Skip to main content
Log in

Recent progress in CZTS (CuZnSn sulfide) thin-film solar cells: a review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the renewable energy sector, solar energy has emerged as a very abundant resource, which has its implementation from very large-scale industries to household uses. The market of solar cells has been monopolized by thick-film Silicon solar cells ever since its initial development. However, with recent advancements, thin film has become the preferred design for solar cells because of several upper hands it proved over the thick cells. CIGS (Copper Indium Gallium Diselenide) and CdS (Cadmium Selenide) have shown tremendous performances in the thin-film sector. But with toxicity and cost factors, these cells are never that feasible. So, CZTS (CuZnSn Sulfide) which has come as a replacement for CIGS, has shown extraordinary photovoltaic nature with very high light absorption characteristics. Further, the constituents of CZTS are abundant in nature which reduces the cost involved. To enhance efficiency, numerous structural and material features have been experimentally modified. The single-junction CZTS solar cell, however, has yet to achieve an efficiency of more than 13%, despite numerous attempts. This article presents a thorough analysis of the advancements made and potential applications for the CZTS thin-film solar cell (TFSC). This manuscript outlines the development of the TFSC, the fabrication process, the design of the TFSC, the defects in the CZTS, and the potential use of the TFSC as a solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. R.F. Service, Is it time to shoot for the sun? Science 309(5734), 548–551 (2005). https://doi.org/10.1126/science.309.5734.548

    Article  CAS  PubMed  Google Scholar 

  2. M. Berruet, Y. Di Iorio, C.J. Pereyra, R.E. Marotti, M. Vázquez, Highly-efficient superstrate Cu2 ZnSnS4 solar cell fabricated low-cost methods. Phys. Status Solidi - Rapid Res. Lett. 11(8), 1700144 (2017). https://doi.org/10.1002/pssr.201700144

    Article  CAS  ADS  Google Scholar 

  3. C.J. Brabec, Organic photovoltaics: technology and market. Sol. Energy Mater. Sol. Cells 83(2–3), 273–292 (2004). https://doi.org/10.1016/j.solmat.2004.02.030

    Article  CAS  Google Scholar 

  4. M.S. Chowdhury et al., An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strateg. Rev. 27, 100431 (2020). https://doi.org/10.1016/j.esr.2019.100431

    Article  Google Scholar 

  5. World Energy Council, “Energy Resources: Solar,” World Energy Counc. 2013 World Energy Resour. Sol., pp. 1–28, 2013, [Online]. Available: http://www.worldenergy.org/wp-content/uploads/2013/10/WER_2013_8_Solar_revised.pdf.

  6. T. Zhang, M. Wang, H. Yang, A review of the energy performance and life-cycle assessment of building-integrated photovoltaic (BIPV) systems. Energies (2018). https://doi.org/10.3390/en11113157

    Article  Google Scholar 

  7. E. Mirabi, F. Akrami Abarghuie, R. Arazi, Corrigendum to: Integration of buildings with third-generation photovoltaic solar cells: a review. Clean Energy 5(4), 741–741 (2021). https://doi.org/10.1093/ce/zkab051

    Article  Google Scholar 

  8. F. R. T. F. S. A. Stephen Joseph, “soalr cell.” 2022, [Online]. Available: https://www.britannica.com/technology/solar-cell.

  9. M.A. Green, Thin-film solar cells: review of materials, technologies and commercial status. J. Mater. Sci. Mater. Electron. 18(SUPPL. 1), 15–19 (2007). https://doi.org/10.1007/s10854-007-9177-9

    Article  CAS  Google Scholar 

  10. E.T. Efaz et al., A review of primary technologies of thin-film solar cells. Eng. Res. Express (2021). https://doi.org/10.1088/2631-8695/ac2353

    Article  Google Scholar 

  11. M. Ravindiran, C. Praveenkumar, Status review and the future prospects of CZTS based solar cell – A novel approach on the device structure and material modeling for CZTS based photovoltaic device. Renew. Sustain. Energy Rev. 94, 317–329 (2018). https://doi.org/10.1016/j.rser.2018.06.008

    Article  CAS  Google Scholar 

  12. M. N. Tousif, M. N. R. Ushan, A. Al Joha, and S. Mohammad, “A comprehensive study of CZTS solar cell simulation with ZnSe buffer layer,” 5th IEEE Reg. 10 Humanit. Technol. Conf. 2017, R10-HTC 2017, vol. 2018-Janua, pp. 193–197, 2018, doi: https://doi.org/10.1109/R10-HTC.2017.8288936.

  13. B. Abd El Halim, A. Mahfoud, D. Mohammed Elamine, Numerical analysis of potential buffer layer for Cu2ZnSnS4 (CZTS) solar cells. Optik (Stuttg) (2020). https://doi.org/10.1016/j.ijleo.2019.164155

    Article  Google Scholar 

  14. J. Zhou and C. Li, “Research on Copper Indium Gallium Selenide (CIGS) Thin-Film Solar Cells,” E3S Web Conf., 2021, doi: https://doi.org/10.1051/e3sconf/202126702031.

  15. M. Boubakeur, A. Aissat, M. Benarbia, H. Maaref, J.P. Vilcot, Enhancement of the efficiency of ultra-thin CIGS/Si structure for solar cell applications. Superlattices Microstruct. 138(2019), 106377 (2020). https://doi.org/10.1016/j.spmi.2019.106377

    Article  CAS  Google Scholar 

  16. K. Ramanathan, J. Keane, and R. Noufi, “Properties of high-efficiency CIGS thin-film solar cells,” Conf. Rec. IEEE Photovolt. Spec. Conf., no. pp. 195–198, 2005, doi: https://doi.org/10.1109/pvsc.2005.1488103.

  17. M.T. Winkler, W. Wang, O. Gunawan, H.J. Hovel, T.K. Todorov, D.B. Mitzi, Optical designs that improve the efficiency of Cu 2 ZnSn(S, Se) 4 solar cells. Energy Environ. Sci. 7(3), 1029–1036 (2014). https://doi.org/10.1039/C3EE42541J

    Article  Google Scholar 

  18. M.H. Jao, H.C. Liao, M.C. Wu, W.F. Su, Synthesis and characterization of wurtzite Cu 2 ZnSnS 4 nanocrystals. Jpn. J. Appl. Phys. (2012). https://doi.org/10.7567/jjap.51.10nc30

    Article  Google Scholar 

  19. Q. Guo, H.W. Hillhouse, R. Agrawal, Synthesis of Cu 2 ZnSnS 4 nanocrystals ink and its use for solar cells. J. Am. chem. Soc. 131, s1–s2 (2009)

    Article  Google Scholar 

  20. E. Indubala, V. Sudha, S. Sarveshvaran, S. Harinipriya, A.Y. Mamajiwala, Unusual composition of CZTS: elemental sulfurization and solution method. Mater. Today Proc. 8, 393–401 (2019). https://doi.org/10.1016/j.matpr.2019.02.128

    Article  CAS  Google Scholar 

  21. J. A. Okwako, “Optical and electrical characterization of cu2znsns4 deposited by Silar technique.,” 2018.

  22. A. Benami, Effect of CZTS parameters on photovoltaic solar cell from numerical simulation. J. Energy Power Eng. 13(1), 32–36 (2019). https://doi.org/10.17265/1934-8975/2019.01.003

    Article  CAS  Google Scholar 

  23. X. Song, X. Ji, M. Li, W. Lin, X. Luo, H. Zhang, A review on development prospect of CZTS based thin film solar cells. Int. J. Photoenergy 2014, 1–11 (2014). https://doi.org/10.1155/2014/613173

    Article  CAS  Google Scholar 

  24. S.H. Zyoud et al., Numerical modeling of high conversion efficiency FTO/ZnO/CdS/CZTS/MO thin film-based solar cells: using SCAPS-1D software. Crystals 11(12), 1468 (2021). https://doi.org/10.3390/cryst11121468

    Article  CAS  Google Scholar 

  25. N.A. Bakr, S.A. Salman, S.A. Hameed, Deposition and characterization of Cu 2 ZnSnS 4 thin films for solar cell applications. Int. J. Tech. Res. Appl. e-ISSN 2320-8163 13(6), 3379–3388 (2018)

    Google Scholar 

  26. S. Padhy, R. Mannu, U.P. Singh, Graded band gap structure of kesterite material using bilayer of CZTS and CZTSe for enhanced performance: a numerical approach. Sol. Energy 216(2020), 601–609 (2021). https://doi.org/10.1016/j.solener.2021.01.057

    Article  CAS  ADS  Google Scholar 

  27. N. Kattan, B. Hou, D.J. Fermín, D. Cherns, Crystal structure and defects visualization of Cu2ZnSnS4 nanoparticles employing transmission electron microscopy and electron diffraction. Appl. Mater. Today 1(1), 52–59 (2015). https://doi.org/10.1016/j.apmt.2015.08.004

    Article  Google Scholar 

  28. S. Jain, P. Chawla, S.N. Sharma, D. Singh, N. Vijayan, Efficient colloidal route to pure phase kesterite Cu 2 ZnSnS 4 (CZTS) nanocrystals with controlled shape and structure. Superlattices Microstruct. 119, 59–71 (2018). https://doi.org/10.1016/j.spmi.2018.04.003

    Article  CAS  ADS  Google Scholar 

  29. R. Article, S. Ikeda, Copper - based kesterite thin films for photoelectrochemical water splitting. High Temp. Mater. Proc.. (2021). https://doi.org/10.1515/htmp-2021-0050

    Article  Google Scholar 

  30. L. Palmisano, A.K. Singh, T.R. Rana, J. Kim, M. Shkir, T.C. Jen, Impact on structural and optical properties of CZTS thin films with solvents and Ge incorporation. Int. J. Photoenergy 2021, 1508469 (2021)

    Google Scholar 

  31. S.N. Hood et al., Status of materials and device modelling for kesterite solar cells. J. Phys. Energy 1(4), 042004 (2019). https://doi.org/10.1088/2515-7655/ab2dda

    Article  CAS  ADS  Google Scholar 

  32. J. Paier, R. Asahi, A. Nagoya, G. Kresse, Cu 2 ZnSnS 4 as a potential photovoltaic material: a hybrid Hartree-Fock density functional theory s. Phys. Rev. B 79(11), 115126 (2009). https://doi.org/10.1103/PhysRevB.79.115126

    Article  CAS  ADS  Google Scholar 

  33. A. Sharmin, M.S. Bashar, M. Sultana, S.M.M. Al Mamun, Sputtered single-phase kesterite Cu2ZnSnS4 (CZTS) thin film for photovoltaic applications: post annealing parameter optimization and property analysis. AIP Adv. (2020). https://doi.org/10.1063/1.5129202

    Article  Google Scholar 

  34. M. Kumar, C. Persson, Cu2ZnSnS4 and Cu2ZnSnSe4 as potential earth-abundant thin-film absorber materials: a density functional theory study. Int. J. Theor. Appl. Sci. 5(1), 1–8 (2013)

    Google Scholar 

  35. J. Just, C.M. Sutter-Fella, D. Lützenkirchen-Hecht, R. Frahm, S. Schorr, T. Unold, Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films. Phys. Chem. Chem. Phys. 18(23), 15988–15994 (2016). https://doi.org/10.1039/C6CP00178E

    Article  CAS  PubMed  Google Scholar 

  36. A. Aldalbahi, E.M. Mkawi, K. Ibrahim, M.A. Farrukh, Effect of sulfurization time on the properties of copper zinc tin sulfide thin films grown by electrochemical deposition. Sci. Rep. 6(1), 32431 (2016). https://doi.org/10.1038/srep32431

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. O. Cu et al., “Secondary Crystalline Phases Influence on Optical,” vol. 4, pp. 1–14, 2020.

  38. W. Bao, M. Ichimura, Influence of secondary phases in kesterite-Cu2 ZnSnS4 absorber material based on the first principles calculation. Int. J. Photoenergy (2015). https://doi.org/10.1155/2015/592079

    Article  Google Scholar 

  39. C. Platzer-Björkman, J.K. Larsen, N. Saini, M. Babucci, N. Martin, Ultrathin wide band gap kesterites. Faraday Discuss. (2022). https://doi.org/10.1039/D2FD00052K

    Article  PubMed  Google Scholar 

  40. C.J. Bosson, M.T. Birch, D.P. Halliday, C.C. Tang, A.K. Kleppe, P.D. Hatton, Polymorphism in Cu2 ZnSnS4 and new off-stoichiometric crystal structure types. Chem. Mater. 29(22), 9829–9839 (2017). https://doi.org/10.1021/acs.chemmater.7b04010

    Article  CAS  Google Scholar 

  41. J.K. Larsen, J.J.S. Scragg, N. Ross, C. Platzer-Björkman, Band tails and Cu–Zn disorder in Cu2ZnSnS4 solar cells. ACS Appl. Energy Mater. 3(8), 7520–7526 (2020). https://doi.org/10.1021/acsaem.0c00926

    Article  CAS  Google Scholar 

  42. Y. Zhang, K. Tse, X. Xiao, J. Zhu, Controlling defects and secondary phases of CZTS by surfactant potassium. Phys. Rev. Mater. 1(4), 045403 (2017). https://doi.org/10.1103/PhysRevMaterials.1.045403

    Article  Google Scholar 

  43. Q. Hou et al., The interplay of interstitial and substitutional copper in zinc oxide. Front. Chem. 9(December), 1–8 (2021). https://doi.org/10.3389/fchem.2021.780935

    Article  CAS  ADS  Google Scholar 

  44. D. Han et al., Deep electron traps and origin of p-type conductivity in the earth-abundant solar-cell material Cu2ZnSnS4. Phys. Rev. B 87(15), 155206 (2013). https://doi.org/10.1103/PhysRevB.87.155206

    Article  CAS  ADS  Google Scholar 

  45. A. Khare, “Synthesis and characterization of copper zinc tin sulfide nanoparticles and thin films,” p. 162, 2012.

  46. P. Bais et al., Influence of the copper deficiency and anionic composition on band-energy diagram of bulk kesterite CZTSSe. Mater. Res. Bull. 139, 111285 (2021). https://doi.org/10.1016/j.materresbull.2021.111285

    Article  CAS  Google Scholar 

  47. M.Z. Ansari, N. Khare, Effect of intrinsic strain on the optical band gap of single phase nanostructured Cu2ZnSnS4. Mater. Sci. Semicond. Process. 63(June), 220–226 (2017). https://doi.org/10.1016/j.mssp.2017.02.011

    Article  CAS  Google Scholar 

  48. S. Islam et al., Optical, structural and morphological properties of spin coated copper zinc tin sulfide thin films. Int. J. Thin Film. Sci. Technol. 4(3), 155 (2015). https://doi.org/10.12785/ijtfst/040301

    Article  Google Scholar 

  49. N.M. Shinde, R.J. Deokate, C.D. Lokhande, Properties of spray deposited Cu2ZnSnS4 (CZTS) thin films. J. Anal. Appl. Pyrolysis 100, 12–16 (2013). https://doi.org/10.1016/j.jaap.2012.10.018

    Article  CAS  Google Scholar 

  50. R.J. Deokate, R.S. Kate, S.C. Bulakhe, Physical and optical properties of sprayed Cu 2 ZnSnS 4 (CZTS) thin film: effect of Cu concentration. J. Mater. Sci. Mater. Electron. 30(4), 3530–3538 (2019). https://doi.org/10.1007/s10854-018-00630-0

    Article  CAS  Google Scholar 

  51. R.J. Deokate, H.S. Chavan, H. Im, A.I. Inamdar, Spray-deposited kesterite Cu2ZnSnS4 (CZTS): Optical, structural, and electrical investigations for solar cell applications. Ceram. Int. 48(1), 795–802 (2022). https://doi.org/10.1016/j.ceramint.2021.09.160

    Article  CAS  Google Scholar 

  52. P. Amrit, S. Jain, M. Tomar, V. Gupta, B. Joshi, Synthesis and characterization of sol gel derived nontoxic CZTS thin films without sulfurization. Int. J. Appl. Ceram. Technol. 17(3), 1194–1200 (2020). https://doi.org/10.1111/ijac.13451

    Article  CAS  Google Scholar 

  53. A.G. Kannan, T.E. Manjulavalli, J. Chandrasekaran, Influence of solvent on the properties of CZTS nanoparticles. Procedia Eng. 141, 15–22 (2016). https://doi.org/10.1016/j.proeng.2015.08.1112

    Article  CAS  Google Scholar 

  54. A.D. Adewoyin, M.A. Olopade, O.O. Oyebola, M.A. Chendo, Development of CZTGS/CZTS tandem thin film solar cell using SCAPS-1D. Optik (Stuttg) 176, 132–142 (2019). https://doi.org/10.1016/j.ijleo.2018.09.033

    Article  CAS  ADS  Google Scholar 

  55. M.S. Rana, M.M. Islam, M. Julkarnain, Enhancement in efficiency of CZTS solar cell by using CZTSe BSF layer. Sol. Energy 226(August), 272–287 (2021). https://doi.org/10.1016/j.solener.2021.08.035

    Article  CAS  ADS  Google Scholar 

  56. D.-H. Son et al., Effect of solid-H 2 S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device. J. Mater. Chem. A 7(44), 25279–25289 (2019). https://doi.org/10.1039/C9TA08310C

    Article  CAS  Google Scholar 

  57. U. Saha, A. Biswas, M.K. Alam, Efficiency enhancement of CZTSe solar cell using CdS(n)/(AgxCu1–x)2ZnSnSe4 (p) /Cu2ZnSnSe4 (p+) structure. Sol. Energy 221(May), 314–322 (2021). https://doi.org/10.1016/j.solener.2021.04.043

    Article  CAS  ADS  Google Scholar 

  58. M.P. Suryawanshi et al., CZTS based thin film solar cells: a status review. Mater. Technol. 28(1–2), 98–109 (2013). https://doi.org/10.1179/1753555712Y.0000000038

    Article  CAS  ADS  Google Scholar 

  59. and S. X. W. Y. L. Zhou, W. H. Zhou, Y. F. Du, M. Li, “phere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method,” Mater. Lett., vol. 65, pp. 1535–1537, 2011.

  60. A.V. Moholkar et al., Development of CZTS thin films solar cells by pulsed laser deposition: influence of pulse repetition rate. Sol. Energy 85(7), 1354–1363 (2011). https://doi.org/10.1016/j.solener.2011.03.017

    Article  CAS  ADS  Google Scholar 

  61. S. Dongaonkar, M.A. Alam, Geometrical design of thin film PV modules for improved shade tolerance and performance. Dis. Model. Mech. 5(2), 259–269 (2013). https://doi.org/10.1242/dmm.008110

    Article  CAS  Google Scholar 

  62. H.U.K. Sekiguchi, K. Tanaka, K. Moriya, Epitaxial growth of Cu2ZnSnS4 thin films by pulsed laser deposition. Phys. Status Solidi C 3(8), 2618–2621 (2006). https://doi.org/10.1002/pssc.200669603

    Article  CAS  ADS  Google Scholar 

  63. R. Adhi Wibowo, E. Soo Lee, B. Munir, K. Ho Kim, Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films. Phys. Status Solidi Appl. Mater. Sci. 204(10), 3373–3379 (2007). https://doi.org/10.1002/pssa.200723144

    Article  CAS  ADS  Google Scholar 

  64. S. Chen, A. Walsh, Y. Luo, J.-H. Yang, X.G. Gong, S.-H. Wei, Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. Phys. Rev. B 82(19), 195203 (2010). https://doi.org/10.1103/PhysRevB.82.195203

    Article  CAS  ADS  Google Scholar 

  65. N. Momose et al., Cu2ZnSnS4 thin film solar cells utilizing sulfurization of metallic precursor prepared by simultaneous sputtering of metal targets. Jpn. J. Appl. Phys. (2011). https://doi.org/10.1143/JJAP.50.01BG09

    Article  Google Scholar 

  66. H. Katagiri et al., Enhanced conversion efficiencies of Cu2ZnSnS4 -Based thin film solar cells by using preferential etching technique. Appl. Phys. Express 1(4), 041201 (2008). https://doi.org/10.1143/APEX.1.041201

    Article  CAS  ADS  Google Scholar 

  67. K. Jimbo et al., Cu2ZnSnS4-type thin film solar cells using abundant materials. Thin Solid Films 515(15), 5997–5999 (2007). https://doi.org/10.1016/j.tsf.2006.12.103

    Article  CAS  ADS  Google Scholar 

  68. D. Lincot et al., Chalcopyrite thin film solar cells by electrodeposition. Sol. Energy 77(6), 725–737 (2004). https://doi.org/10.1016/j.solener.2004.05.024

    Article  CAS  ADS  Google Scholar 

  69. D. Cunningham, M. Rubcich, D. Skinner, Cadmium telluride PV module manufacturing at BP solar. Prog. Photovoltaics Res. Appl. 10(2), 159–168 (2002). https://doi.org/10.1002/pip.417

    Article  CAS  Google Scholar 

  70. D. Lincot, Electrodeposition of semiconductors. Thin Solid Films 487(1–2), 40–48 (2005). https://doi.org/10.1016/j.tsf.2005.01.032

    Article  CAS  ADS  Google Scholar 

  71. T. Washio et al., 6% Efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD. J. Mater. Chem. 22(9), 4021 (2012). https://doi.org/10.1039/c2jm16454j

    Article  CAS  Google Scholar 

  72. J.J. Scragg, P.J. Dale, L.M. Peter, Towards sustainable materials for solar energy conversion: preparation and photoelectrochemical characterization of Cu2ZnSnS4. Electrochem. commun. 10(4), 639–642 (2008). https://doi.org/10.1016/j.elecom.2008.02.008

    Article  CAS  Google Scholar 

  73. J.J. Scragg, P.J. Dale, L.M. Peter, Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route. Thin Solid Films 517(7), 2481–2484 (2009). https://doi.org/10.1016/j.tsf.2008.11.022

    Article  CAS  ADS  Google Scholar 

  74. J.J. Scragg, D.M. Berg, P.J. Dale, A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers. J. Electroanal. Chem. 646(1–2), 52–59 (2010). https://doi.org/10.1016/j.jelechem.2010.01.008

    Article  CAS  Google Scholar 

  75. R. Schurr et al., The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu–Zn–Sn precursors. Thin Solid Films 517(7), 2465–2468 (2009). https://doi.org/10.1016/j.tsf.2008.11.019

    Article  CAS  ADS  Google Scholar 

  76. Q. Guo, H.W. Hillhouse, R. Agrawal, Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J. Am. Chem. Soc. 131(33), 11672–11673 (2009). https://doi.org/10.1021/ja904981r

    Article  CAS  PubMed  Google Scholar 

  77. K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki, Cu2ZnSnS4Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Sol. Energy Mater. Sol. Cells 93(5), 583–587 (2009). https://doi.org/10.1016/j.solmat.2008.12.009

    Article  CAS  Google Scholar 

  78. K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Sol. Energy Mater. Sol. Cells 95(3), 838–842 (2011). https://doi.org/10.1016/j.solmat.2010.10.031

    Article  CAS  Google Scholar 

  79. T.K. Todorov, K.B. Reuter, D.B. Mitzi, High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater. (2010). https://doi.org/10.1002/adma.200904155

    Article  PubMed  Google Scholar 

  80. T. Todorov, O. Gunawan, S.J. Chey, T.G. de Monsabert, A. Prabhakar, D.B. Mitzi, Progress towards marketable earth-abundant chalcogenide solar cells. Thin Solid Films 519(21), 7378–7381 (2011). https://doi.org/10.1016/j.tsf.2010.12.225

    Article  CAS  ADS  Google Scholar 

  81. D. B. Mitzi et al., “Torwards marketable efficiency solution-processed kesterite and chalcopyrite photovoltaic devices,” in 2010 35th IEEE Photovoltaic Specialists Conference, Jun. 2010, pp. 000640–000645, doi: https://doi.org/10.1109/PVSC.2010.5616865.

  82. S. Engberg, Z. Li, J.Y. Lek, Y.M. Lam, J. Schou, Synthesis of large CZTSe nanoparticles through a two-step hot-injection method. RSC Adv. 5(117), 96593–96600 (2015). https://doi.org/10.1039/c5ra21153k

    Article  CAS  ADS  Google Scholar 

  83. A.S. Najm et al., Towards a promising systematic approach to the synthesis of CZTS solar cells. Sci. Rep. 13(1), 1–16 (2023). https://doi.org/10.1038/s41598-023-42641-w

    Article  MathSciNet  CAS  Google Scholar 

  84. E.M. Mkawi, Y. Al-Hadeethi, E. Shalaan, E. Bekyarova, Substrate temperature effect during the deposition of (Cu/Sn/Cu/Zn) stacked precursor CZTS thin film deposited by electron-beam evaporation. J. Mater. Sci. Mater. Electron. 29(23), 20476–20484 (2018). https://doi.org/10.1007/s10854-018-0182-y

    Article  CAS  Google Scholar 

  85. S.A. Vanalakar et al., A review on pulsed laser deposited CZTS thin films for solar cell applications. J. Alloys Compd. 619(2020), 109–121 (2015). https://doi.org/10.1016/j.jallcom.2014.09.018

    Article  CAS  Google Scholar 

  86. S.M. Bhosale, M.P. Suryawanshi, M.A. Gaikwad, P.N. Bhosale, J.H. Kim, A.V. Moholkar, Influence of growth temperatures on the properties of photoactive CZTS thin films using a spray pyrolysis technique. Mater. Lett. 129, 153–155 (2014). https://doi.org/10.1016/j.matlet.2014.04.131

    Article  CAS  Google Scholar 

  87. X. Zhang, E. Fu, Y. Wang, C. Zhang, Fabrication of Cu2ZnSnS4 (CZTS) nanoparticle inks for growth of CZTS films for solar cells. Nanomaterials 9(3), 1–10 (2019). https://doi.org/10.3390/nano9030336

    Article  CAS  Google Scholar 

  88. M. Mokhtarimehr, I. Forbes, N. Pearsall, Environmental assessment of vacuum and non-vacuum techniques for the fabrication of Cu2ZnSnS4 thin film photovoltaic cells. Jpn. J. Appl. Phys. (2018). https://doi.org/10.7567/JJAP.57.08RC14

    Article  Google Scholar 

  89. M.A. Olgar, J. Klaer, R. Mainz, L. Ozyuzer, T. Unold, Cu2ZnSnS4-based thin films and solar cells by rapid thermal annealing processing. Thin Solid Films 628, 1–6 (2017). https://doi.org/10.1016/j.tsf.2017.03.008

    Article  CAS  ADS  Google Scholar 

  90. M.F. Islam, N. Mdyatim, M.A. HashimIsmail, A review of CZTS thin film solar cell technology. J. Adv. Res. Fluid Mech. Therm. Sci. 81(1), 73–87 (2021). https://doi.org/10.37934/arfmts.81.1.7387

    Article  Google Scholar 

  91. S. Das, P. Chandra Mahakul, P. Mahanandia, High efficient hybrid bulk hetero junction thin-film solar cell embedded with kesterite Cu2ZnSnS4 quantum dots. Superlattices Microstruct. 148, 106719 (2020). https://doi.org/10.1016/j.spmi.2020.106719

    Article  CAS  Google Scholar 

  92. P.K. Singh, S. Rai, D.K. Dwivedi, WITHDRAWN: numerical analysis on the improvement of open circuit voltage of kesterite based Cu2ZnSnS4 thin films solar cell. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.02.048

    Article  PubMed  PubMed Central  Google Scholar 

  93. M.S. Farhan, E. Zalnezhad, A.R. Bushroa, A.A.D. Sarhan, Electrical and optical properties of indium-tin oxide (ITO) films by ion-assisted deposition (IAD) at room temperature. Int. J. Precis. Eng. Manuf. 14(8), 1465–1469 (2013). https://doi.org/10.1007/s12541-013-0197-5

    Article  Google Scholar 

  94. A. Stadler, Transparent conducting oxides—An up-to-date overview. Materials (Basel) 5(12), 661–683 (2012). https://doi.org/10.3390/ma5040661

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  95. R. K. Vatakketath, “Investigation on the Transparent Conducting Oxide ( TCO ) material used in CIGS thin film solar cell in Midsummer AB,” no. October, 2020.

  96. Z. Yu et al., Indium tin oxide as a semiconductor material in efficient p-type dye-sensitized solar cells. NPG Asia Mater. 8(9), e305–e305 (2016). https://doi.org/10.1038/am.2016.89

    Article  CAS  Google Scholar 

  97. Materion, “TransparentConductiveOxideThinFilms.pdf,” Materion, 2016, [Online]. Available: https://fdocuments.in/document/transparent-conductive-oxide-thin-films-materion.html.

  98. A. Way et al., Fluorine doped tin oxide as an alternative of indium tin oxide for bottom electrode of semi-transparent organic photovoltaic devices. AIP Adv. 9(8), 085220 (2019). https://doi.org/10.1063/1.5104333

    Article  CAS  ADS  Google Scholar 

  99. H.-Y. Yang et al., “Electrical and Optical Performance of Silicon Solar Cells Using Plasmonics Indium Nanoparticles Layer Embedded in SiO2 Antireflective Coating,” in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Jun. 2017, pp. 2664–2666, doi: https://doi.org/10.1109/PVSC.2017.8366078.

  100. A. Rayerfrancis, P.B. Bhargav, N. Ahmed, S. Bhattacharya, B. Chandra, S. Dhara, Sputtered AZO thin films for TCO and back reflector applications in improving the efficiency of thin film a-Si: H solar cells. SILICON 9(1), 31–38 (2017). https://doi.org/10.1007/s12633-015-9350-3

    Article  CAS  Google Scholar 

  101. A. Sharmin, S. Tabassum, M.S. Bashar, Z.H. Mahmood, Depositions and characterization of sol–gel processed Al-doped ZnO (AZO) as transparent conducting oxide (TCO) for solar cell application. J. Theor. Appl. Phys. 13(2), 123–132 (2019). https://doi.org/10.1007/s40094-019-0329-0

    Article  ADS  Google Scholar 

  102. H.M. Mirletz, K.A. Peterson, I.T. Martin, R.H. French, Degradation of transparent conductive oxides: Interfacial engineering and mechanistic insights. Sol. Energy Mater. Sol. Cells 143, 529–538 (2015). https://doi.org/10.1016/j.solmat.2015.07.030

    Article  CAS  Google Scholar 

  103. A. Jahagirdar, A. Kadam, and N. Dhere, “Role of i-ZnO in Optimizing Open Circuit Voltage of CIGS2 and CIGS Thin Film Solar Cells,” in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, 2006, vol. 1, pp. 557–559, doi: https://doi.org/10.1109/WCPEC.2006.279516.

  104. R. Paul, T. R. Lenka, and F. A. Talukdar, “Performance Improvement of CZTSSe Solar Cell by using Mg-doped ZnO as Window Layer,” in 2021 IEEE 18th India Council International Conference (INDICON), Dec. 2021, pp. 1–5, doi: https://doi.org/10.1109/INDICON52576.2021.9691716.

  105. R. Paul, S. Vallisree, T.R. Lenka, F.A. Talukdar, Modeling and simulation of CZTS thin-film solar cell for efficiency enhancement. J. Electron. Mater. 51(5), 2228–2235 (2022). https://doi.org/10.1007/s11664-022-09449-2

    Article  CAS  ADS  Google Scholar 

  106. B.L. Williams, V. Zardetto, B. Kniknie, M.A. Verheijen, W.M.M. Kessels, M. Creatore, The competing roles of i-ZnO in Cu(In, Ga)Se2 solar cells. Sol. Energy Mater. Sol. Cells 157, 798–807 (2016). https://doi.org/10.1016/j.solmat.2016.07.049

    Article  CAS  Google Scholar 

  107. F.A. Jhuma, M.Z. Shaily, M.J. Rashid, Towards high-efficiency CZTS solar cell through buffer layer optimization. Mater. Renew. Sustain. Energy 8(1), 6 (2019). https://doi.org/10.1007/s40243-019-0144-1

    Article  Google Scholar 

  108. S. Yasin, Z.A. Waar, T. Alzoubi, Development of high efficiency CZTS solar cell through buffer layer parameters optimization using SCAPS-1D. Mater. Today Proc. 33, 1825–1829 (2020). https://doi.org/10.1016/j.matpr.2020.05.064

    Article  CAS  Google Scholar 

  109. M. Jamil, M. Amami, A. Ali, K. Mahmood, N. Amin, Numerical modeling of AZTS as buffer layer in CZTS solar cells with back surface field for the improvement of cell performance. Sol. Energy 231, 41–46 (2022). https://doi.org/10.1016/j.solener.2021.11.025

    Article  CAS  ADS  Google Scholar 

  110. C. Mebarkia, D. Dib, H. Zerfaoui, R. Belghit, The role of buffer layers and double windows layers in a solar cell CZTS performances. AIP Conf. Proc. 1758(1), 030034 (2016). https://doi.org/10.1063/1.4959430

    Article  Google Scholar 

  111. M.A. Ashraf, I. Alam, Numerical simulation of CIGS, CISSe and CZTS-based solar cells with In 2 S 3 as buffer layer and Au as back contact using SCAPS 1D. Eng. Res. Express 2(3), 035015 (2020). https://doi.org/10.1088/2631-8695/abade6

    Article  ADS  Google Scholar 

  112. S.H. Zyoud, A.H. Zyoud, N.M. Ahmed, A.F.I. Abdelkader, Numerical modelling analysis for carrier concentration level optimization of CdTe heterojunction thin film-based solar cell with different non-toxic metal chalcogenide buffer layers replacements: using SCAPS–1D software. Crystals 11(12), 1454 (2021). https://doi.org/10.3390/cryst11121454

    Article  CAS  Google Scholar 

  113. F.A. Jhuma, M.J. Rashid, Simulation study to find suitable dopants of CdS buffer layer for CZTS solar cell. J. Theor. Appl. Phys. 14(1), 75–84 (2020). https://doi.org/10.1007/s40094-019-00363-3

    Article  Google Scholar 

  114. K. Mukhopadhyay, P.F. Inbaraj, J.J. Prince, Thickness optimization of CdS/ZnO hybrid buffer layer in CZTSe thin film solar cells using SCAPS simulation program. Mater. Res. Innov. 23(6), 319–329 (2019). https://doi.org/10.1080/14328917.2018.1475907

    Article  CAS  Google Scholar 

  115. A.T. Abir, A. Joy, B.K. Mondal, J. Hossain, Numerical prediction on the photovoltaic performance of CZTS-based thin film solar cell. Nano Sel. 4(1), 112–122 (2023). https://doi.org/10.1002/nano.202200228

    Article  CAS  Google Scholar 

  116. A. Srivastava, P. Dua, T.R. Lenka, S.K. Tripathy, Numerical simulations on CZTS/CZTSe based solar cell with ZnSe as an alternative buffer layer using SCAPS-1D. Mater. Today Proc. 43, 3735–3739 (2020). https://doi.org/10.1016/j.matpr.2020.10.986

    Article  CAS  Google Scholar 

  117. B. Eghbalifar, H. Izadneshan, G. Solookinejad, L. Separdar, Investigating In2S3 as the buffer layer in CZTSSe solar cells using simulation and experimental approaches. Solid State Commun. 343, 114654 (2022)

    Article  CAS  Google Scholar 

  118. S. Mohammadnejad, Z.M. Bahnamiri, S.E. Maklavani, Enhancement of the performance of kesterite thin-film solar cells using dual absorber and ZnMgO buffer layers. Superlattices Microstruct. 144(0749–6036), 106587 (2020). https://doi.org/10.1016/j.spmi.2020.106587

    Article  CAS  Google Scholar 

  119. H. Zhang et al., Effect of Zn(O, S) buffer layer on Cu2ZnSnS4 solar cell performance from numerical simulation. J. Appl. Sci. Eng. 20(1), 39–46 (2017). https://doi.org/10.6180/jase.2017.20.1.05

    Article  Google Scholar 

  120. F. Haque et al., “Prospects of Zinc Sulphide as an alternative buffer layer for CZTS solar cells from numerical analysis,” in 8th International Conference on Electrical and Computer Engineering, Dec. 2014, no. January, pp. 504–507, doi: https://doi.org/10.1109/ICECE.2014.7026855.

  121. M.B. Hosen, M.K. Ali, M. Asaduzzaman, A. Kowsar, A.N. Bahar, Performance optimization of ZnS/CIGS solar cell with over 25% efficiency enabled by using a CuIn3Se5 OVC Layer. Int. J. Renew. Energy Res. 10, 2000–2005 (2020). https://doi.org/10.20508/ijrer.v10i4.11430.g8100

    Article  Google Scholar 

  122. S. Mazumder, K. Senthilkumar, Device study and optimisation of CZTS/ZnS based solar cell with CuI hole transport layer for different conduction band offset. Sol. Energy 237(March), 414–431 (2022). https://doi.org/10.1016/j.solener.2022.03.036

    Article  CAS  ADS  Google Scholar 

  123. P. Prabeesh, V.G. Sajeesh, I. Packia Selvam, M.S. Divya Bharati, G. Mohan Rao, S.N. Potty, CZTS solar cell with non-toxic buffer layer: a study on the sulphurization temperature and absorber layer thickness. Sol. Energy 207, 419–427 (2020). https://doi.org/10.1016/j.solener.2020.06.103

    Article  CAS  ADS  Google Scholar 

  124. N. Touafek, R. Mahamdi, C. Dridi, Impact of the secondary phase ZnS on CZTS performance solar cells. J. Technol. Innov. Renew. Energy 9, 6–9 (2019)

    Google Scholar 

  125. Z.W. Jiang, S.S. Gao, S.Y. Wang, D.X. Wang, P. Gao, Q. Sun, Z.Q. Zhou, W. Liu, Y. Sun, Y. Zhang, Insight into band alignment of Zn(O, S)/CZTSe solar cell by simulation. Chinese Phys. B 28, 048801–048804 (2019). https://doi.org/10.1088/1674-1056/28/4/048801

    Article  CAS  ADS  Google Scholar 

  126. J. Kim et al., Optimization of sputtered ZnS buffer for Cu2ZnSnS4 thin film solar cells. Thin Solid Films 566, 88–92 (2014). https://doi.org/10.1016/j.tsf.2014.07.024

    Article  CAS  ADS  Google Scholar 

  127. K.V. Gunavathy, V. Parthibaraj, C. Rangasami, K. Tamilarasan, Prospects of alternate buffer layers for CZTS based thin films solar cells from numerical analysis – A review. South Asian J. Eng. Technol. 2(16), 88–96 (2016)

    Google Scholar 

  128. K. Kotani, M. Miura, H. Shim, Y.G. Wakita, Composition-ratio control of CZTS films deposited by PLD. Phys. Status Sol. C (2017). https://doi.org/10.1002/pssc.201600212

    Article  Google Scholar 

  129. H. Yamazaki, M. Nakagawa, M. Jimbo, K. Shimamune, Y. Katagiri, Photoluminescence study of Cu2ZnSnS4 thin film solar cells. Phys. Status Sol. C (2017). https://doi.org/10.1002/pssc.201600202

    Article  Google Scholar 

  130. C. Yan, F. Liu, K. Sun, N. Song, J.A. Stride, F. Zhou, X. Hao, M. Green, Boosting the efficiency of pure sulfide CZTS solar cells using the In/Cd-based hybrid buffers. Sol. Energy Mater. Sol. Cells 144, 700–706 (2016)

    Article  CAS  Google Scholar 

  131. J. Platzer-Björkman, C. Frisk, C. Larsen, J.K. Ericson, T. Li, S.Y. Scragg, J.J.S. Keller, T. Larsson, F. Törndahl, Reduced interface recombination in Cu2ZnSnS4 solar cells with atomic layer deposition Zn1−x Snx Oy buffer layer. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4937998

    Article  Google Scholar 

  132. M. Neuschitzer, K. Lienau, M. Guc, L.C. Barrio, S. Haass, J.M. Prieto, Y. Sanchez, M. Espindola-Rodriguez, Y. Romanyuk, A. Perez-Rodriguez, V. Izquierdo-Roca, Towards high performance Cd-free CZTSe solar cells with a ZnS(O, OH) buffer layer: the influence of thiourea concentration on chemical bath deposition. J. Phys. D Appl. Phys. (2016). https://doi.org/10.1088/0022-3727/49/12/125602

    Article  Google Scholar 

  133. T. Ericson, F. Larsson, T. Törndahl, C. Frisk, J. Larsen, V. Kosyak, C. Hägglund, S. Li, C. Platzer-Björkman, Zinc tin oxide buffer layer and low temperature post annealing resulting in a 90% efficient Cd free Cu2ZnSnS4 solar cell. RRL Sol. 1, 1–8 (2017)

    Article  Google Scholar 

  134. K. Sun, F. Liu, C. Yan, F. Zhou, J. Huang, Y. Shen, R. Liu, X. Hao, Influence of sodium incorporation on kesterite Cu2ZnSnS4 solar cells fabricated on stainless steel substrates. Sol. Energy Mater. Sol. Cells 157, 565–571 (2016)

    Article  CAS  ADS  Google Scholar 

  135. J.J. Scragg, T. Kubart, J.T. Wätjen, T. Ericson, M.K. Linnarsson, C. Platzer-Björkman, Effects of back contact instability on Cu2ZnSnS4 devices and processes. Chem. Mater. 25(15), 3162–3171 (2013). https://doi.org/10.1021/cm4015223

    Article  CAS  Google Scholar 

  136. C. Platzer-Björkman et al., Back and front contacts in kesterite solar cells: State-of-the-art and open questions. JPhys Energy (2019). https://doi.org/10.1088/2515-7655/ab3708

    Article  Google Scholar 

  137. S. Zhang et al., Band alignment tuning at Mo/CZTS back contact interface through surface oxidation states control of Mo substrate. Sol. Energy Mater. Sol. Cells 229, 111141 (2021). https://doi.org/10.1016/j.solmat.2021.111141

    Article  CAS  Google Scholar 

  138. S. Mahjoubi, N. Bitri, E. Aubry, F. Chaabouni, P. Briois, Back contact nature effect on the CZTS/ZnS based heterojunction. Appl. Phys. A 128(5), 380 (2022). https://doi.org/10.1007/s00339-022-05509-w

    Article  CAS  ADS  Google Scholar 

  139. H. Toura, Y.H. Khattak, F. Baig, B.M. Soucase, M.E. Touhami, Back contact effect on electrodeposited CZTS kesterite thin films experimental and numerical investigation. Sol. Energy 194(July), 932–938 (2019). https://doi.org/10.1016/j.solener.2019.11.017

    Article  CAS  ADS  Google Scholar 

  140. A. Haddout, M. Fahoume, A. Raidou, M. Lharch, N. Elharfaoui, Effects of back contact on CZTS solar cell—A numerical simulation approach (Springer International Publishing, Chem, 2020), pp.90–96

    Google Scholar 

  141. T. P. Dhakal, S. Harvey, M. van Hest, and G. Teeter, “Back contact band offset study of Mo-CZTS based solar cell structure by using XPS/UPS techniques,” in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), Jun. 2015, pp. 1–4, doi: https://doi.org/10.1109/PVSC.2015.7355623.

  142. S. Enayati Maklavani, S. Mohammadnejad, Reduction of interface recombination current for higher performance of p+-CZTSxSe(1–x)/p-CZTS/n-CdS thin-film solar cells using Kesterite intermediate layers. Sol. Energy 204, 489–500 (2020). https://doi.org/10.1016/j.solener.2020.04.096

    Article  CAS  ADS  Google Scholar 

  143. B. Long, S. Cheng, C. Yue, L. Dong, Modification of back electrode structure by a Mo intermediate layer for flexible CZTS thin film solar cells. Micro Nano Lett. 13(2), 237–242 (2018). https://doi.org/10.1049/mnl.2017.0471

    Article  CAS  Google Scholar 

  144. X. Lu et al., Modification of back contact in Cu2ZnSnS4Solar cell by inserting Al-Doped ZnO intermediate layer. ACS Appl. Mater. Interfaces 12(52), 58060–58071 (2020). https://doi.org/10.1021/acsami.0c18799

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  145. T.J. Huang, X. Yin, G. Qi, H. Gong, CZTS-based materials and interfaces and their effects on the performance of thin film solar cells. Phys. Status Solidi - Rapid Res. Lett. 08(09), 735–762 (2014). https://doi.org/10.1002/pssr.201409219

    Article  CAS  ADS  Google Scholar 

  146. S. Enayati Maklavani, S. Mohammadnejad, Enhancing the open-circuit voltage and efficiency of CZTS thin-film solar cells via band-offset engineering. Opt. Quantum Electron. 52(2), 1–22 (2020). https://doi.org/10.1007/s11082-019-2180-6

    Article  CAS  Google Scholar 

  147. S. E. Maklavani and S. Mohammad Nejad, “The effect of band offsets of buffer layers on CZTS for improvement of thin film solar cell performance,” in 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), Feb. 2019, pp. 864–868, doi: https://doi.org/10.1109/KBEI.2019.8735023.

  148. M. Kauk-Kuusik et al., Detailed insight into the CZTS/CdS interface modification by air annealing in monograin layer solar cells. ACS Appl. Energy Mater. 4(11), 12374–12382 (2021). https://doi.org/10.1021/acsaem.1c02186

    Article  CAS  Google Scholar 

  149. H. Ferhati, F. Djeffal, Graded band-gap engineering for increased efficiency in CZTS solar cells. Opt. Mater. (Amst) 76, 393–399 (2018). https://doi.org/10.1016/j.optmat.2018.01.006

    Article  CAS  ADS  Google Scholar 

  150. M. Mirzaei, J. Hasanzadeh, A.A. Ziabari, Efficiency enhancement of CZTS solar cells using Al plasmonic nanoparticles: the effect of size and period of nanoparticles. J. Electron. Mater. 49(12), 7168–7178 (2020). https://doi.org/10.1007/s11664-020-08524-w

    Article  CAS  ADS  Google Scholar 

  151. O.A.M. Abdelraouf, M.I. Abdelrahaman, N.K. Allam, Plasmonic scattering nanostructures for efficient light trapping in flat CZTS solar cells. Metamaterials XI 10227, 1022712 (2017). https://doi.org/10.1117/12.2265249

    Article  Google Scholar 

  152. B. Bibi, B. Farhadi, W. Ur Rahman, A. Liu, A novel design of CTZS/Si tandem solar cell: a numerical approach. J. Comput. Electron. 20(5), 1769–1778 (2021). https://doi.org/10.1007/s10825-021-01733-4

    Article  CAS  Google Scholar 

  153. A. Kumar, Theoretical analysis of CZTS/CZTSSe tandem solar cell. Opt. Quantum Electron. 53(9), 1–8 (2021). https://doi.org/10.1007/s11082-021-03183-5

    Article  CAS  Google Scholar 

  154. M. A. Olopade, O. O. Oyebola, A. D. Adewoyin, and D. O. Emi-Johnson, “Modeling and simulation of CZTS/CTS tandem solar cell using wxAMPS software,” 2015 IEEE 42nd Photovolt. Spec. Conf. PVSC 2015, pp. 11–14, 2015, https://doi.org/10.1109/PVSC.2015.7355783

  155. M.A. Shafi et al., Novel compositional engineering for ~26% efficient CZTS-perovskite tandem solar cell. Optik (Stuttg) 253, 168568 (2022). https://doi.org/10.1016/j.ijleo.2022.168568

    Article  CAS  ADS  Google Scholar 

  156. T. Chen, S. Tao, J. Tao, H. Shen, Y. Zhu, L. Jiang, J. Zeng, X. Wang, Fabrication of low cost kesterite Cu2ZnSnS4 (CZTS) thin films as counter- electrode for dye sensitised solar cells (DSSCs). Mater. Technol. 30, 306–3012 (2015). https://doi.org/10.1179/1753555715Y.0000000007

    Article  CAS  ADS  Google Scholar 

  157. H. Wang, Y. Li, C. Yin, X. Wang, H. Gong, Cu2ZnSnS4 (CZTS) application in TiO2 solar cell as dye. Solid State Sci. Technol. (2013). https://doi.org/10.1149/2.005307jss

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge CSIR Project (Grant No. 22(0830)/19/EMR-II) of Govt. of India and SERB sponsored Mathematical Research Impact Centric Support (MATRICS) Project (Grant no. MTR/2021/000370) for support.

Funding

Funding was supported by CSIR Project (Grant No. 22(0830)/19/EMR-II) of Govt. of India and SERB sponsored Mathematical Research Impact Centric Support (MATRICS) Project (Grant no. MTR/2021/000370).

Author information

Authors and Affiliations

Authors

Contributions

The Authors contributions are as follows. All authors read and approved the final manuscript. RP: Conceptualization, Methodology, Software, Data curation, Writing—Original draft preparation. SS: Formal analysis, Data curation, Validation, Writing—Reviewing and Editing. TRL: Supervision, Visualization, Investigation, Writing- Reviewing and Editing. FAT: Supervision, Resources, Validation, Formal analysis, Project administration. VG: Resources, Project administration, Writing- Reviewing and Editing. NEIB: Validation, Formal analysis, Writing—Reviewing and Editing. PSM: Supervision, Formal analysis, Writing- Reviewing and Editing.

Corresponding author

Correspondence to Trupti Ranjan Lenka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors formally declare that the present paper is compiled with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, R., Shukla, S., Lenka, T.R. et al. Recent progress in CZTS (CuZnSn sulfide) thin-film solar cells: a review. J Mater Sci: Mater Electron 35, 226 (2024). https://doi.org/10.1007/s10854-024-11983-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11983-0

Navigation