Skip to main content

Fundamentals of Plasma and Its Diagnostics

  • Chapter
  • First Online:
High-Density Helicon Plasma Science

Part of the book series: Springer Series in Plasma Science and Technology ((SSPST))

Abstract

This chapter briefly reviews the fundamentals of plasma physics with diversified diagnostics, emphasizing essential subjects for beginners and researchers who are not so familiar with plasma. Further, it may be beneficial for those studying plasma in the past, regardless of their fields of specialty. Besides the main stories on RF studies presented in Chaps. 3 and 4, this chapter is helpful as a general textbook on fundamental plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.F. Chen, Introduction to Plasma Physics and Nuclear Fusion (Springer, Switzerland, 2016)

    Book  Google Scholar 

  2. https://en.wikipedia.org/wiki/Polytropic_process

  3. https://en.wikipedia.org/wiki/Adiabatic_process

  4. P.K. Shukla, B. Eliasson, Rev. Mod. Phys. 81, 25 (2009) (review paper), and references therein

    Google Scholar 

  5. H. Ikezi, Phys. Fluids 29, 1764 (1986)

    Article  ADS  Google Scholar 

  6. M.A. Lieberman, A.J. Lichtenberg, Principals of Plasma Discharges and Materials Processing (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  7. K. Miyamoto, Plasma Physics for Nuclear Fusion (The MIT Press, Cambridge, 1989); Fundamentals of Plasma Physics and Controlled Fusion (National Institute for Fusion Science, Toki, 2011) [NIFS-PROC-88. https://www.nifs.ac.jp/report/NIFS-PROC-88.pdf]

  8. D.V. Sivukhin, Reviews of Plasma Physics, ed. by Acad. M.A. Leontovich, vol. 4 (Consultant Bureau, New York, 1966)

    Google Scholar 

  9. W. Baumjohann, R.A. Trenmann, Basic Space Plasma Physics (Imperial College Press, London, 1996)

    Book  Google Scholar 

  10. D.G. Swanson, Plasma Waves (Institute of Physics Publishing, Bristol and Philadelphia, 2003)

    Google Scholar 

  11. https://en.wikipedia.org/wiki/Magnetic_reconnection

  12. Department of Earth System Science and Technology, Kyushu University, Fluid for Global Environment Studies (Springer Japan, Tokyo, 2017)

    Google Scholar 

  13. S.C. Brown, Basic Data of Plasma Physics (The MIT Press, Springer, Cambridge and London, 1959)

    Google Scholar 

  14. https://en.wikipedia.org/wiki/Ramsauer%E2%80%93Townsendeffect

  15. H.B. Milloy, R.W. Crompton, J.A. Rees, A.G. Robertson, Aust. J. Phys. 30, 61 (1977)

    Article  ADS  Google Scholar 

  16. E.W. McDaniel, J.B.A. Mitchell, M.E. Rudd, Atomic Collisions: Heavy Particle Projectiles (Wiley, New York, 1993)

    Google Scholar 

  17. A. Simon, Phys. Rev. 98, 317 (1955)

    Article  ADS  Google Scholar 

  18. A. Fruchtman, G. Makrinich, J. Ashkenazy, Plasma Sources Sci. Technol. 14, 152 (2005)

    Google Scholar 

  19. A. Fruchtman, Plasma Sources Sci. Technol. 18, 025033 (2009)

    Article  ADS  Google Scholar 

  20. B. Clarenbach, B. Lorenz, M. Krämer, N. Sadeghi, Plasma Sources Sci. Technol. 12, 345 (2003)

    Article  ADS  Google Scholar 

  21. http://fusionwiki.ciemat.es/wiki/Scaling_law

  22. M. Lieberman, IEEE Trans. Plasma Sci. 17, 338 (1989)

    Article  ADS  Google Scholar 

  23. T. Panagoupoulos, D. Economou, J. Appl. Phys. 85, 3435 (1999)

    Article  ADS  Google Scholar 

  24. E.A. Edellberg, E.S. Aydil, J. Appl. Phys. 86, 4799 (1999)

    Article  ADS  Google Scholar 

  25. N. Hershkowitz, IEEE Trans. Plasma Sci. 22, 11 (1994)

    Article  ADS  Google Scholar 

  26. S. Matsuyama, S. Shinohara, O. Kaneko, Trans. Fusion Technol. 39, 362 (2001)

    Article  ADS  Google Scholar 

  27. https://en.wikipedia.org/wiki/Sputtering

  28. H. Pécseli, Waves and Oscillations in Plasmas (CRC Press, Boca Raton, 2020)

    Book  Google Scholar 

  29. H. Nyquist, Bell Syst. Tech. J. 11, 126 (1932)

    Article  Google Scholar 

  30. T.H. Stix, Waves in Plasmas (American Institute of Physics, New York, 1992)

    Google Scholar 

  31. D.L. Jassby, Phys. Fluids 15, 1590 (1972). https://doi.org/10.1063/1.1694135

  32. K. Kamataki, Y. Nagashima, S. Shinohara, Y. Kawai, M. Yagi, K. Itoh, S.-I. Itoh, J. Phys. Soc. Jpn. 76, 054501 (2007)

    Article  ADS  Google Scholar 

  33. R.H. Huddlestone, S.L. Leonard (eds.), Plasma Diagnostic Techniques (Academic Press Inc., New York, 1965)

    Google Scholar 

  34. W. Lochte-Holtgreven, Plasma Diagnostics (AIP Press, New York, 1995)

    Google Scholar 

  35. I.H. Hutchinson, Principles of Plasma Diagnostics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  36. A.J.H. Donné, Trans. Fusion Sci. Technol. 49, 349 (2006)

    Article  ADS  Google Scholar 

  37. A.E. Costley, D.W. Johnson (eds.), Fusion Sci. Technol. 53, 281 (2008) (No. 2: Special Issue on Plasma Diagnostics for Magnetic Fusion Research)

    Google Scholar 

  38. The Japan Society of Plasma Science and Nuclear Fusion Research (ed.), Principles and Applications of Plasma Diagnostics (Corona Publishing Co., Ltd., Tokyo, 2006) (in Japanese)

    Google Scholar 

  39. M.J. Druyvesteyn, Z. Phys. 64, 781 (1930)

    Article  ADS  Google Scholar 

  40. A. Fruchtman, D. Zoler, G. Makrinich, Phys. Rev. E 84, 025402 (2011)

    Article  ADS  Google Scholar 

  41. S.St.J. Braithwaite, N.M.P. Benjamin, J.E. Allen, J. Phys. E Sci. Instrum. 20, 1046 (1987)

    Google Scholar 

  42. V.A. Godyak, R.B. Pjejak, B.M. Alexandrovich, Plasma Sources Sci. Technol. 1, 36 (1992)

    Article  ADS  Google Scholar 

  43. S.-L. Chen, T. Sekiguchi, J. Appl. Phys. 36, 2363 (1965)

    Article  ADS  Google Scholar 

  44. H. Ji, H. Toyama, K. Yamagishi, S. Shinohara, A. Fujisawa, K. Miyamoto, Rev. Sci. Instrum. 62, 2326 (1991)

    Article  ADS  Google Scholar 

  45. K.-S. Chung, Plasma Sources Sci. Technol. 21, 063001 (2012) (invited review paper), and references therein

    Google Scholar 

  46. M. Hudis, L.M. Lidsky, J. Appl. Phys. 41, 5011 (1970)

    Article  ADS  Google Scholar 

  47. J.P. Gunn, C. Boucher, P. Devynck, I. Ďuran, K. Dyabilin, J. Horaček, M. Hron, J. Stöckel, G. Van Oost, H. Van Goubergen, F. Žáček, Phys. Plasmas 8, 1995 (2001)

    Google Scholar 

  48. I. Katsumata, Contrib. Plasma Phys. 36, 73 (1996)

    Article  ADS  Google Scholar 

  49. H. Takayama, H. Ikegami, S. Miyazaki, Phys. Rev. Lett. 5, 238 (1960)

    Article  ADS  Google Scholar 

  50. T. Shirakawa, H. Sugai, Jpn. J. Appl. Phys. 32, 5129 (1993)

    Article  ADS  Google Scholar 

  51. H. Kokura, K. Nakamura, I. Ghanashev, H. Sugai, Jpn. J. Appl. Phys. 38, 5262 (1999)

    Article  ADS  Google Scholar 

  52. S. Shinohara, Rev. Sci. Instrum. 74, 2357 (2003)

    Article  ADS  Google Scholar 

  53. S. Shinohara, Y. Nakamura, S. Horii, Thin Solid Films 506–507, 564 (2006)

    Article  ADS  Google Scholar 

  54. T. Yamada, S.-I. Itoh, T. Maruta, N. Kasuya, Y. Nagashima, S. Shinohara, K. Terasaka, M. Yagi, S. Inagaki, Y. Kawai, A. Fujisawa, K. Itoh, Nat. Phys. 4, 721 (2008). https://www.nature.com/articles/nphys1029.pdf

  55. A. Mase, Y. Kogi, D. Kuwahara, Y. Nagayama, N. Ito, T. Maruyama, H. Ikezi, X. Wang, M. Inutake, T. Tokuzawa, J. Kohagura, M. Yoshikawa, S. Shinohara, A. Suzuki, F. Sakai, M. Yamashika, B.J. Tobias, C. Muscatello, X. Ren, M. Chen, C.W. Domier, N.C. Luhmann Jr., Adv. Phys.: X 3, 1472529 (2018) (review paper), and references therein. https://www.tandfonline.com/doi/full/10.1080/23746149.2018.1472529

  56. https://en.wikipedia.org/wiki/WKB_approximation

  57. S. Shinohara, Nucl. Fusion 18, 1164 (1978)

    Article  ADS  Google Scholar 

  58. K. Ida, M. Naito, S. Shinohara, K. Miyamoto, Nucl. Fusion 23, 1259 (1983)

    Article  Google Scholar 

  59. S. Shinohara, O. Naito, K. Ida, K. Miyamoto, Jpn. J. Appl. Phys. 26, 505 (1987)

    Article  ADS  Google Scholar 

  60. S. Shinohara, O. Naito, K. Miyamoto, J. Phys. Soc. Jpn. 57, 665 (1988)

    Article  ADS  Google Scholar 

  61. K. Ida, O. Naito, I. Ochiai, S. Shinohara, K. Miyamoto, Nucl. Fusion 24, 375 (1984)

    Article  Google Scholar 

  62. O. Naito, S. Shinohara, K. Miyamoto, J. Phys. Soc. Jpn. 56, 2988 (1987)

    Article  ADS  Google Scholar 

  63. A. Yonesu, S. Shinohara, Y. Yamashiro, Y. Kawai, Thin Solid Films 390, 208 (2001)

    Article  ADS  Google Scholar 

  64. S. Waseda, H. Fujitsuka, S. Shinohara, D. Kuwahara, M. Sakata, H. Akatsuka, Plasma Fusion Res. 9, 3406125 (2014). http://www.jspf.or.jp/PFR/PDF/pfr2014_09-3406125.pdf

  65. J. Vlček, J. Phys. D Appl. Phys. 22, 623 (1989)

    Google Scholar 

  66. H. Horita, D. Kuwahara, H. Akatsuka, S. Shinohara, AIP Adv. 11, 075226 (2021)

    Article  ADS  Google Scholar 

  67. J.W. Coburn, M. Chen, J. Appl. Phys. 51, 3134 (1980)

    Article  ADS  Google Scholar 

  68. S. Svanberg, Atomic and Molecular Spectroscopy (Springer, New York, 1992)

    Book  Google Scholar 

  69. https://en.wikipedia.org/wiki/CT_scan

  70. https://en.wikipedia.org/wiki/Abel_transform

  71. https://en.wikipedia.org/wiki/Rayleigh_scattering

  72. D. Johnson, B. Grek, D. Dimock, R. Paladino, E. Tolnas, Rev. Sci. Instrum. 57, 1810 (1986)

    Article  ADS  Google Scholar 

  73. H. Salzmann, K. Hirsch, P. Nielsen, C. Gowers, A. Gadd, M. Gadeberg, H. Murmann, C. Schrödter, Nucl. Fusion 27, 1925 (1987)

    Article  Google Scholar 

  74. K. Narihara, I. Yamada, H. Hayashi, K. Yamauchi, Rev. Sci. Instrum. 72, 1122 (2001)

    Article  ADS  Google Scholar 

  75. R.A. Stern, J.A. Johnson III, Phys. Rev. Lett. 34, 1548 (1975)

    Google Scholar 

  76. R.F. Boivin, E.E. Scime, Rev. Sci. Instrum. 74, 4352 (2003)

    Article  ADS  Google Scholar 

  77. N. Teshigahara, S. Shinohara, Y. Yamagata, D. Kuwhara, M. Watanabe, Plasma Fusion Res. 9, 3406055 (2014)

    Article  ADS  Google Scholar 

  78. D. Kuwahara, Y. Tanida, N. Teshigahara, M. Watanabe, Y. Yamagata, S. Shinohara, Plasma Fusion Res. 10, 3401057 (2015). http://www.jspf.or.jp/PFR/PDF/pfr2015_10-3401057.pdf

  79. Y. Tanida, D. Kuwahara, S. Shinohara, Trans. JSASS Aerospace Tech. Japan 14, Pb_7 (2016)

    Google Scholar 

  80. J. Bokor, R.R. Freeman, J.C. White, R.H. Storz, Phys. Rev. A 24, 612 (1981)

    Article  ADS  Google Scholar 

  81. S. Reuter, J.S. Sousa, G.D. Stancu, J.-P.H. van Helden, Plasma Sources Sci. Technol. 24, 054001 (2015) (review paper), and references therein

    Google Scholar 

  82. W.M. Tolles, J.M. Nibler, J.R. McDonald, A.B. Harvey, Appl. Spectrosc. 31, 253 (1977)

    Article  ADS  Google Scholar 

  83. M. Bacal, Rev. Sci. Instrum. 71, 3981 (2000) (review paper), and references therein

    Google Scholar 

  84. https://en.wikipedia.org/wiki/Mathieu_function

  85. Y. Hikosaka, M. Nakamura, H. Sugai, Jpn. J. Appl. Phys. 33, 2157 (1994)

    Article  ADS  Google Scholar 

  86. R.J. Fonck, D.S. Darrow, Phys. Rev. A 29, 3288 (1984)

    Article  ADS  Google Scholar 

  87. F.M. Levinton, R.J. Fonck, G.M. Gammel, R. Kaita, H.W. Kugel, E.T. Powell, D.W. Roberts, Phys. Rev. Lett. 63, 2060 (1998)

    Article  ADS  Google Scholar 

  88. R.J. Fonck, P.A. Dupperex, S.F. Paul, Rev. Sci. Instrum. 61, 3487 (1990)

    Article  ADS  Google Scholar 

  89. P.M. Schoch, A. Carnevali, K.A. Conner, T.P. Crowley, J.C. Forster, R.L. Hickok, J.F. Lewis, J.G. Schatz Jr., G.A. Hallock, Rev. Sci. Instrum. 59, 1646 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunjiro Shinohara .

Appendices

Appendix

1.1  Fundamental Parameters (SI Unit)

2.2.1 1.1.1  Physical Constants

Symbol

Quantity

Value

c

Velocity of light

2.998 × 108 (m/s)

e

Elementary charge

1.602 × 10−19 (C)

\(\varepsilon_{0}\)

Permittivity in vacuum

8.854 × 10−12 (F/m)

\(\mu_{0}\)

Permeability in vacuum

1.257 × 10−6 (H/m)

h

Planck constant

6.626 × 10−34 (Js)

\(k_{{\text{B}}}\)

Boltzmann constant

1.381 × 10−23 (J/K)

\(N_{{\text{A}}}\)

Avogadro’s number

6.022 × 1023 (1/mol)

\(m_{{\text{e}}}\)

Electron mass

9.109 × 10−31 (kg)

m p

Proton mass

1.673 × 10−27 (kg)

\(m_{\rm{p}} /m_{{\text{e}}}\)

\(\left( {m_{\text{p}} /m_{{\text{e}}} } \right)^{1/2}\)

\(\text{Mass ratio} \)

\(\text{Root mass ratio}\)

\({1.836 \times 10^3(-)}\)

\(42.85 (-)\)

eV

Electron volt

1.602 × 10−19 (J)

Corresponding temperature

1.160 × 104 (K)

Corresponding wavelength

1.240 × 10−6 (m)

Neutral atom density @ 1 mTorr and 300 K

3.219 × 1019 (m−3)

2.2.2 1.1.2  Handy Formulas

Symbol

Quantity

Formula

Handy formula

(SI unit unless otherwise specified)

f pe

Electron plasma frequency

\((n_{{\text{e}}} e^{2} /m_{{\text{e}}} \varepsilon_{0} )^{1/2} /2\uppi \)

\(2.8 \times 10^{10} (n_{{\text{e}}} /10^{19} )^{1/2} \ \ ({\text{s}}^{ - 1} )\)

f ce

Electron cyclotron frequency

\(eB/2\pi m_{{\text{e}}}\)

\(2.8 \times 10^{10} \,B\ \ ({\text{s}}^{ - 1} )\)

f ci

Ion cyclotron frequency

\(eB/2\pi m_{{\text{i}}}\)

\(1.5 \times 10^{7} \,B\ \ ({\text{s}}^{ - 1} )\,({\text{H}}^{ + } )\)

\(3.8 \times 10^{5} \,B\ \ ({\text{s}}^{ - 1} )\,({\text{Ar}}^{ + } )\)

f LH

Lower hybrid frequency

\(\sim (f_{{{\text{ce}}}} f_{{{\text{ci}}}} )^{1/2}\)

(if \(f_{{{\text{pi}}}}^{\ 2} > > f_{{{\text{ce}}}} f_{{{\text{ci}}}}\))

\(6.5 \times 10^{8} \,B\ \ ({\text{s}}^{ - 1} )\,({\text{H}}^{ + } )\)

\(1.0 \times 10^{8} \,B\ \ ({\text{s}}^{ - 1} )\,({\text{Ar}}^{ + } )\)

f UH

Upper hybrid frequency

\((f_{{{\text{ce}}}}^{\ \ 2} + f_{{{\text{pe}}}}^{\ \ 2} )^{1/2}\)

(Use the above)

\(\lambda_{{\text{D}}}\)

Debye length (electron)

\((\varepsilon_{0} k_{{\text{B}}} T_{{\text{e}}} /n_{{\text{e}}} e^{2} )^{1/2}\)

\(2.4 \times 10^{ - 6} \,\left[ {T_{{\text{e}}} \,({\text{eV}})/(n_{{\text{e}}} /10^{19} )} \right]^{1/2} \ ({\text{m}})\)

\(\rho_{{\text{e}}}\)

Electron Larmor radius

\(v_{{{\text{the}}}} /\omega_{{{\text{ce}}}} \sim (m_{{\text{e}}} k_{{\text{B}}} T_{{\text{e}}} )^{1/2} /eB\)

(if isotropic VDF)

\(2.4 \times 10^{ - 6} \,\left[ {T_{{\text{e}}} \ ({\text{eV}})} \right]^{1/2} /B\ ({\text{m}})\)

\(\rho_{{\text{i}}}\)

Ion Larmor radius

\(v_{{{\text{thi}}}} /\omega_{{{\text{ci}}}} \sim (m_{{\text{i}}} k_{{\text{B}}} T_{{\text{e}}} )^{1/2} /eB\)

(if isotropic VDF)

\(1.0 \times 10^{ - 4} \,\left[ {T_{{\text{i}}} \ ({\text{eV}})} \right]^{1/2} /B\,({\text{m}})\,({\text{H}}^{ + } )\)

\(6.4 \times 10^{ - 4} \,\left[ {T_{{\text{i}}} \ ({\text{eV}})} \right]^{1/2} \ ({\text{m}})\,({\text{Ar}}^{ + } )\)

\(v_{{{\text{the}}}}\)

Electron thermal velocity

\(\sim (k_{{\text{B}}} T_{{\text{e}}} /m_{{\text{e}}} )^{1/2}\)

\(4.2 \times 10^{5} \,\left[ {T_{{\text{e}}} \ ({\text{eV}})} \right]^{1/2} \ \ ({\text{m}}/{\text{s}})\)

\(v_{{{\text{thi}}}}\)

Ion thermal velocity

\(\sim (k_{{\text{B}}} T_{{\text{i}}} /m_{{\text{i}}} )^{1/2}\)

\(9.8 \times 10^{3} \,\left[ {T_{{\text{i}}} \ ({\text{eV}})} \right]^{1/2} \ \ ({\text{m}}/{\text{s}})\,({\text{H}}^{ + } )\)

\(1.5 \times 10^{3} \,\left[ {T_{{\text{i}}} \ ({\text{eV}})} \right]^{1/2} \ \ ({\text{m}}/{\text{s}})\,({\text{Ar}}^{ + } )\)

\(v_{{\text{A}}}\)

Alfvén velocity

\(\sim B/(\mu_{0} m_{{\text{i}}} n_{{\text{i}}} )^{1/2}\)

(if \(\mu_{0} m_{{\text{i}}} n_{{\text{i}}} > > B^{2} /c^{2}\))

\(6.9 \times 10^{6} \,B/(n_{{\text{e}}} /10^{19} )^{1/2} \ \ ({\text{m}}/{\text{s}})\,({\text{H}}^{ + } )\)

\(1.1 \times 10^{6} \,B/(n_{{\text{e}}} /10^{19} )^{1/2} \ \ ({\text{m}}/{\text{s}})\,({\text{Ar}}^{ + } )\)

\(C_{{\text{s}}}\)

Ion sound (or ion acoustic, or Bohm) velocity

\((k_{{\text{B}}} T_{{\text{e}}} /m_{{\text{i}}} )^{1/2}\) (if Ti = 0)

\(9.8 \times 10^{3} \,\left[ {T_{{\text{e}}} \ ({\text{eV}})} \right]^{1/2} \ \ ({\text{m}}/{\text{s}})\,({\text{H}}^{ + } )\)

\(1.5 \times 10^{3} \,\left[ {T_{{\text{e}}} \ ({\text{eV}})} \right]^{1/2} \ \ ({\text{m}}/{\text{s}})\,({\text{Ar}}^{ + } )\)

\(\nu_{{{\text{en}}}}\)

Electron-neutral collision frequency

\(n_{{\text{n}}} < \sigma (v )\, v >\)

(depending on gas species)

\(\sim 1.4 \times 10^{6} \ \ T_{{\text{e}}} \ ({\text{eV}})\ ({\text{s}}^{ - 1} )\)

\((T_{{\text{e}}} < 10\ {\text{eV,}}\,{\text{Ar}}\,1\ \ {\text{mTorr}})\)

\(\nu_{{{\text{ei}}}}\)

Electron-ion Coulomb collision frequency

\(\dfrac{{Z^{2} e^{4} n_{{\text{e}}} \ln \varLambda }}{{51.6\,\pi^{1/2} \epsilon_{0}^{\ \ 2} m_{{\text{e}}}^{\ 1/2} (k_{{\text{B}}} T_{{\text{e}}} )^{3/2} }}\)

\(1.5 \times 10^{8} \,(n_{{\text{e}}} /10^{19} )Z^{2} /[T_{{\text{e}}} \ \ ({\text{eV}})]^{3/2} \ ({\text{s}}^{ - 1} )\)

\((\ln \varLambda = 10)\)

\(\eta_{{{\text{sp}}}}\)

Spitzer specific resistivity

\(\dfrac{{Ze^{2} m_{{\text{e}}}^{\ 1/2} \ln \varLambda }}{{51.6\,\pi^{\ 1/2} \epsilon_{0}^{\ 2} (k_{{\text{B}}} T_{{\text{e}}} )^{3/2} }}\)

\(5.2 \times 10^{ - 4} \,Z/\left[ {T_{{\text{e}}} \ \ ({\text{eV}})} \right]^{3/2} \ (\Omega \ {\text{m}})\)

\((\ln \varLambda = 10)\)

\(p_{{\text{n}}}\)

Neutral gas pressure

\(k_{{\text{B}}} n_{{\text{n}}} T_{{\text{g}}}\)

\({\text{N}}/{\text{m}}^{2} = {\text{Pa}} = 7.5 \times 10^{ - 3} \ {\text{Torr}}\)

\(p = p_{{\text{e}}} + p_{{\text{i}}}\)

Plasma pressure

\(k_{{\text{B}}} (n_{{\text{e}}} T_{{\text{e}}} + n_{{\text{i}}} T_{{\text{i}}} )\)

\(1.6\,(n_{{\text{e}}} /10^{19} )\left[ {T_{{\text{e}}} \ ({\text{eV}}) + T_{{\text{i}}} \ ({\text{eV}})} \right]\ ({\text{N/m}}^{2} )\)

\(p_{{\text{B}}}\)

Magnetic pressure

\(B^{2} /2\mu_{0}\)

\(4.0 \times 10^{5} \,B^{2} \ ({\text{N/m}}^{2} )\,\left[ {3.9\,B^{2} \,({\text{atm}})} \right]\)

\(\beta\)

Ratio of plasma pressure to magnetic one

\(k_{{\text{B}}} (n_{{\text{e}}} T_{e} + n_{{\text{i}}} T_{i} )/(B^{2} /2\mu_{0} )\)

(Use the above)

\(N_{{\text{d}}}\)

Particle number within Debye sphere

\((4{\uppi }/3)n_{{\text{e}}} \lambda_{{\text{d}}}^{\ 3}\)

\(5.5 \times 10^{2} \,\left[ {T_{{\text{e}}} \ ({\text{eV}})} \right]^{3/2} /\left[ {(n_{{\text{e}}} /10^{19} )} \right]^{1/2}\) (–)

\(\varGamma\)

Coupling coefficient

\(\left[ {(Ze)^{2} /a} \right]/4{\uppi }\varepsilon_{0} k_{{\text{B}}} T_{{\text{e}}}\)

\(5.0 \times 10^{ - 3} \,Z^{2} \,\left[ {(n_{e} /10^{19} )} \right]^{1/3} /\left[ {T_{{\text{e}}} \ ({\text{eV}})} \right]\) (–)

\(\left[ {{\text{if}}\,\,(4\pi /3)a^{3} n_{{\text{e}}} = 1} \right]\)

\(D_{{\text{B}}}\)

Bohm diffusion

\((1/16)(kT_{{\text{e}}} /eB)\)

\(6.3 \times 10^{ - 2} \,T_{{\text{e}}} \ ({\text{eV}})/B\ ({\text{m}}^{2} /{\text{s}})\)

1.2  Useful Formulas

2.3.1 1.2.1  Vector Relations

A, B, and C are vectors, and \(\phi\) is a scalar variable.

$$ {\mathbf{A}} \cdot \left( {{\mathbf{B}} \times {\mathbf{C}}} \right) = {\mathbf{B}} \cdot \left( {{\mathbf{C}} \times {\mathbf{A}}} \right) = {\mathbf{C}} \cdot \left( {{\mathbf{A}} \times {\mathbf{B}}} \right) $$
$$ {\mathbf{A}} \times \left( {{\mathbf{B}} \times {\mathbf{C}}} \right) = {\mathbf{B}}\left( {{\mathbf{A}} \cdot {\mathbf{C}}} \right) - {\mathbf{C}}\left( {{\mathbf{A}} \cdot {\mathbf{B}}} \right) $$
$$ \nabla \cdot \left( {\phi {\mathbf{A}}} \right) = {\mathbf{A}} \cdot \nabla \phi + \phi \nabla \cdot {\mathbf{A}} $$
$$ \nabla \times \left( {\phi {\mathbf{A}}} \right) = \nabla \phi \times {\mathbf{A}} + \phi \nabla \times {\mathbf{A}} $$
$$ \nabla \cdot \left( {{\mathbf{A}} \times {\mathbf{B}}} \right) = {\mathbf{B}} \cdot \left( {\nabla \times {\mathbf{A}}} \right) - {\mathbf{A}} \cdot \left( {\nabla \times {\mathbf{B}}} \right) $$
$$ \nabla \times \left( {{\mathbf{A}} \times {\mathbf{B}}} \right) = {\mathbf{A}}\left( {\nabla \cdot {\mathbf{B}}} \right) - {\mathbf{B}}\left( {\nabla \cdot {\mathbf{A}}} \right) + \left( {{\mathbf{B}} \cdot \nabla } \right){\mathbf{A}} - \left( {{\mathbf{A}} \cdot \nabla } \right){\mathbf{B}} $$
$$ \nabla \cdot \left( {{\mathbf{A}} \times {\mathbf{B}}} \right) = {\mathbf{B}} \cdot \left( {\nabla \cdot {\mathbf{A}}} \right) - {\mathbf{A}} \cdot \left( {\nabla \times {\mathbf{B}}} \right) $$
$$ \nabla \times \left( {\nabla \times {\mathbf{A}}} \right) = \nabla \left( {\nabla \cdot {\mathbf{A}}} \right) - \nabla^{2} {\mathbf{A}} $$
$$ \nabla \times \nabla \phi \equiv 0 $$
$$ \nabla \cdot \left( {\nabla \times {\mathbf{A}}} \right) \equiv 0 $$

2.3.2 1.2.2  Vector Integral

Here, dl, dS, and dV represent line, surface, and volume integrals, respectively. A represents a vector, and An indicates a component normal to S.

$$ \iint {\nabla \times {\mathbf{A}} \cdot d{\mathbf{S}}} = \oint {{\mathbf{A}} \cdot d{\mathbf{l}}} \quad \left( {{\text{Stokes}}\,{\text{theorem}}} \right) $$
$$ \iiint {\nabla \cdot {\mathbf{A}} dV} = \iint {{\mathbf{A}} \cdot d{\mathbf{S}}} = \iint {A_{{\text{n}}} \,dS}\quad \left( {{\text{Gauss}}\,{\text{theorem}}} \right) $$

2.3.3 1.2.3  Partial Differentiation in Cylindrical Geometry

Here, er, \({\mathbf{e}}_{\uptheta }\), and ez represent unit vectors, A denotes a vector, and \(\phi\) represents a scalar variable.

$$ \nabla \cdot {\mathbf{A}} = \frac{1}{r}\frac{\partial }{\partial r}(rA_{{\text{r}}} ) + \frac{1}{r}\frac{\partial }{\partial \theta }A_{{\uptheta }} + \frac{\partial }{\partial z}A_{{\text{z}}} $$
$$ \begin{aligned} \nabla \times {\mathbf{A}} & = \left( {\frac{1}{r}\frac{\partial }{\partial \theta }A_{{\text{z}}} - \frac{\partial }{\partial z}A_{{\uptheta }} } \right){\mathbf{e}}_{\text{r}} + \left( {\frac{{\partial A_{{\text{r}}} }}{\partial z} - \frac{{\partial A_{{\text{z}}} }}{\partial r}} \right){\mathbf{e}}_{\uptheta } \\ \end{aligned} $$
$$+ \left[ {\frac{1}{r}\frac{\partial }{\partial r}\left( {rA_{{\uptheta }} } \right) - \frac{1}{r}\frac{{\partial A_{{\text{r}}} }}{\partial \theta }} \right]{\mathbf{e}}_{\rm{z}} $$
$$ \nabla \phi = \frac{\partial \phi }{{\partial r}}{\mathbf{e}}_{\rm{r}} + \frac{1}{r}\frac{\partial \phi }{{\partial \theta }}{\mathbf{e}}_{\uptheta } + \frac{\partial \phi }{{\partial z}}{\mathbf{e}}_{\rm{z}} $$
$$ \nabla^{2} \phi = \frac{1}{r}\frac{\partial }{\partial r}\left( {r\frac{\partial \phi }{{\partial r}}} \right) + \frac{1}{{r^{2} }}\frac{{\partial^{2} \phi }}{{\partial \theta^{2} }} + \frac{{\partial^{2} \phi }}{{\partial z^{2} }} $$

2.3.4 1.2.4  Maxwell’s Equations

$$ \nabla \cdot {\varvec{D}} = \rho $$
$$ \nabla \cdot {\mathbf{B}} = 0 $$
$$ \nabla \times {\mathbf{E}} = - \frac{{\partial \,{\mathbf{B}}}}{\partial \,t} $$
$$ \nabla \times {\mathbf{H}} = {\mathbf{j}} + \frac{{\partial \,{\mathbf{D}}}}{\partial \,t} $$

2.3.5 1.2.5  Bessel Functions

Bessel’s differential equation

Here, z denotes a function of x, and m represents a real number.

$$ x^{2} \frac{{d^{2} z}}{{dx^{2} }} + x\frac{dz}{{dx}} + \left( {x^{2} - m^{2} } \right) = 0 $$

The solutions have the first and the second kind of Bessel functions, \(J_{{\text{m}}} \left( x \right)\) and \(Y_{{\text{m}}} \left( x \right)\), respectively.

Recursion relations

$$ \begin{aligned} & J_{{{\text{m}} - 1}} \left( x \right) + J_{{{\text{m}} + 1}} \left( x \right) = \frac{2 m}{x}J_{{\text{m}}} \left( x \right) \\ {}\\& J_{{{\text{m}} - 1}} \left( x \right) - J_{{{\text{m}} + 1}} \left( x \right) = 2\frac{{dJ_{{\text{m}}} \left( x \right)}}{dx} \\ \end{aligned} $$

Typical waveforms of J 0 ( x ), J 1 ( x ), and J 2 ( x )

Roots \(\lambda_{{{\mathbf{k}},{\mathbf{m}}}}\) of the first kind of Bessel function J m ( x )

A model of a magnetic mirror represents the trajectory of a trapped particle and its electric field. The second model shows the strapped particles.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shinohara, S. (2022). Fundamentals of Plasma and Its Diagnostics. In: High-Density Helicon Plasma Science. Springer Series in Plasma Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-2900-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2900-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2899-4

  • Online ISBN: 978-981-19-2900-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics