmire, R. W. (2002). Pilot-scale manufacture of Cu(lnGa)Se2 films on a flexible polymer substrate. In Proceedings of 29th IEEE Photovoltaic Specialists Conference (Vol. 29, pp. 567–570).

    Google Scholar 

  122. Kapur, V. K., Bansal, A., Le, P., Asensio, O., & Shigeoka, N. (2003). Non-vacuum processing of CIGS solar cells on flexible polymeric substrates. In Proceedings of 3rd World conference on photovoltaic energy conversion (Vol. 3, pp. 465–468).

    Google Scholar 

  123. Wuerz, R., Eicke, A., Frankenfeld, M., Kessler, F., Powalla, M., Rogin, P., & Yazdani-Assl, O. (2009). CIGS thin-film solar cells on steel substrates. Thin Solid Films, 517, 2415–2418.

    Article  Google Scholar 

  124. Rechid, J., Thyen, R., Raitzig, A., Wulff, S., Mihhailova, M., Kalberlah, K., & Kampmann, A. (2003). 9% Efficiency: CIGS on Cu substrate. In: Proceedings of 3rd World conference on photovoltaic energy conversion (Vol. 3, pp. 559–561).

    Google Scholar 

  125. Brown, G., Stone, P., Woodruff, J., Cardozo, B., & Jackrel, D. (2012) Device characteristics of a 17.1% efficient solar cell deposited by a non-vacuum printing method on flexible foil. In IEEE 38th Photovoltaic specialists conference (PVSC) (pp. 003230–003233). IEEE.

    Google Scholar 

  126. Herz, K., Kessler, F., Weachter, R., Powalla, M., Schneider, J., Schulz, A., & Schumacher, U. (2002). Dielectric barriers for flexible CIGS solar modules. Thin Solid Films, 403–404, 384–389.

    Article  Google Scholar 

  127. Kenichi, M., et al. (2013). Monolithically integrated flexible Cu(In, Ga)Se2 solar cells and submodules using newly developed structure metal foil substrate with a dielectric layer. Solar Energy Materials and Solar Cells, 112, 106–111.

    Article  Google Scholar 

  128. Eisenbarth, T., et al. (2012). Influence of iron on defect concentrations and device performance for Cu(In, Ga)Se2 solar cells on stainless steel substrates. Progress in Photovoltaics: Research and Applications, 20, 568–574.

    Article  Google Scholar 

  129. Batchelor, W. K., et al. (2002). Substrate and back contact effects in CIGS devices on steel foil. Proceedings of 29th IEEE PVSEC (Vol. 29, pp. 716–719).

    Google Scholar 

  130. Abou-Ras, D., et al. (2017). Innovation highway: Breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint. Thin Solid Films, 63, 2–12.

    Article  Google Scholar 

  131. Chae, S. Y., Park, S. J., Joo, O.-S., Jun, Y., Min, B. K., & Hwang, Y. J. (2016). Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells. Science and Reports, 6, 30868.

    Article  Google Scholar 

  132. Elbar, M., Tobbeche, S., & Merazga, A. (2015). Effect of top-cell CGS thickness on the performance of CGS/CIGS tandem solar cell. Solar Energy, 122, 104–112.

    Article  Google Scholar 

  133. Blanker, J., Vroon, Z., Zeman, M., & Smets, A. (2016). Monolithic two-terminal hybrid a-Si: H/CIGS tandem cells. In IEEE 43rd photovoltaic specialists conference (PVSC) (pp. 0611–0614). Portland, OR, USA.

    Google Scholar 

  134. Guchhait, A., Dewi, H. A., Leow, S. W., Wang, H., Han, G., Suhaimi, F. B., Mhaisalkar, S., Wong, L. H., & Mathews, N. (2017). Over 20% efficient CIGS–Perovskite Tandem solar cells. ACS Energy Letters, 2, 807–812.

    Article  Google Scholar 

  135. Diantoro, M., Suprayogi, T., Taufiq, A., Fuad, A., & Mufti, N. (2019). The effect of PANI fraction on photo anode based on TiO2-PANI/ITO DSSC with β-carotene as dye sensitizer on its structure, absorbance, and efficiency. Materials Today: Proceedings, 17, 1197–1209.

    Google Scholar 

  136. Maryam, S., Mufti, N., Fuad, A., Wisodo, H., Sunaryono (2019). The effect of photoanode TiO2/ZnO ratio in perovskite solar cell and its photosensitivity and solar cell performance. IOP Conference Series: Materials Science Engineering, 515, 012007

    Google Scholar 

  137. Werner, J. H., Mattheis, J., & Rau, U. (2005). Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In, Ga)Se2. Thin Solid Films, 480–481, 399–409.

    Article  Google Scholar 

  138. Mufti, N., et al. (2020). Review of CIGS based solar cells manufacturing by structural engineering. Solar Energy, 207, 1146–1157.

    Article  Google Scholar 

  139. Bailie, C. D., Christoforo, M. G., Mailoa, J. P., Bowring, A. R., Unger, E. L., Nguyen, W. H., Burschka, J., Pellet, N., Lee, J. Z., Gratzel, M., Noufi, R., Buonassisi, T., Salleo, A., & McGehee, M. D. (2015). Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environment Science, 8, 956–963.

    Article  Google Scholar 

  140. Blanker, J., Vroon, Z., Zeman, M., Smets, A. (2016) Monolithic two-terminal hybrid a-Si: H/CIGS tandem cells. In IEEE 43rd photovoltaic specialists conference (PVSC), Portland, OR, USA (pp. 0611–0614).

    Google Scholar 

  141. Chae, S. Y., Park, S. J., Joo, O.-S., Jun, Y., Min, B. K., & Hwang, Y. J. (2016). Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells. Scientific Reports, 6, 30868.

    Article  Google Scholar 

  142. Elbar, M., & Tobbeche, S. (2015). Numerical simulation of CGS/CIGS single and tandem thin-film solar cells using the Silvaco-Atlas software. Energy Procedia, 74, 1220–1227.

    Article  Google Scholar 

  143. Kaigawa, R., Funahashi, K., Fujie, R., Wada, T., Merdes, S., Caballero, R., & Klenk, R. (2010). Tandem solar cells with Cu(In, Ga)S2 top cells on ZnO coated substrates. Solar Energy Materials and Solar Cells, 94, 1880–1883.

    Article  Google Scholar 

  144. Lee, S., Kim, S., Kim, Y., Park, J., & Yi, J. (2018). Computational design of high efficiency a Si:H/CIGS monolithic tandem solar cell. Optik, 173, 132–138.

    Article  Google Scholar 

  145. Moon, S. H., Park, S. J., Kim, S. H., Lee, M. W., Han, J., Kim, J. Y., Kim, H., Hwang, Y. J., Lee, D.-K., & Min, B. K. (2015). Monolithic DSSC/CIGS tandem solar cell fabricated by a solution process. Science and Reports, 5, 8970.

    Article  Google Scholar 

  146. Nakada, T., Kijima, S., Kuromiya, Y., Arai, R., Ishii, Y., Kawamura, N., Ishizaki, H., & Yamada, N. (2006). Chalcopyrite thin-film tandem solar cells with 1.5 V open circuit-voltage. In 2006 IEEE 4th world conference on photovoltaic energy conference, Waikoloa, HI (pp. 400–403).

    Google Scholar 

  147. Nanayakkara, S. U., Horowitz, K., Kanevce, A., Woodhouse, M., & Basore, P. (2017). Evaluating the economic viability of CdTe/CIS and CIGS/CIS tandem photovoltaic modules: Economic viability of CdTe/CIS and CIGS/CIS tandem photovoltaic modules. Progress in Photovoltaics: Research and Applications, 25, 271–279.

    Article  Google Scholar 

  148. Schmid, M., Caballero, R., Klenk, R., Kr, J., Rissom, T., Topi, M., & Lux-Steiner, M. Ch. (2010). Experimental verification of optically optimized CuGaSe2 top cell for improving chalcopyrite tandems. PV Direct, 1, 10601.

    Google Scholar 

  149. Shen, H., Duong, T., Peng, J., Jacobs, D., Wu, N., Gong, J., Wu, Y., Karuturi, S.K., Fu, X., Weber, K., Xiao, X., White, T.P., & Catchpole, K. (2018) Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy Environment Science, 11, 394–406.

