Skip to main content

Metal-Organic Frameworks for Gas Sensors

  • Chapter
  • First Online:
Smart Nanostructure Materials and Sensor Technology

Abstract

At present time, environmental/atmospheric pollutions are a serious issue worldwide. These pollutants contain various toxic and hazardous gases, so the detection and monitoring of these toxic gases are needed and key challenges. Nowadays, various kinds of nanomaterials including metal oxides, conducting polymers, carbon-based materials (CNTs, graphene and graphene derivatives), and TMDS-based sensors have been developed by different research groups. But the selectivity is a vital problem and challenge. To enhance the selectivity of gas sensors metal-organic frameworks (MOFs) are promising materials. It’s a new type of porous and crystalline material, which plays a vital role in the detection of different type of gases. MOFs are a category of compounds entailing metal ions or clusters coordinated to organic ligands that consolidate themselves into the rigid crystal structure. They have incomparable physical and chemical properties, such as ultra-high porosity, high thermal and chemical permanence, and tunable structure. These mesmerizing properties make MOFs appropriate for new-generation sensing devices. This artefact concentrates on contemporary advancement in the rational design and synthesis of MOFs and their sensing application including the challenges and opportunities in their path. In this book chapter, we have discussed the synthesis of MOFs and their derivatives with other materials (metal oxide and carbon materials) and their sensing performance. Also, described the sensing mechanism and future opportunities and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Singh, S. Sikarwar, A. Verma, B.C. Yadav, The recent development of metal oxide heterostructures based gas sensor, their future opportunities and challenges: a review. Sens. Actuators, A: Phys. 332, 113127 (2021)

    Google Scholar 

  2. W.-T. Koo, J.-S. Jang, I.-D. Kim, Metal-organic frameworks for chemiresistive sensors. Chem 5(8), 1938–1963 (2019)

    Article  Google Scholar 

  3. R.K. Sonker, S.R. Sabhajeet, B.C. Yadav, TiO2–PANI nanocomposite thin film prepared by spin coating technique working as room temperature CO2 gas sensing. J. Mater. Sci. Mater. Electron. 27(11), 11726–11732 (2016)

    Google Scholar 

  4. R.K. Sonker, B.C. Yadav, V. Gupta, M. Tomar, Synthesis of CdS nanoparticle by sol-gel method as low temperature NO2 sensor. Mater. Chem. Phys. 239, 121975 (2020)

    Google Scholar 

  5. M.R. Waikar, P.M. Raste, R.K. Sonker, V. Gupta, M. Tomar, M.D. Shirsat, R.G. Sonkawade, Enhancement in NH3 sensing performance of ZnO thin-film via gamma-irradiation. J. Alloy. Compd. 830, 154641 (2020)

    Article  Google Scholar 

  6. M. Singh, B.C. Yadav, A. Ranjan, R.K. Sonker, M. Kaur, Detection of liquefied petroleum gas below lowest explosion limit (LEL) using nanostructured hexagonal strontium ferrite thin film. Sens. Actuators, B: Chem. 249 96–104 (2017)

    Google Scholar 

  7. F.-Y. Yi, D. Chen, W. Meng-Ke, L. Han, H.-L. Jiang, Chemical sensors based on metal–organic frameworks. ChemPlusChem 81(8), 675–690 (2016)

    Article  Google Scholar 

  8. A. Chidambaram, K.C. Stylianou, Electronic metal–organic framework sensors. Inorg. Chem. Front. 5(5), 979–998 (2018)

    Article  Google Scholar 

  9. A. Singh, S. Sikarwar, B.C. Yadav, Design and fabrication of quick responsive and highly sensitive LPG sensor using ZnO/SnO2 heterostructured film. Mater. Res. Express 8(4), 045013 (2021)

    Google Scholar 

  10. R.K. Sonker, B.C. Yadav, V. Gupta, M. Tomar, Fabrication and characterization of ZnO-TiO2-PANI (ZTP) micro/nanoballs for the detection of flammable and toxic gases. J. Hazard. Mater. 370, 126–137 (2019)

