Skip to main content

Graphene-Metal-Organic Framework Modified Gas Sensor

  • Chapter
  • First Online:
Functional Nanomaterials

Abstract

The need for more efficient, more effective, and more rapid gas sensors has considerably increased spurred seeking novel materials to meet such growing demand. The main challenges for commercialization of gas sensors based on nanomaterials include commonly encountered low-level sensitivity, the need for enhanced accuracy, long-term stability, and improving their detection limits. Metal-organic frameworks (MOFs) with their superior properties of large surface area and tunable pore size are new classes of crystalline porous materials that are suited for gas sensing applications, where gas molecules detection can greatly be enhanced due to the high surface area of MOFs. However, some features like low stability or low selectivity of MOFs need to be properly addressed in order for MOFs to penetrate the area of gas detection. The gas sensing properties of graphene-based sensors greatly depend on the number of layers and their dispersion. The combination of nanomaterials in graphene structures prevents the agglomeration of the graphene sheet, which can result in increased the effective surface area for gas molecules absorption due to the excellent distribution of nanostructures. Several attempts have emerged over the past decade, where assembly of graphene-based materials and MOFs were effectively pursued to overcome on the above challenges. This chapter provides an overview of the recent developments in gas sensors based on MOF/graphene-based materials (MOF@G) and focusing on the parameters that resulted in enhanced gas sensing performance as well as their preparation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loutfi A, Coradeschi S, Mani GK, Shankar P, Rayappan JB (2015) Electronic noses for food quality: a review. J Food Eng 144:103–111

    Google Scholar 

  2. Basu S, Bhattacharyya P (2012) Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators, B Chem 173:1–21

    Google Scholar 

  3. Potyrailo RA (2016) Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet. Chem Rev 116(19):11877–11923

    Google Scholar 

  4. Sáaedi A, Yousefi R (2017) Improvement of gas-sensing performance of ZnO nanorods by group-I elements doping. J Appl Phys 122(22):224505

    Google Scholar 

  5. Liu FT, Gao SF, Pei SK, Tseng SC, Liu CH (2009) ZnO nanorod gas sensor for NO2 detection. J Taiwan Inst Chem Eng 40(5):528–532

    Google Scholar 

  6. Lupan O, Cretu V, Deng M, Gedamu D, Paulowicz I, Kaps S, Mishra YK, Polonskyi O, Zamponi C, Kienle L, Trofim V, Tiginyanu I, Adelung R (2014) Versatile growth of freestanding orthorhombic α-molybdenum trioxide nano- and microstructures by rapid thermal processing for gas nanosensors. Journal Phys Chem C 118(27):15068–15078

    Google Scholar 

  7. Paulowicz I, Hrkac V, Kaps S, Cretu V, Lupan O, Braniste T, Duppel V, Tiginyanu I, Kienle L, Adelung R, Mishra YK (2015) Three-dimensional SnO nanowire networks for multifunctional applications: from high-temperature stretchable ceramics to ultraresponsive sensors. Adv Electron Mater 1(8):1500081

    Google Scholar 

  8. Sonker RK, Yadav BC (2017) Development of Fe2 O3 –PANI nanocomposite thin film based sensor for NO2 detection. J Taiwan Inst Chem Eng 77:276–281

    Google Scholar 

  9. Yan XB, Han ZJ, Yang Y, Tay BK (2007) NO2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization. Sens Actuators, B Chem 123(1):107–113

    Google Scholar 

  10. Geng L, Zhao Y, Huang X, Wang S, Zhang S, Wu S (2007) Characterization and gas sensitivity study of polyaniline/SnO2 hybrid material prepared by hydrothermal route. Sens Actuators, B Chem 120(2):568–572

    Google Scholar 

  11. Mohammadi MR, Fray DJ (2009) Development of nanocrystalline TiO2–Er2O3 and TiO2–Ta2O5 thin film gas sensors: controlling the physical and sensing properties. Sens Actuators, B Chem 141(1):76–84

    Google Scholar 

  12. Tian W, Liu X, Yu W (2018) Research progress of gas sensor based on graphene and its derivatives: a review. Appl Sci 8(7):1118

    Google Scholar 

  13. Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B (2016) Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord Chem Rev 307:361–381

    Google Scholar 

  14. Xie Z, Xu W, Cui X, Wang Y (2017) Recent progress in metal-organic frameworks and their derived nanostructures for energy and environmental applications. ChemSusChem 10(8):1645–1663

    Google Scholar 

  15. Xu G, Nie P, Dou H, Ding B, Li L, Zhang X (2017) Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater Today 20(4):191–209