    Google Scholar 

  150. Todorov, T., Gunawan, O., & Guha, S. (2016). A road towards 25% efficiency and beyond: perovskite tandem solar cells. Molecular System Design & Engineering, 1, 370–376.

    Article  Google Scholar 

  151. Werner, J., Niesen, B., & Ballif, C. (2018). Perovskite/silicon tandem solar cells: Marriage of convenience or true love story? An overview. Advanced Material Interfaces, 5, 1700731.

    Article  Google Scholar 

  152. Xiao, Y. G., Li, Z. Q., Lestrade, M., Simon Li, Z. M. (2010). Modeling of CdZnTe and CIGS and tandem solar cells. In 2010 35th IEEE photovoltaic specialists conference, Honolulu, HI, USA (001990–001994).

    Google Scholar 

  153. Yamaguchi, M., Lee, K.-H., Araki, K., & Kojima, N. (2018). A review of recent progress in heterogeneous silicon tandem solar cells. Journal of Physics D: Applied Physics, 51, 133002.

    Article  Google Scholar 

  154. Fortes, M., Belfar, A., & Garcia-Loureiro, A. J. (2018). Efficiency increase of a-Si: H solar cells with optimized front and back contact textures. Optik, 158, 1131–1138.

    Article  Google Scholar 

  155. Yang, D., Yang, R., Wang, K., Wu, C., Zhu, X., Feng, J., Ren, X., Fang, G., Priya, S., & Liu, S. (2018). High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nature Communications, 9, 3239.

    Article  Google Scholar 

  156. Young, D. L., Keane, J., Duda, A., AbuShama, J. A. M., Perkins, C. L., Romero, M., & Noufi, R. (2003). Improved performance in ZnO/CdS/CuGaSe2 thin-film solar cells. Progress in Photovoltaics: Research and Applications, 11, 535–541.

    Article  Google Scholar 

  157. Omer, B. M., Khogali, A., & Pivrikas, A. (2011). AMPS-1D modeling of P3HT/PCBM bulk-heterojunction solar cell. In 2011 37th IEEE photovoltaic specialists conference (000734–000743).

    Google Scholar 

  158. Liu, Y., Sun, Y., & Rockett, A. (2012). A new simulation software wx-AMPS solar cell. Solar Energy Materials and Solar Cell, 98, 124–128.

    Article  Google Scholar 

  159. Mostefaoui, M., Mazari, H., Khelifi, S., Bouraiou, A., & Dabou, R. (2015). Simulation of high efficiency cigs solar cells with SCAPS-1D software. Energy Procedia, 74, 736–744.

    Article  Google Scholar 

  160. Dabbabi, S., Ben Nasr, T., & Kamoun-Turki, N. (2017). Parameters optimization of CIGS solar cell using 2D physical modeling. Results in Physics, 7, 4020–4024.

    Google Scholar 

  161. Bernal-Correa, R., Morales-Acevedo, A., Montes-Monsalve, J., & Pulzara-Mora, A. (2016). Design of the TCO (ZnO:Al) thickness for glass/TCO/CdS/CIGS/Mo solar cells. Journal of Physics D: Applied Physics, 49, 125601.

    Article  Google Scholar 

  162. Movla, H. (2014). Optimization of the CIGS based thin film solar cells: Numerical simulation and analysis. Optik, 125, 67–70.

    Article  Google Scholar 

  163. Dinakaran, S., Meher, S. R., & Swarnavalli, G. C. J. (2019). One-dimensional modeling for an investigation into parameter optimization, crossover and red-kink behavior of ZnMgO buffer layer Cd-free Cu(In,Ga)Se2 solar cell. Applied Physics A, 125, 399.

    Google Scholar 

  164. Sharbati, S., & Sites, J. R. (2014). Impact of the band offset for n-Zn(O, S)/p-Cu(In, Ga)Se2 solar cells. IEEE Journal of Photovoltaics, 4, 2.