    Google Scholar 

  11. K. Kumar, A. Singh, U. Kumar, R.K. Tripathi, B.C. Yadav, The beauty inhabited inside the modified Graphene for moisture detection at different frequencies. J. Mater. Sci. Mater. Electron. 31(13), 10836–10845 (2020)

    Google Scholar 

  12. V. Stavila, A.A. Talin, M.D. Allendorf, MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 43(16), 5994–6010 (2014)

    Google Scholar 

  13. Y.-S. Wei, M. Zhang, R. Zou, X. Qiang, Metal–organic framework-based catalysts with single metal sites. Chem. Rev. 120(21), 12089–12174 (2020)

    Article  Google Scholar 

  14. S.K. Gupta, A.K. Gupta, R.K. Yadav, A. Singh, B.C. Yadav, Highly efficient S‐g‐CN/Mo‐368 catalyst for synergistically NADH regeneration under solar light. Photochem. Photobiol. 98(1), 160-168 (2022)

    Google Scholar 

  15. E. Mahmoud, L. Ali, A. El Sayah, S.A. Alkhatib, H. Abdulsalam, M. Juma, A.A.H. Al-Muhtaseb, Implementing metal-organic frameworks for natural gas storage. Crystals 9(8), 406 (2019)

    Google Scholar 

  16. A. Ali, A. Alzamly, Y.E. Greish, M. Bakiro, H.L. Nguyen, S.T. Mahmoud, A highly sensitive and flexible metal-organic framework polymer-based H2S gas sensor. ACS Omega 6(27), 17690–17697 (2021)

    Article  Google Scholar 

  17. H. Karimi-Maleh, M.L. Yola, N. Atar, Y. Orooji, F. Karimi, P.S. Kumar, J. Rouhi, M. Baghayeri, A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell Co3O4@ MOF-74 nanocomposite. J. Colloid Interface Sci. 592, 174–185 (2021)

    Google Scholar 

  18. H.-Y. Li, S.-N. Zhao, S.-Q. Zang, J. Li, Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 49(17), 6364–6401 (2020)

    Article  Google Scholar 

  19. M.H. Yap, K.L. Fow, G.Z. Chen, Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ. 2(3), 218–245 (2017)

    Google Scholar 

  20. C.M.O. González, B.I. Kharisov, O.V. Kharissova, T.E. S. Quezada, Synthesis, and applications of MOF-derived nanohybrids: a review. Mater. Today Proc. 46, 3018–3029 (2021)

    Google Scholar 

  21. P. Silva, S.M.F. Vilela, J.P.C. Tome, F.A.A. Paz, Multifunctional metal–organic frameworks: from academia to industrial applications. Chem. Soc. Rev. 44(19), 6774–6803 (2015)

    Google Scholar 

  22. G. Cai, P. Yan, L. Zhang, H.-C. Zhou, H.-L. Jiang, Metal–organic framework-based hierarchically porous materials: synthesis and applications. Chem. Rev. 121(20), 12278–12326 (2021)

    Article  Google Scholar 

  23. L.J. Wang, H. Deng, H. Furukawa, F. Gándara, K.E. Cordova, D. Peri, O.M. Yaghi, Synthesis, and characterization of metal–organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 53(12), 5881–5883 (2014)

    Article  Google Scholar 

  24. L.M. Kustov, V.I. Isaeva, J. Přech, K.K. Bisht, Metal-organic frameworks as materials for applications in sensors. Mendeleev Commun. 29(4), 361–368 (2019)

    Google Scholar 

  25. P. Ji, R. Tian, H. Zheng, J.-G. Jiang, J. Sun, J. Peng, Solvent-free synthesis of ZIF-8 from zinc acetate with the assistance of sodium hydroxide. Dalton Trans. 49(36), 12555–12558 (2020)

    Article  Google Scholar 

  26. M. García-Palacín, J.I. Martínez, L. Paseta, A. Deacon, T. Johnson, M. Malankowska, C. Téllez, J. Coronas, Sized-controlled ZIF-8 nanoparticle synthesis from recycled mother liquors: environmental impact assessment. ACS Sustain. Chem. Eng. 8(7), 2973–2980 (2020)

    Google Scholar 

  27. J. Qin, Sibo Wang, and Xinchen Wang, Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl. Catal. B 209, 476–482 (2017)

    Article  Google Scholar 

  28. H.F. Greer, Y. Liu, A. Greenaway, P.A. Wright, W. Zhou, Synthesis and formation mechanism of textured MOF-5. Cryst. Growth Des. 16(4), 2104–2111 (2016)

    Article  Google Scholar 

  29. K.M. Choi, H.J. Jeon, J.K. Kang, O.M. Yaghi, Heterogeneity within order in crystals of a porous metal–organic framework. J. Am. Chem. Soc. 133(31), 11920–11923 (2011)

    Google Scholar 

  30. F. Ataei, D. Dorranian, N. Motakef-Kazemi, Synthesis of MOF-5 nanostructures by laser ablation method in liquid and evaluation of its properties. J. Mater. Sci.: Mater. Electron. 32(3), 3819–3833 (2021)

    Google Scholar 

  31. J. Beamish-Cook, K. Shankland, C.A. Murray, P. Vaqueiro, Insights into the mechanochemical synthesis of MOF-74. Cryst. Growth Des. 21(5), 3047–3055 (2021)

    Article  Google Scholar 

  32. A.C. Tella, J.T. Bamgbose, V.O. Adimula, M. Omotoso, S.E. Elaigwu, V.T. Olayemi, O.A. Odunola, Synthesis of metal–organic frameworks (MOFs) MIL-100 (Fe) functionalized with thioglycolic acid and ethylenediamine for removal of eosin B dye from aqueous solution. SN Applied Sciences 3(1), 1–15 (2021)

    Article  Google Scholar 

  33. S. Bhattacharjee, C. Chen, W.-S. Ahn, Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv. 4(94), 52500–52525 (2014)

    Article  ADS  Google Scholar 

  34. X. Li, Y. Zhang, Y. Cheng, X. Chen, W. Tan, MOF-derived porous hierarchical ZnCo2O4 microflowers for enhanced performance gas sensor. Ceram. Int. 47(7), 9214–9224 (2021)

    Article  Google Scholar 

  35. S. Li, L. Xie, M. He, H. Xiaobing, G. Luo, C. Chen, Z. Zhu, Metal-Organic frameworks-derived bamboo-like CuO/In2O3 Heterostructure for high-performance H2S gas sensor with low operating temperature. Sens. Actuators, B Chem. 310, 127828 (2020)

    Article  Google Scholar 

  36. Z. Fatima, C. Gautam, A. Singh, S.K. Avinashi, B.C. Yadav, A.A. Khan. Fabrication of a novel nanocomposite SiO2–H3BO3–V2O5–Al2O3 via melt-quenching technique: structural and surface morphological characteristics for carbon dioxide gas sensing applications. J. Mater. Sci. Mater. Electron. 33(3), 1192–1210 (2022)

    Google Scholar 

  37. B.C. Yadav, K.S. Chauhan, S. Singh, R.K. Sonker, S. Sikarwar, R. Kumar, Growth, and characterization of sol–gel processed rectangular shaped nanostructured ferric oxide thin film followed by humidity and gas sensing. J. Mater. Sci.: Mater. Electron. 28(7), 5270–5280 (2017)

    Google Scholar 

  38. P. Dixit, A. Singh, S.K. Avinashi, B.C. Yadav, C. Gautam, Fabrication, structural, and physical properties of alumina doped calcium silicate glasses for carbon dioxide gas sensing applications. J. Non-Cryst. Solids 583, 121475 (2022)

    Google Scholar 

  39. M.-S. Yao, X.-J. Lv, F. Zhi-Hua, W.-H. Li, W.-H. Deng, W. Guo-Dong, X. Gang, Layer-by-layer assembled conductive metal–organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem. 129(52), 16737–16741 (2017)

    Article  ADS  Google Scholar 

  40. E.-X. Chen, H. Yang, J. Zhang, Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg. Chem. 53(11), 5411–5413 (2014)

    Article  Google Scholar 

  41. E.-X. Chen, F. Hong-Ru, R. Lin, Y.-X. Tan, J. Zhang, Highly selective and sensitive trimethylamine gas sensor based on cobalt imidazolate framework material. ACS Appl. Mater. Interfaces. 6(24), 22871–22875 (2014)

    Article  Google Scholar 

  42. H. Tian, H. Fan, M. Li, L. Ma, Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS sensors 1(3), 243–250 (2016)

    Article  Google Scholar 

  43. Y. Zhou, T. Zhou, Y. Zhang, L. Tang, Q. Guo, M. Wang, C. Xie, D. Zeng, Synthesis of core-shell flower-like WO3@ ZIF-71 with enhanced response and selectivity to H2S gas. Solid State Ionics 350, 115278 (2020)

    Article  Google Scholar 

  44. D. Wang, Z. Li, J. Zhou, H. Fang, X. He, P. Jena, J.-B. Zeng, W.-N. Wang, Simultaneous detection, and removal of formaldehyde at room temperature: Janus Au@ZnO@ZIF-8 nanoparticles. Nano-micro letters 10(1), 1–11 (2018)

    Article  ADS  Google Scholar 

  45. X.-F. Wang, X.-Z. Song, K.-M. Sun, L. Cheng, W. Ma, "MOFs-derived porous nanomaterials for gas sensing. Polyhedron 152, 155–163 (2018)

    Article  Google Scholar 

  46. Y. Lü, W. Zhan, Y. He, Y. Wang, X. Kong, Q. Kuang, Z. Xie, L. Zheng, MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces. 6(6), 4186–4195 (2014)

    Article  Google Scholar 

  47. Q. Yu, R. Jin, L. Zhao, T. Wang, X. Fangmeng Liu, C.W. Yan, P. Sun, L. Geyu, MOF-derived mesoporous and hierarchical hollow-structured In2O3-NiO composites for enhanced triethylamine sensing. ACS Sens 6(9), 3451–3461 (2021)

    Article  Google Scholar 

  48. F.U. Khan, S. Mehmood, S. Liu, W. Xu, M.N. Shah, X. Zhao, J. Ma, Y. Yang, X. Pan, A pn Heterojunction based Pd/PdO@ZnO organic frameworks for high-sensitivity room-temperature formaldehyde gas sensor. Front. Chem. 758 (2021)

    Google Scholar 

  49. J. Tan, S. Hussain, C. Ge, M. Wang, S. Shah, G. Liu, G. Qiao, ZIF-67 MOF-derived unique double-shelled Co3O4/NiCo2O4 nanocages for superior Gas-sensing performances. Sens. Actuators, B Chem. 303, 127251 (2020)

    Article  Google Scholar 

  50. K. Zhao, G. Guangqin, Y. Zhang, B. Zhang, F. Yang, L. Zhao, M. Zheng, G. Cheng, D. Zuliang, The self-powered CO2 gas sensor based on gas discharge induced by triboelectric nanogenerator. Nano Energy 53, 898–905 (2018)

    Article  Google Scholar 

  51. W.-T. Koo, J.-H. Cha, J.-W. Jung, S.-J. Choi, J.-S. Jang, D.-H. Kim, I.-D. Kim, Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: abundant WS2 edges for highly sensitive gas sensors. Adv. Func. Mater. 28(36), 1802575 (2018)

    Article  Google Scholar 

  52. Q. Mi, D. Zhang, X. Zhang, D. Wang, Highly sensitive ammonia gas sensor based on metal-organic frameworks-derived CoSe2@ nitrogen-doped amorphous carbon decorated with multi-walled carbon nanotubes. J. Alloy. Compd. 860, 158252 (2021)

    Article  Google Scholar 

  53. M. Ullah, X. Bai, J. Chen, H. Lv, Z. Liu, Y. Zhang, J. Wang, B. Sun, L. Li, K. Shi, Metal-organic framework material derived Co3O4 coupled with graphitic carbon nitride as highly sensitive NO2 gas sensor at room temperature. Colloids Surf. A 612, 125972 (2021)

    Article  Google Scholar 

  54. N. Jafari, S. Zeinali, Highly rapid and sensitive formaldehyde detection at room temperature using a ZIF-8/MWCNT nanocomposite. ACS Omega 5(9), 4395–4402 (2020)

    Article  Google Scholar 

  55. D.-K. Nguyen, J.-H. Lee, T.L.-H. Doan, T.-B. Nguyen, S. Park, S.S. Kim, B.T. Phan, H2 gas sensing of Co-incorporated metal-organic frameworks. Appl. Surf. Sci. 523, 146487 (2020)

    Google Scholar 

  56. Y.-M. Jo, K. Lim, H.J. Choi, J.W. Yoon, S.Y. Kim, J.-H. Lee, 2D metal-organic framework derived co-loading of Co3O4 and PdO nanocatalysts on In2O3 hollow spheres for tailored design of high-performance breath acetone sensors. Sens. Actuators, B: Chem. 325, 128821 (2020)

    Google Scholar 

  57. W.-T. Koo, S.-J. Choi, J.-S. Jang, I.-D. Kim, Metal-organic framework templated synthesis of ultrasmall catalyst loaded ZnO/ZnCo2O4 hollow spheres for enhanced gas sensing properties. Sci. Rep. 7(1), 1–10 (2017)

    Article  Google Scholar 

  58. J. Yang, J. Liu, X. Yan, X. Li, W. Junbiao, Y. Han, Z. Wang, X. Zhang, Enhanced selective acetone-sensing performance of hierarchical hollow SnO2/α-Fe2O3 microcubes. J. Mater. Chem. C 7(38), 11984–11990 (2019)

    Article  Google Scholar 

  59. Q. Mi, D. Zhang, X. Zhang, D. Wang, Highly sensitive ammonia gas sensor based on metal-organic frameworks-derived CoSe2@nitrogen-doped amorphous carbon decorated with multi-walled carbon nanotubes. J. Alloy. Compd. 860, 158252 (2021)

    Article  Google Scholar 

  60. Z. Wang, J. Sun, Y. Huo, Y. Yan, Z. Ma, M. Bu, C. Sun, et al., Porous Co3O4 nanocrystals derived by metal-organic frameworks on reduced graphene oxide for efficient room-temperature NO2 sensing properties. J. Alloy. Compd. 856, 158199 (2021)

    Google Scholar 

  61. C. Arul, K. Moulaee, N. Donato, D. Iannazzo, N. Lavanya, G. Neri, C. Sekar, Temperature modulated Cu-MOF based gas sensor with dual selectivity to acetone and NO2 at low operating temperatures. Sens. Actuators, B Chem. 329, 129053 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

Mr Ajeet Singh is thankful to the Council of Scientific and Industrial Research (CSIR), Government of India, for financial support in the form of Senior Research Fellowship (F.No: 16-9 June 2017/2018 NET/CSIR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bal Chandra Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Sikarwar, S., Yadav, B.C. (2022). Metal-Organic Frameworks for Gas Sensors. In: Sonker, R.K., Singh, K., Sonkawade, R. (eds) Smart Nanostructure Materials and Sensor Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-2685-3_11

Download citation

Publish with us

Policies and ethics