    Google Scholar 

  16. Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444–1230444

    Google Scholar 

  17. Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38(5):1477

    Google Scholar 

  18. Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M, Ameloot R (2017) An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem Soc Rev 46(11):3185–3241

    Google Scholar 

  19. Zhao W, Peng J, Wang W, Liu S, Zhao Q, Huang W (2018) Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices. Coord Chem Rev 377:44–63

    Google Scholar 

  20. Diercks CS, Liu Y, Cordova KE, Yaghi OM (2018) The role of reticular chemistry in the design of CO2 reduction catalysts. Nat Mater 17(4):301–307

    Google Scholar 

  21. Rowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73(1–2):3–14

    Google Scholar 

  22. Fang X, Zong B, Mao S (2018) Metal–organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett 10(4)

    Google Scholar 

  23. Pachfule P, Shinde D, Majumder M, Xu Q (2016) Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat Chem 8(7):718–724

    Google Scholar 

  24. Sun X, Xia Q, Zhao Z, Li Y, Li Z (2014) Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane. Chem Eng J 239:226–232

    Google Scholar 

  25. Yang C, You X, Cheng J, Zheng H, Chen Y (2017) A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin. Appl Catal B 200:673–680

    Google Scholar 

  26. Yang Y, Lin Z, Gao S, Su J, Lun Z, Xia G, Chen J, Zhang R, Chen Q (2016) Tuning electronic structures of nonprecious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity. ACS Catal 7(1):469–479

    Google Scholar 

  27. Biswal BP, Shinde DB, Pillai VK, Banerjee R (2013) Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning. Nanoscale 5(21):10556

    Google Scholar 

  28. Wang D, Chen A, JenA K-J (2013) Reducing cross-sensitivity of TiO2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection. Phys Chem Chem Phys 15(14):5017

    Google Scholar 

  29. Yang G, Lee C, Kim J, Ren F, Pearton SJ (2013) Flexible graphene-based chemical sensors on paper substrates. Phys Chem Chem Phys 15(6):1798-1801

    Google Scholar 

  30. Azarang M, Shuhaimi A, Yousefi R, Sookhakian M (2014) Effects of graphene oxide concentration on optical properties of ZnO/RGO nanocomposites and their application to photocurrent generation. J Appl Phys 116(8):084307

    Google Scholar 

  31. Baghchesara MA, Azimi HR, Shiravizadeh AG, Teridi MAM, Yousefi R (2019) Improving the intrinsic properties of rGO sheets by S-doping and the effects of rGO improvements on the photocatalytic performance of Cu3Se2/rGO nanocomposites. Appl Surf Sci 466:401–410

    Google Scholar 

  32. Dezfuly RF, Yousefi R, Jamali-Sheini F (2016) Photocurrent applications of Zn (1−x) Cd x O/rGO nanocomposites. Ceram Int 42(6):7455–7461

    Google Scholar 

  33. Shiravizadeh AG, Elahi SM, Sebt SA, Yousefi R (2018) High performance of visible-NIR broad spectral photocurrent application of monodisperse PbSe nanocubes decorated on rGO sheets. J Appl Phys 123(8):083102

    Google Scholar 

  34. Shiravizadeh AG, Yousefi R, Elahi SM, Sebt SA (2017) Effects of annealing atmosphere and rGO concentration on the optical properties and enhanced photocatalytic performance of SnSe/rGO nanocomposites. Phys Chem Chem Phys 19(27):18089–18098

    Google Scholar 

  35. Kharatzadeh A, Jamali-Sheini F, Yousefi R (2016) Excellent photocatalytic performance of Zn(1−x)MgxO/rGO nanocomposites under natural sunlight irradiation and their photovoltaic and UV detector applications. Mater Des 107:47–55

    Google Scholar 

  36. Khorramshahi V, Karamdel J, Yousefi R (2019) High acetic acid sensing performance of Mg-doped ZnO/rGO nanocomposites. Ceram Int 45(6):7034–7043

    Google Scholar 

  37. Nouri M, Saray AM, Azimi HR, Yousefi R (2017) High solar-light photocatalytic activity of using Cu 3 Se 2 /rGO nanocomposites synthesized by a green co-precipitation method. Solid State Sci 73:7–12

    Google Scholar 

  38. Yoo D-H, Cuong TV, Lee S, Hwang WS, Yoo WJ, Hong C-H, Hahn SH (2014) Unraveling oxygen transfer at the graphene oxide–ZnO nanorod interface. J Phys Chem C 118(31):17638–17642

    Google Scholar 

  39. Yousefi R, Beheshtian J, Seyed-Talebi SM, Azimi HR, Jamali-Sheini F (2018) Experimental and theoretical study of enhanced photocatalytic activity of Mg-doped ZnO NPs and ZnO/rGO nanocomposites. Chem Asian J 13(2):194–203

    Google Scholar 

  40. Yousefi R, Azimi HR, Mahmoudian MR, Basirun WJ (2018) The effect of defect emissions on enhancement photocatalytic performance of ZnSe QDs and ZnSe/rGO nanocomposites. Appl Surf Sci 435:886–893

    Google Scholar 

  41. Yousefi R, Azimi HR, Mahmoudian MR, Cheraghizade M (2018) Highly enhanced photocatalytic performance of Zn(1−x)MgxO/rGO nanostars under sunlight irradiation synthesized by one-pot refluxing method. Adv Powder Technol 29(1):78–85

    Google Scholar 

  42. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC, Trends Anal Chem 29(9):954–965

    Google Scholar 

  43. Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A 1(35):10078

    Google Scholar 

  44. De Arco LG, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. ACS Nano 4(5):2865–2873

    Google Scholar 

  45. Maxwell Zheng, Kuniharu Takei, Benjamin Hsia, Hui Fang, Xiaobo Zhang, Nicola Ferralis, Hyunhyub Ko, Yu-Lun Chueh, Yuegang Zhang, Roya Maboudian, Ali Javey, (2010) Metal-catalyzed crystallization of amorphous carbon to graphene. Applied Physics Letters 96 (6):063110

    Google Scholar 

  46. Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3(2):301–306

    Google Scholar 

  47. Ratinac KR, Yang W, Ringer SP, Braet F (2010) Toward ubiquitous environmental gas sensors—capitalizing on the promise of graphene. Environ Sci Technol 44(4):1167–1176

    Google Scholar 

  48. Shao Q, Liu G, Teweldebrhan D, Balandin AA, Rumyantsev S, Shur MS, Yan D, Flicker noise in bilayer graphene transistors. IEEE Electron Device Lett 30(3):288–290

    Google Scholar 

  49. Xu Y, Shi G (2011) Assembly of chemically modified graphene: methods and applications. J Mater Chem 21(10):3311–3323

    Google Scholar 

  50. Xia W, Qu C, Liang Z, Zhao B, Dai S, Qiu B, Jiao Y, Zhang Q, Huang X, Guo W, Dang D, Zou R, Xia D, Xu Q, Liu M (2017) High-performance energy storage and conversion materials derived from a single metal–organic framework/graphene aerogel composite. Nano Lett 17(5):2788–2795

    Google Scholar 

  51. Huang X, Zheng B, Liu Z, Tan C, Liu J, Chen B, Li H, Chen J, Zhang X, Fan Z, Zhang W, Guo Z, Huo F, Yang Y, Xie L-H, Huang W, Zhang H (2014) Coating two-dimensional nanomaterials with metal–organic frameworks. ACS Nano 8(8):8695–8701

    Google Scholar 

  52. Yang Q, Xu Q, Jiang H-L (2017) Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev 46(15):4774–4808

    Google Scholar 

  53. Zheng Y, Zheng S, Xue H, Pang H (2018) Metal-organic frameworks/graphene-based materials: preparations and applications. Adv Funct Mater 28(47):1804950

    Google Scholar 

  54. Sáaedi A, Shabani P, Yousefi R (2019) High performance of methanol gas sensing of ZnO/PAni nanocomposites synthesized under different magnetic field. J Alloy Compd 802:335–344

    Google Scholar 

  55. Swager TM (2018) Sensor technologies empowered by materials and molecular innovations. Angew Chem Int Ed 57(16):4248–4257

    Google Scholar 

  56. Durgalakshmi D, Ajay Rakkesh R, Mohanraj J (2019) Graphene-metal-organic frame work modified electrochemical sensors. In: Graphene-based electrochemical sensors for biomolecules, pp 275–296. Elsevier Publisher

    Google Scholar 

  57. D'Alessandro DM (2016) Exploiting redox activity in metal–organic frameworks: concepts, trends and perspectives. Chem Commun 52(58):8957–8971

    Google Scholar 

  58. Aubrey ML, Wiers BM, Andrews SC, Sakurai T, Reyes-Lillo SE, Hamed SM, Yu C-J, Darago LE, Mason JA, Baeg J-O, Grandjean F, Long GJ, Seki S, Neaton JB, Yang P, Long JR (2018) Electron delocalization and charge mobility as a function of reduction in a metal–organic framework. Nat Mater 17(7):625–632

    Google Scholar 

  59. Rubio‐Giménez V, Almora‐Barrios N, Escorcia‐Ariza G, Galbiati M, Sessolo M, Tatay S, Martí‐Gastaldo C (2018) Origin of the chemiresistive response of ultrathin films of conductive metal–organic frameworks. Angew Chem Int Ed 57(46):15086–15090

    Google Scholar 

  60. Hod I, Bury W, Karlin DM, Deria P, Kung C-W, Katz M-J, So M, Klahr B, Jin D, Chung Y-W, Odom TW, Farha OK, Hupp JT (2014) Directed growth of electroactive metal-organic framework thin films using electrophoretic deposition. Adv Mater 26(36):6295–6300

    Google Scholar 

  61. Hassan MH, Haikal RR, Hashem T, Rinck J, Koeniger F, Thissen P, Heiβler S, Wöll C, Alkordi MH (2019) Electrically conductive, monolithic metal–organic framework–graphene (MOF@G) composite coatings. ACS Appl Mater Interfaces 11(6):6442–6447

    Google Scholar 

  62. Hassan MH, Alkordi MH, Hassanien A (2019) Probing the conductivity of metal-organic framework-graphene nanocomposite. Mater Lett 246:13–16

    Google Scholar 

  63. Dumée L, He L, Hill M, Zhu B, Duke M, Schütz J, She F, Wang H, Gray S, Hodgson P, Kong L (2013) Seeded growth of ZIF-8 on the surface of carbon nanotubes towards self-supporting gas separation membranes. J Mater Chem A 1(32):9208

    Google Scholar 

  64. Petit C, Bandosz TJ (2009) MOF-graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks. Adv Mater 21(46):4753–4757

    Google Scholar 

  65. Wang Y, Yu J, Xiao W, Li Q (2014) Microwave-assisted hydrothermal synthesis of graphene based Au–TiO photocatalysts for efficient visible-light hydrogen production. J Mater Chem A 2(11):3847–3855

    Google Scholar 

  66. Fardindoost S, Hatamie S, Zad AI, Astaraei FR (2018) Hydrogen sensing properties of nanocomposite graphene oxide/Co-based metal organic frameworks (Co-MOFs@GO). Nanotechnology 29(1):015501

    Google Scholar 

  67. Murashima Y, Karim MR, Furue R, Matsui T, Takehira H, Wakata K, Toda K, Ohtani R, Nakamura M, Hayami S (2016) Reduced graphene oxide–transition metal hybrids as p-type semiconductors for acetaldehyde sensing. Inorg Chem Front 3(6):842–848

    Google Scholar 

  68. Aswal DK, Gupta SK (2007) Science and technology of chemiresistor gas sensors. Nova Science Publisher, Hauppauge, NY, USA

    Google Scholar 

  69. Zhang D, Wu Z, Zong X (2019) Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens Actuators, B Chem 289:32–41

    Google Scholar 

  70. Sáaedi A, Shabani P, Yousefi R (2019) Study on the effects of the magneto assisted deposition on ammonia gas sensing properties of polyaniline. J Mater Sci Mater Electron 30(11):10765–10775

    Google Scholar 

  71. Yin Y, Zhang H, Huang P, Xiang C, Zou Y, Xu F, Sun L (2018) Inducement of nanoscale Cu–BTC on nanocomposite of PPy–rGO and its performance in ammonia sensing. Mater Res Bull 99:152–160

    Google Scholar 

  72. Cheng L, Ma SY, Li XB, Luo J, Li WQ, Li FM, Mao YZ, Wang TT, Li YF (2014) Highly sensitive acetone sensors based on Y-doped SnO2 prismatic hollow nanofibers synthesized by electrospinning. Sens Actuators, B Chem 200:181–190

    Google Scholar 

  73. Zhang D, Wu Z, Zong X (2019) Metal-organic frameworks-derived zinc oxide nanopolyhedra/S, N: graphene quantum dots/polyaniline ternary nanohybrid for high-performance acetone sensing. Sens Actuators, B Chem 288:232–242

    Google Scholar 

  74. Ding D, Xue Q, Lu W, Xiong Y, Zhang J, Pan X, Tao B (2018) Chemically functionalized 3D reticular graphene oxide frameworks decorated with MOF-derived Co3O4: towards highly sensitive and selective detection to acetone. Sens Actuators, B Chem 259:289–298

    Google Scholar 

Download references

Acknowledgements

R. Yousefi would like to acknowledge I.A.U, Masjed-Soleiman Branch and Shiraz University for their financial support in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Yousefi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sáaedi, A., Moradi, M., Alkordi, M.H., Mahmoudian, M.R., Bordbar, G.H., Yousefi, R. (2020). Graphene-Metal-Organic Framework Modified Gas Sensor. In: Thomas, S., Joshi, N., Tomer, V. (eds) Functional Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-4810-9_5

Download citation

Publish with us

Policies and ethics