    Article  Google Scholar 

  165. Asaduzzaman, Md., Billal Hosen, Md., Karamot Ali, Md., NewazBahar, A. (2017). Non-toxic buffer layers in flexible Cu(In,Ga)Se2 photovoltaic cell applications with optimized absorber thickness. Hindawi International Journal of Photoenergy, ID 4561208.

    Google Scholar 

  166. Saadat, M., Moradi, M., & Zahedifar, M. (2016). CIGS absorber layer with double grading Ga profile for highly efficient solar cells. Superlattices and Microstructures, 92, 303–307.

    Article  Google Scholar 

  167. Parisi, A., et al. (2015) Graded carrier concentration absorber profile for high efficiency CIGS solar cells. International Journal of Photoenergy, 410549.

    Google Scholar 

  168. Prasad, R., Pal, R., & Singh, U. P. (2022). Performance optimization of single graded CIGS absorber and buffer layers for high efficiency: A numerical approach. Superlattices and Microstructures, 161, 107094.

    Article  Google Scholar 

  169. Patel, A. K., Rao, P. K., Mishra, R., & Soni, S. K. (2021). Numerical study of a high performance thin film CIGS solar cell with a-Si and MoTe2 hole transport layer. Optik, 243, 167498.

    Article  Google Scholar 

  170. Priya, A., & Singh, S. N. (2021). Enhancement of efficiency and external quantum efficiency of CIGSSe solar cell by replacement and inserting buffer and Cu2O ER-HTL layer. Superlattices and Microstructures, 152, 106840.

    Article  Google Scholar 

  171. Zaabar, F. I., Yusoff, Y., Mohamed, H., Abdullah, S.F., Mahmood Zuhdi, A. W., Amin, N., Chelvanathan, P., Bahrudin, M. S., Rahman, K. S., & Samsudin, N. A., et al. (2021). A numerical investigation on the combined effects of MoSe2 interface layer and graded bandgap absorber in CIGS thin film solar cells. Coatings, 11, 930.

    Google Scholar 

  172. Boukortt, N. E. I., Patane, S., & Abdulraheem, M. Y. (2020). Numerical investigation of CIGS thin-film solar cells. Solar Energy, 204, 440–447.

    Article  Google Scholar 

  173. Nour, E. I., Boukortt, I., Adouane, M., & Al Hammadi, R. (2021). High-performance ultrathin Cu(In, Ga)Se2 solar cell optimized by silvaco tools. Solar Energy, 228, 282–289.

    Article  Google Scholar 

  174. Saadat, M., Amiri, O., & Rahdar, A. (2019). Optimization of (Zn, Sn)O buffer layer in Cu(In, Ga)Se2 based solar cells. Solar Energy, 189, 464–470.

    Article  Google Scholar 

  175. Royanian, S., Ziabari, A. A., & Yousefi, R. (2020). Efficiency enhancement of ultra-thin CIGS solar cells using bandgap grading and embedding Au plasmonic nanoparticles. Plasmonics, 15, 1173–1182.

    Article  Google Scholar 

  176. Boubakeur, M., Aissat, A., Ben Arbia, M., Maaref, H., & Vilcot, J. P. (2020). Enhancement of the efficiency of ultra-thin CIGS/Si structure for solar cell applications. Superlattices and Microstructures, 138, 106377.

    Google Scholar 

  177. Fridolin, T. N., Maurel, D. K. G., Ejuh, G. W., Benedicte, T. T., & Marie, N. J. (2019). Highlighting some layers properties in performances optimization of CIGSe based solar cells: case of Cu(In, Ga)Se–ZnS. Journal of King Saud University Science, 31(4), 1404–1413.

    Article  Google Scholar 

  178. Prasad, R., Das, A. K., & Singh, U. P. (2021). Bilayer CIGS-based solar cell device for enhanced performance: a numerical approach. Applied Physics A, 127, 140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udai P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V., Prasad, R., Chaure, N.B., Singh, U.P. (2022). Advancement in Copper Indium Gallium Diselenide (CIGS)-Based Thin-Film Solar Cells. In: Singh, U.P., Chaure, N.B. (eds) Recent Advances in Thin Film Photovoltaics. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-3724-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3724-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3723-1

  • Online ISBN: 978-981-19-3724-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics