Skip to main content

Constructing Interval Type-2 Fuzzy Systems (IT2FS) with Memetic Algorithm: Elucidating Performance with Noisy Data

  • Conference paper
  • First Online:
International Conference on Innovative Computing and Communications

Abstract

Fuzzy modeling is a challenging task and becomes more complex when designing T2FS, which requires identification of more parameters as compared to T1FS. The problem of fuzzy modeling can be expressed as a high-dimensional search and optimization process, and EAs have the ability to search for optimal solutions in high-dimensional search space, so researchers used various EAs for fuzzy modeling. GAs are widely used for finding solutions in large search spaces, and MAs have characteristics of both global and local optimizations. This paper describes how to use MAs and GAs to identify IT2FS, including how to build MFs for both input and output, as well as how to generate a rule base from a data collection. The efficiency of T1FS and IT2FS for noisy data is also compared with GAs and MAs in the paper. For comparison, we consider four different problems: a rapid Ni–Cd battery charger, data from Box and Jenkins’s gas furnace, and the iris and wine classification datasets. In the presence of noise, the results imply that IT2FS is more efficient than T1FS, and MAs are more efficient than GAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abed HY, Humod AT, Humaidi AJ (2020) Type 1 versus type 2 fuzzy logic speed controllers for brushless dc motors. Int J Electr Comput Eng 10(1):265

    Google Scholar 

  2. AbuBaker A, Ghadi Y (2020) Mobile robot controller using novel hybrid system. Int J Electr Comput Eng 2088–8708:10

    Google Scholar 

  3. Acampora G, D’Alterio P, Vitiello A (2018) Learning Type-2 fuzzy rule-based systems through memetic algorithms. In: 2018 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, pp 1–7

    Google Scholar 

  4. Alfi A, Fateh MM (2011) Intelligent identification and control using improved fuzzy particle swarm optimization. Expert Syst Appl 38(10):12312–12317

    Article  Google Scholar 

  5. Ali F, Islam SR, Kwak D, Khan P, Ullah N, Yoo SJ, Kwak KS (2018) Type-2 fuzzy ontology–aided recommendation systems for IoT–based healthcare. Comput Commun 119:138–155

    Article  Google Scholar 

  6. Araujo H, Xiao B, Liu C, Zhao Y, Lam HK (2014) Design of type-1 and interval type-2 fuzzy PID control for anesthesia using genetic algorithms. J Intell Learn Syst Appl 6(02):70

    Google Scholar 

  7. Baccar N, Bouallegue R (2016) Interval type 2 fuzzy localization for wireless sensor networks. EURASIP J Adv Signal Process 2016(1):1–13

    Article  Google Scholar 

  8. Bansal S, Wadhawan S (2021) A hybrid of sine cosine and particle swarm optimization (HSPS) for solving heterogeneous fixed fleet vehicle routing problem. Int J Appl Metaheuristic Comput 12(1):41–65. https://doi.org/10.4018/IJAMC.2021010103

  9. Bououden S, Chadli M, Allouani F, Filali S (2013) A new approach for fuzzy predictive adaptive controller design using particle swarm optimization algorithm. Int J Innov Comput Inf Control 9(9):3741–3758

    Google Scholar 

  10. Castillo O, Amador-Angulo L, Castro JR, Garcia-Valdez M (2016) A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf Sci 354:257–274

    Article  Google Scholar 

  11. Castillo O, Castro JR, Melin P, Rodriguez-Diaz A (2014) Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction. Soft Comput 18(6):1213–1224

    Article  Google Scholar 

  12. Castillo O, Melin P (2008) Intelligent systems with interval type-2 fuzzy logic. Int J Innov Comput Inf Control 4(4):771–783

    Google Scholar 

  13. Castillo O, Melin P (2007) Comparison of hybrid intelligent systems, neural networks and interval type-2 fuzzy logic for time series prediction. In: 2007 international joint conference on neural networks. IEEE, pp 3086–3091

    Google Scholar 

  14. Cuevas-Martínez JC, Yuste-Delgado AJ, Triviño-Cabrera A (2017) Cluster head enhanced election type-2 fuzzy algorithm for wireless sensor networks. IEEE Commun Letters 21(9):2069–2072

    Article  Google Scholar 

  15. Ekong U, Lam HK, Xiao B, Ouyang G, Liu H, Chan KY, Ling SH (2016) Classification of epilepsy seizure phase using interval type-2 fuzzy support vector machines. Neurocomputing 199:66–76

    Article  Google Scholar 

  16. Gaxiola F, Melin P, Valdez F, Castro JR, Castillo O (2016) Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO. Appl Soft Comput 38:860–871

    Article  Google Scholar 

  17. Hidalgo D, Melin P, Castillo O (2012) An optimization method for designing type-2 fuzzy inference systems based on the footprint of uncertainty using genetic algorithms. Expert Syst Appl 39(4):4590–4598

    Article  Google Scholar 

  18. Hsu CH, Juang CF (2012) Evolutionary robot wall-following control using type-2 fuzzy controller with species-DE-activated continuous ACO. IEEE Trans Fuzzy Syst 21(1):100–112

    Article  Google Scholar 

  19. https://doi.org/10.1007/978-981-16-6605-6_1

  20. https://doi.org/10.1007/978-981-16-6605-6_1

  21. Hwang C, Rhee FCH (2007) Uncertain fuzzy clustering: interval type-2 fuzzy approach to $ c $-means. IEEE Trans Fuzzy Syst 15(1):107–120

    Article  Google Scholar 

  22. Karnik NN, Mendel JM, Liang Q (1999) Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 7(6):643–658

    Article  Google Scholar 

  23. Khosla A, Kumar S, Ghosh KR (2007) A comparison of computational efforts between particle swarm optimization and genetic algorithm for identification of fuzzy models. In: NAFIPS 2007 annual meeting of the north american fuzzy information processing society. IEEE, pp 245–250

    Google Scholar 

  24. Klir G, Yuan B (1995) Fuzzy sets and fuzzy logic, vol 4. Prentice Hall, New Jersey

    MATH  Google Scholar 

  25. Krasnogor N, Smith J (2005) A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans Evol Comput 9(5):474–488

    Article  Google Scholar 

  26. Kumbasar T, Hagras H (2014) Big bang-big crunch optimization based interval type-2 fuzzy PID cascade controller design strategy. Inf Sci 282:277–295

    Article  Google Scholar 

  27. Le TL, Huynh TT, Lin LY, Lin CM, Chao F (2019) A K-means interval type-2 fuzzy neural network for medical diagnosis. Int J Fuzzy Syst 21(7):2258–2269

    Article  Google Scholar 

  28. Lee CH, Chang FY, Lin CM (2013) An efficient interval type-2 fuzzy CMAC for chaos time-series prediction and synchronization. IEEE Trans Cybern 44(3):329–341

    Article  Google Scholar 

  29. Li H, Sun X, Wu L, Lam HK (2015) State and output feedback control of interval type-2 fuzzy systems with mismatched membership functions. IEEE Trans on Fuzzy Syst 23(6):1943–1957

    Article  Google Scholar 

  30. Li H, Wang J, Wu L, Lam HK, Gao Y (2017) Optimal guaranteed cost sliding-mode control of interval type-2 fuzzy time-delay systems. IEEE Trans Fuzzy Syst 26(1):246–257

    Article  Google Scholar 

  31. Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550

    Article  Google Scholar 

  32. Maldonado Y, Castillo O, Melin P (2013) Particle swarm optimization of interval type-2 fuzzy systems for FPGA applications. Appl Soft Comput 13(1):496–508

    Article  Google Scholar 

  33. Martínez-Soto R, Castillo O, Aguilar LT, Rodriguez A (2015) A hybrid optimization method with PSO and GA to automatically design type-1 and type-2 fuzzy logic controllers. Int J Mach Learn Cybern 6(2):175–196

    Article  Google Scholar 

  34. Mendel JM, John RB (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy Syst 10(2):117–127

    Article  Google Scholar 

  35. Mendel JM, John RI, Liu F (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Article  Google Scholar 

  36. Neri F, Cotta C, Moscato P eds (2011) Handbook of memetic algorithms (vol 379). Springer

    Google Scholar 

  37. Nguyen HT, Sugeno M eds (2012) Fuzzy systems: modeling and control (vol 2). Springer Sci Bus Media

    Google Scholar 

  38. Oztaysi B (2015) A group decision making approach using interval type-2 fuzzy AHP for enterprise information systems project selection. J Multiple-Valued Logic Soft Comput 24(5)

    Google Scholar 

  39. Rubio E, Castillo O, Valdez F, Melin P, Gonzalez CI, Martinez G (2017) An extension of the fuzzy possibilistic clustering algorithm using type-2 fuzzy logic techniques. Adv Fuzzy Syst

    Google Scholar 

  40. Sanchez MA, Castro JR, Ocegueda-Miramontes V, Cervantes L (2017) Hybrid learning for general type-2 TSK fuzzy logic systems. Algorithms 10(3):99

    Article  Google Scholar 

  41. Sharma AK, Mittal SK (2020) Cryptographic keyed hash function: PARAŚU-256. J Comput Theor Nanosci 17(11):5072–5084. https://doi.org/10.1166/jctn.2020.9343

  42. Shukla PK, Tripathi SP (2014) A new approach for tuning interval type-2 fuzzy knowledge bases using genetic algorithms. J Uncertainty Anal Appl 2(1):4

    Article  Google Scholar 

  43. Sugeno M, Yasukawa T (1993) A fuzzy-logic-based approach to qualitative modeling. IEEE Trans Fuzzy Syst 1(1):7–31

    Article  Google Scholar 

  44. Wadhawan S, Goel G, Kaushik S (2013) Data driven fuzzy modelling for sugeno and mamdani type fuzzy model using memetic algorithm. Int J Inf Technol Comput Sci 5(8):24–37

    Google Scholar 

  45. Wadhawan S, Kumar G, Bhatnagar V (2019) Analysis of different evolutionary techniques on fuzzy rule base generation. J Comput Theor Nanosci 16(9):4008–4014. https://doi.org/10.1166/jctn.2019.8286

  46. Wang W, Liu X, Qin Y (2012) Multi-attribute group decision making models under interval type-2 fuzzy environment. Knowl-Based Syst 30:121–128

    Article  Google Scholar 

  47. Yao B, Hagras H, Alghazzawi D, Alhaddad MJ (2016) A big bang–big crunch type-2 fuzzy logic system for machine-vision-based event detection and summarization in real-world ambient-assisted living. IEEE Trans on Fuzzy Syst 24(6):1307–1319

    Article  Google Scholar 

  48. Yeh CY, Jeng WHR, Lee SJ (2011) Data-based system modeling using a type-2 fuzzy neural network with a hybrid learning algorithm. IEEE Trans Neural Networks 22(12):2296–2309

    Article  Google Scholar 

  49. Yesil E (2014) Interval type-2 fuzzy PID load frequency controller using big bang-big crunch optimization. Appl Soft Comput 15:100–112

    Article  Google Scholar 

  50. Zhang T, Ma F, Yue D, Peng C, O'Hare GM (2019) Interval Type-2 fuzzy local enhancement based rough k-means clustering considering imbalanced clusters. IEEE Trans Fuzzy Syst

    Google Scholar 

  51. Zhang QY, Sun ZM, Zhang F (2014) A clustering routing protocol for wireless sensor networks based on type-2 fuzzy logic and ACO. In: 2014 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, pp 1060–1067

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savita Wadhawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wadhawan, S., Sharma, A.K. (2023). Constructing Interval Type-2 Fuzzy Systems (IT2FS) with Memetic Algorithm: Elucidating Performance with Noisy Data. In: Gupta, D., Khanna, A., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A. (eds) International Conference on Innovative Computing and Communications. Lecture Notes in Networks and Systems, vol 473. Springer, Singapore. https://doi.org/10.1007/978-981-19-2821-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2821-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2820-8

  • Online ISBN: 978-981-19-2821-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics