Skip to main content

Additive Manufacturing as the Future of Green Chemical Engineering

  • Chapter
  • First Online:
Additive Manufacturing for Chemical Sciences and Engineering

Abstract

Chemical sciences and engineering have made outstanding contributions in fulfillment of the needs of our technological society and upliftment of the quality of human life by enabling critical technologies for processing and manufacturing of high-volume essential commodities such as detergents, creams, sanitizers, pharmaceuticals, textiles, plastics, rubbers and so on. The global models of chemical manufacturing have been continuously evolving since the colonial rule to adapt to the socio-economic and political climate. In the face of the twenty-first century, chemical manufacturing is experiencing global challenges of different kinds ranging from depletion of natural resources, climate change and growing population to sustainable living, environmental compliance, and personalized healthcare. Thus, a great need has been felt for reinvigoration of the chemical processing and manufacturing industry in response to which the philosophies of industry 4.0 and smart manufacturing have seen global acceptance and recognition. However, this transcendence from the existing state of chemical manufacturing to smart manufacturing heavily relies on the availability and development of advanced manufacturing and sophisticated equipment, process intensification and efficient micro reaction technologies. Study, design, and engineering of equipment to manipulate chemical and physical phenomenon is at the heart of chemical engineering since equipment and reactor design directly governs process and energy efficiencies, performance, and process economics. Conventional subtractive and casting based manufacturing technologies are proving inadequate to meet the needs of modern chemical engineering demanding capabilities to fabricate sophisticated equipment with complex internal geometries, rapid prototyping, and performance testing. These manufacturing related issues can be effective phased out with the adoption and integration of additive manufacturing with chemical processing and manufacturing industries. While the automotive, aerospace, engineering and biomedical industries have hastily adopted AM technologies for associated benefits, the chemical industries have been lagging behind in the uptake due to lack of agility and adaptability in industrial chemical processes. Integration of AM with chemical industry is anticipated to bring widespread process automation, improved feedstock and product inventories, digital process control and process intensification. Future chemical reactors will be complex tailor-made devices with design optimized for fluid and particle flow, heat and mass transport and reaction thermodynamics. When reactions are catalytic in nature, the performance of the reactor becomes critically dependent on several of the catalyst properties, both physical and chemical. While the intrinsic chemical properties in terms of selectivity and activity are dependent on the choice of catalyst, other important considerations related to reactor efficiencies and design, are related to the structural properties of the catalyst, i.e., on how the active phase of the catalyst is dispersed in the support, that influences the available surface area, porosity, heat, and mass transfer characteristics as well as the hydrodynamic pressure dissipations. This aspect of structured catalytic reactor design, that is based on a functional integration of the catalytic as well as reactor design steps, is also receiving increasing focus from an advanced manufacturing viewpoint towards achieving higher efficiencies and lower energy consumption. In this chapter the role of additive manufacturing in chemical reactor and equipment design ranging from simulation and reactor modelling to demonstrated examples of additively manufactured micro mixers, micro heat exchanges and microreactors are elaborated which distinctly project additive manufacturing as the future of green chemical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3DFD:

Three-dimensional Fibre deposition

3D:

Three-dimensional

ABS:

Acrylonitrile Butadiene Styrene

AM:

Additive Manufacturing

CAD:

Computer Aided Design

CFD:

Computational Fluid Dynamics

CLIP:

Continuous Liquid Interface Production

CMA:

Complex Metallic Alloys

CNC:

Computer-numerically Controlled Machining

DIW:

Direct Ink Writing

DLP-SLA:

Dynamic Laser Projection Stereolithography

DMF:

Dimethylformamide

DNS:

Direct Numerical Simulations

EDM:

Electrode Discharge Machining

FCC:

Fluidized Catalytic Cracker

FDM:

Fused Deposition Modelling

FEM:

Finite Element Method

FTS:

Fischer-Tropsch Synthesis

FVM:

Finite Volume Method

HIPS:

High-impact Polystyrene

LBM:

Lattice Boltzmann model

LVG:

Longitudinal Vortex Generation

MJM:

Multijet Modelling

MOF:

Metal Organic Framework

MTO:

Methanol to Olefin reaction

NCM:

Nanochannel Microreactor

PA:

Polyamide

PC:

Polycarbonate

PDMS:

Polydimethylsiloxane

PEEK:

Polyether ether ketone

PEFC:

Polymer electrolyte fuel cells

PET:

Polyethylene terephthalate

PETG:

Polyethylene terephthalate glycol

PETT:

Polyethylene co-trimethyleneterephthalate

PIV:

Particle Image Velocimetry

PLA:

Polylactic Acid

PLIF:

Planar Laser Induced Fluorescence

PPSF:

Polyphenylsulfone

PP:

Polypropylene

PVC:

Polyvinylchloride

QC:

Quasicrystals

Re:

Reynolds Number

RTD:

Residence Time Distributions

RWP:

Rectangular Winglet Pair

SLA:

Stereolithography

SLM:

Selective Laser Melting

SLS:

Selective Laser Sintering

SMS:

Selective Mask Sintering

UAR:

Unsteady Asymmetric Regime

USR:

Unsteady Symmetric Regime

UV:

Ultraviolet

WeG:

Weber number

References

  1. Rose J, Lukic V, Milon T, Cappuzzo A (2016) Sprinting to value in industry 4.0: perspective from and implications for US manufacturers. Boston Consulting Group

    Google Scholar 

  2. Gerven TV, Stankiewicz A (2009) Structure, energy, synergy, time—the fundamentals of process intensification. Ind Eng Chem Res 48:2465–2474

    Article  Google Scholar 

  3. Dautzenberg FM, Mukherjee M (2001) Process intensification using multifunctional reactors. Chem Eng Sci 56:251–267

    Article  CAS  Google Scholar 

  4. Huang K, Wang S-J, Shan L, Zhu Q, Qian J (2007) Seeking synergistic effect—a key principle in process intensification. Sep Purif Technol 57(1):111–120. https://doi.org/10.1016/j.seppur.2007.03.022

    Article  CAS  Google Scholar 

  5. SM blank reference

    Google Scholar 

  6. Zhakeyev A, Wang P, Zhang L, Shu W, Wang H, Xuan J (2017) Additive manufacturing: unlocking the evolution of energy materials. Adv Sci 4(10):1700187. https://doi.org/10.1002/advs.201700187

    Article  CAS  Google Scholar 

  7. Parra-Cabrera C, Achille C, Kuhn S, Ameloot R (2018) 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors. Chem Soc Rev 47(1):209–230. https://doi.org/10.1039/c7cs00631d

    Article  CAS  PubMed  Google Scholar 

  8. Jähnisch K, Hessel V, Löwe H, Baerns M (2004) Chemistry in microstructured reactors. Angew Chem Int Ed 43(4):406–446. https://doi.org/10.1002/anie.200300577

    Article  CAS  Google Scholar 

  9. Kockmann N (2015) Modulare chemische Reaktoren für die Prozessentwicklung und Produktion in kontinuierlichen Mehrzweckanlagen. Chem Ing Tech 87(9):1173–1184. https://doi.org/10.1002/cite.201500028

    Article  CAS  Google Scholar 

  10. Kulkarni AA (2014) Continuous flow nitration in miniaturized devices. Beilstein J Org Chem 10:405–424. https://doi.org/10.3762/bjoc.10.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mastronardi F, Gutmann B, Kappe CO (2013) Continuous flow generation and reactions of anhydrous diazomethane using a teflon AF-2400 tube-in-tube reactor. Org Lett 15(21):5590–5593

    Article  CAS  Google Scholar 

  12. Schwalbe T, Autze V, Wille G (2002) Chemical synthesis in microreactors. Chimia 56:636–646

    Article  CAS  Google Scholar 

  13. Cao E, Zuburtikudis I, Al-Rifai N, Roydhouse M, Gavriilidis A (2014) Enhanced performance of oxidation of rosalva (9-decen-1-ol) to costenal (9-decenal) on porous silicon-supported silver catalyst in a microstructured reactor. Processes 2(1):141–157. https://doi.org/10.3390/pr2010141

    Article  Google Scholar 

  14. Kundu A, Ahn JE, Park S-S, Shul YG, Han HS (2008) Process intensification by micro-channel reactor for steam reforming of methanol. Chem Eng J 135(1–2):113–119. https://doi.org/10.1016/j.cej.2007.02.026

    Article  CAS  Google Scholar 

  15. Hu J, Wang Y, Cao C, Elliott DC, Stevens DJ, White JF (2005) Conversion of biomass syngas to DME using a microchannel reactor. Ind Eng Chem Res 44:1722–1727

    Article  CAS  Google Scholar 

  16. Liguori F, Barbaro P (2014) Green semi-hydrogenation of alkynes by Pd@borate monolith catalysts under continuous flow. J Catal 311:212–220. https://doi.org/10.1016/j.jcat.2013.11.027

    Article  CAS  Google Scholar 

  17. Bravo J, Karim A, Conant T, Lopez GP, Datye A (2004) Wall coating of a CuO/ZnO/Al2O3 methanol steam reforming catalyst for micro-channel reformers. Chem Eng J 101(1–3):113–121. https://doi.org/10.1016/j.cej.2004.01.011

    Article  CAS  Google Scholar 

  18. Watts P, Haswell SJ (2005) The application of micro reactors for organic synthesis. Chem Soc Rev 34(3):235–246. https://doi.org/10.1039/B313866F

    Article  CAS  PubMed  Google Scholar 

  19. Ober TJ, Foresti D, Lewis JA (2015) Active mixing of complex fluids at the microscale. Proc Natl Acad Sci USA 112(40):12293–12298. https://doi.org/10.1073/pnas.1509224112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bakhtiary-Davijany H, Hayer F, Phan XK, Myrstad R, Venvik HJ, Pfeifer P, Holmen A (2011) Characteristics of an Integrated micro packed bed reactor-heat exchanger for methanol synthesis from syngas. Chem Eng J 167(2–3):496–503. https://doi.org/10.1016/j.cej.2010.08.074

    Article  CAS  Google Scholar 

  21. Tanimu A, Jaenicke S, Alhooshani K (2017) Heterogeneous catalysis in continuous flow microreactors: a review of methods and applications. Chem Eng J 327:792–821. https://doi.org/10.1016/j.cej.2017.06.161

    Article  CAS  Google Scholar 

  22. Charpentier JC (2005) Process intensification by miniaturization. Chem Eng Technol 28(3):255–258. https://doi.org/10.1002/ceat.200407026

    Article  CAS  Google Scholar 

  23. Watts P, Wiles C (2007) Recent advances in synthetic micro reaction technology. Chem Commun 5:443–467. https://doi.org/10.1039/B609428G

    Article  Google Scholar 

  24. Rahman M, Rebrov E (2014) Microreactors for gold nanoparticles synthesis: from faraday to flow. Processes 2(2):466–493. https://doi.org/10.3390/pr2020466

    Article  CAS  Google Scholar 

  25. Zhang B (2016) The influence of wall roughness on detonation limits in hydrogen–oxygen mixture. Combust Flame 169:333–339. https://doi.org/10.1016/j.combustflame.2016.05.003

    Article  CAS  Google Scholar 

  26. Zhang B, Liu H, Yan B (2019) Investigation on the detonation propagation limit criterion for methane-oxygen mixtures in tubes with different scales. Fuel 239:617–622. https://doi.org/10.1016/j.fuel.2018.11.062

    Article  CAS  Google Scholar 

  27. Gao Y, Zhang B, Ng HD, Lee JHS (2016) An experimental investigation of detonation limits in hydrogen–oxygen–argon mixtures. Int J Hydrogen Energy 41(14):6076–6083. https://doi.org/10.1016/j.ijhydene.2016.02.130

    Article  CAS  Google Scholar 

  28. Teng H, Ng HD, Jiang Z (2017) Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture. Proc Combust Inst 36(2):2735–2742. https://doi.org/10.1016/j.proci.2016.09.025

    Article  CAS  Google Scholar 

  29. Alshammari YM, Hellgardt K (2017) CFD analysis of hydrothermal conversion of heavy oil in continuous flow reactor. Chem Eng Res Des 117:250–264. https://doi.org/10.1016/j.cherd.2016.10.002

    Article  CAS  Google Scholar 

  30. Della Torre A, Lucci F, Montenegro G, Onorati A, Dimopoulos Eggenschwiler P, Tronconi E, Groppi G (2016) CFD modeling of catalytic reactions in open-cell foam substrates. Comput Chem Eng 92:55–63. https://doi.org/10.1016/j.compchemeng.2016.04.031

    Article  CAS  Google Scholar 

  31. Li K, Valla J, Garcia-Martinez J (2014) Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking. ChemCatChem 6(1):46–66. https://doi.org/10.1002/cctc.201300345

    Article  CAS  Google Scholar 

  32. Zhou L, Zhang K, Hu Z, Tao Z, Mai L, Kang Y-M, Chou S-L, Chen J (2018) Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries. Adv Energy Mater 8(6):1701415. https://doi.org/10.1002/aenm.201701415

    Article  CAS  Google Scholar 

  33. Schwieger W, Machoke AG, Weissenberger T, Inayat A, Selvam T, Klumpp M, Inayat A (2016) Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem Soc Rev 45(12):3353–3376. https://doi.org/10.1039/C5CS00599J

    Article  CAS  PubMed  Google Scholar 

  34. Roth WJ, Gil B, Makowski W, Marszalek B, Eliášová P (2016) Layer like porous materials with hierarchical structure. Chem Soc Rev 45(12):3400–3438. https://doi.org/10.1039/C5CS00508F

    Article  CAS  PubMed  Google Scholar 

  35. Grundemann L, Scholl S (2014) Ecological and economic assessment of micro-/milli-continuous campaign manufacturing: the case of writing ink. Processes 2(1):238–264. https://doi.org/10.3390/pr2010238

    Article  CAS  Google Scholar 

  36. Karakaya M, Avci AK (2009) Simulation of on-board fuel conversion in catalytic microchannel reactor-heat exchanger systems. Top Catal 52(13–20):2112–2116. https://doi.org/10.1007/s11244-009-9383-1

    Article  CAS  Google Scholar 

  37. Munera Parra A, Antweiler N, Nagpal R, Agar D (2014) Stability analysis of reactive multiphase slug flows in microchannels. Processes 2(2):371–391. https://doi.org/10.3390/pr2020371

    Article  CAS  Google Scholar 

  38. Mehla S, Das J, Jampaiah D, Periasamy S, Nafady A, Bhargava SK (2019) Recent advances in preparation methods for catalytic thin films and coatings. Catal Sci Technol 9:3582–3602. https://doi.org/10.1039/C9CY00518H

    Article  Google Scholar 

  39. Phan XK, Bakhtiary-Davijany H, Myrstad R, Pfeifer P, Venvik HJ, Holmen A (2011) Preparation and performance of Cu-based monoliths for methanol synthesis. Appl Catal A 405(1–2):1–7. https://doi.org/10.1016/j.apcata.2011.07.005

    Article  CAS  Google Scholar 

  40. Mehla S, Krishnamurthy KR, Viswanathan B, John M, Niwate Y, Kishore Kumar SA, Pai SM, Newalkar BL (2013) n-Hexadecane hydroisomerization over BTMACl/TEABr/MTEABr templated ZSM-12. Microporous Mesoporous Mater 177:120–126. https://doi.org/10.1016/j.micromeso.2013.05.001

    Article  CAS  Google Scholar 

  41. Mehla S, Krishsna V, Sriganesh G, Ravishankar R (2018) Mesoporous superacid catalysts for valorisation of refinery naphtha stream. RSC Adv 8(59):33702–33709. https://doi.org/10.1039/C8RA07024E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ganley J, Riechmann K, Seebauer E, Masel R (2004) Porous anodic alumina optimized as a catalyst support for microreactors. J Catal 227(1):26–32. https://doi.org/10.1016/j.jcat.2004.06.016

    Article  CAS  Google Scholar 

  43. Moharir AS, Shah SS, Gudi RD, Devereux BM, Bussche KV, Venimadhavan G (2001) Generalized reactor model: an object oriented approach to reactor modeling. In: Gani R, Jørgensen SB (eds) Computer aided chemical engineering, vol 9. Elsevier, pp 243–248. https://doi.org/10.1016/S1570-7946(01)80036-5

  44. Mandaliya DD, Moharir AS, Gudi RD (2012) Generic reactor modeling and simulation framework for industrial reactors. In: Paper presented at the AIChE annual conference. Pittsburgh, PA, USA

    Google Scholar 

  45. Mandaliya DD (2016) Generalized model based analysis approaches for chemical reactors. Indian Institute of Technology Bombay, Mumbai

    Google Scholar 

  46. Mandaliya DD, Gudi RD (2021) Multi-scale analysis of chemical reactors using green's function method. In: Paper presented at the AIChE annual conference. Boston, MA, USA

    Google Scholar 

  47. Wei Q, Li H, Liu G, He Y, Wang Y, Tan YE, Wang D, Peng X, Yang G, Tsubaki N (2020) Metal 3D printing technology for functional integration of catalytic system. Nat Commun 11(1):4098. https://doi.org/10.1038/s41467-020-17941-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kuipers JAM, van Swaaij WPM (1998) Computational fluid dynamics applied to chemical reaction engineering. In: Advances in chemical engineering, vol 24. Advances in chemical engineering, pp 227–328. https://doi.org/10.1016/s0065-2377(08)60094-0

  49. Salciccioli M, Stamatakis M, Caratzoulas S, Vlachos DG (2011) A review of multiscale modeling of metal-catalyzed reactions: mechanism development for complexity and emergent behavior. Chem Eng Sci 66(19):4319–4355. https://doi.org/10.1016/j.ces.2011.05.050

    Article  CAS  Google Scholar 

  50. Charpentier J-C (2010) Among the trends for a modern chemical engineering, the third paradigm: the time and length multiscale approach as an efficient tool for process intensification and product design and engineering. Chem Eng Res Des 88(3):248–254. https://doi.org/10.1016/j.cherd.2009.03.008

    Article  CAS  Google Scholar 

  51. Caygill G, Zanfir M, Gavriilidis A (2006) Scalable reactor design for pharmaceuticals and fine chemicals production. 1: potential scale-up obstacles. Organic Process Research & Development

    Google Scholar 

  52. Elvira KS, Casadevall i Solvas X, Wootton RC, deMello AJ (2013) The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat Chem 5(11):905–915. https://doi.org/10.1038/nchem.1753

    Article  CAS  PubMed  Google Scholar 

  53. Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology-a tool for the safe manufacturing of active pharmaceutical ingredients. Angew Chem Int Ed Engl 54(23):6688–6728. https://doi.org/10.1002/anie.201409318

    Article  CAS  PubMed  Google Scholar 

  54. Hwang G-J, Onuki K (2001) Simulation study on the catalytic decomposition of hydrogen iodide in a membrane reactor with a silica membrane for the thermochemical water-splitting IS process. J Membr Sci 194:207–215

    Article  CAS  Google Scholar 

  55. Salman BH, Mohammed HA, Munisamy KM, Kherbeet AS (2013) Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: a review. Renew Sustain Energy Rev 28:848–880. https://doi.org/10.1016/j.rser.2013.08.012

    Article  CAS  Google Scholar 

  56. Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9(2):190–197

    Article  Google Scholar 

  57. Hossain S, Ansari MA, Kim K-Y (2009) Evaluation of the mixing performance of three passive micromixers. Chem Eng J 150(2–3):492–501. https://doi.org/10.1016/j.cej.2009.02.033

    Article  CAS  Google Scholar 

  58. Nema G, Garimella S, Fronk BM (2014) Flow regime transitions during condensation in microchannels. Int J Refrig 40:227–240. https://doi.org/10.1016/j.ijrefrig.2013.11.018

    Article  CAS  Google Scholar 

  59. An H, Li A, Sasmito AP, Kurnia JC, Jangam SV, Mujumdar AS (2012) Computational fluid dynamics (CFD) analysis of micro-reactor performance: effect of various configurations. Chem Eng Sci 75:85–95. https://doi.org/10.1016/j.ces.2012.03.004

    Article  CAS  Google Scholar 

  60. Zhao S, Wang W, Zhang M, Shao T, Jin Y, Cheng Y (2012) Three-dimensional simulation of mixing performance inside droplets in micro-channels by Lattice Boltzmann method. Chem Eng J 207–208:267–277. https://doi.org/10.1016/j.cej.2012.06.098

    Article  CAS  Google Scholar 

  61. Zhang J, Wang K, Teixeira AR, Jensen KF, Luo G (2017) Design and scaling up of microchemical systems: a review. Annu Rev Chem Biomol Eng 8:285–305. https://doi.org/10.1146/annurev-chembioeng-060816-101443

    Article  PubMed  Google Scholar 

  62. Hessel V, Löwe H, Schönfeld F (2005) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60(8–9):2479–2501. https://doi.org/10.1016/j.ces.2004.11.033

    Article  CAS  Google Scholar 

  63. Nguyen NT, Huang X (2005) Mixing in microchannels based on hydrodynamic focusing and time-interleaved segmentation: modelling and experiment. Lab Chip 5(11):1320–1326. https://doi.org/10.1039/b507548c

    Article  CAS  PubMed  Google Scholar 

  64. Wang K, Xie L, Lu Y, Luo G (2013) Generating microbubbles in a co-flowing microfluidic device. Chem Eng Sci 100:486–495. https://doi.org/10.1016/j.ces.2013.02.021

    Article  CAS  Google Scholar 

  65. Panić S, Loebbecke S, Tuercke T, Antes J, Bošković D (2004) Experimental approaches to a better understanding of mixing performance of microfluidic devices. Chem Eng J 101(1–3):409–419. https://doi.org/10.1016/j.cej.2003.10.026

  66. Kockmann N, Gottsponer M, Roberge DM (2011) Scale-up concept of single-channel microreactors from process development to industrial production. Chem Eng J 167(2–3):718–726. https://doi.org/10.1016/j.cej.2010.08.089

  67. Kockmann N, Kiefer T, Engler M, Woias P (2006) Convective mixing and chemical reactions in microchannels with high flow rates. Sens Actuators B Chem 117(2):495–508. https://doi.org/10.1016/j.snb.2006.01.004

    Article  CAS  Google Scholar 

  68. Faridkhou A, Larachi F (2014) Two-phase flow hydrodynamic study in micro-packed beds—effect of bed geometry and particle size. Chem Eng Process 78:27–36. https://doi.org/10.1016/j.cep.2014.02.005

    Article  CAS  Google Scholar 

  69. Dong Z, Yao C, Zhang Y, Chen G, Yuan Q, Xu J (2016) Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors. AIChE J 62(4):1294–1307. https://doi.org/10.1002/aic.15091

    Article  CAS  Google Scholar 

  70. Jung JH, Destgeer G, Ha B, Park J, Sung HJ (2016) On-demand droplet splitting using surface acoustic waves. Lab Chip 16(17):3235–3243. https://doi.org/10.1039/c6lc00648e

    Article  CAS  PubMed  Google Scholar 

  71. Abolhasani M, Coley CW, Xie L, Chen O, Bawendi MG, Jensen KF (2015) Oscillatory microprocessor for growth and in situ characterization of semiconductor nanocrystals. Chem Mater 27(17):6131–6138. https://doi.org/10.1021/acs.chemmater.5b02821

    Article  CAS  Google Scholar 

  72. Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73:5822–5832

    Article  CAS  Google Scholar 

  73. Chung Y-C, Wu C-M, Lin S-H (2016) Particles sorting in micro channel using designed micro electromagnets of magnetic field gradient. J Magn Magn Mater 407:209–217. https://doi.org/10.1016/j.jmmm.2016.01.075

    Article  CAS  Google Scholar 

  74. Sochol RD, Sweet E, Glick CC, Venkatesh S, Avetisyan A, Ekman KF, Raulinaitis A, Tsai A, Wienkers A, Korner K, Hanson K, Long A, Hightower BJ, Slatton G, Burnett DC, Massey TL, Iwai K, Lee LP, Pister KS, Lin L (2016) 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip 16(4):668–678. https://doi.org/10.1039/c5lc01389e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gong H, Woolley AT, Nordin GP (2016) High density 3D printed microfluidic valves, pumps, and multiplexers. Lab Chip 16(13):2450–2458. https://doi.org/10.1039/c6lc00565a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Coleman JW, Garimella S (1999) Characterization of two-phase flow patterns in small diameter round and rectangular tubes. Int J Heat Mass Transf 42:2869–2881

    Article  Google Scholar 

  77. Garimella S, Fronk BM (2013) Single- and multi-constituent condensation of fluids and mixtures with varying properties in micro-channels. Exp Heat Transf 26(2–3):129–168. https://doi.org/10.1080/08916152.2012.736841

    Article  CAS  Google Scholar 

  78. Soleymani A, Yousefi H, Turunen I (2008) Dimensionless number for identification of flow patterns inside a T-micromixer. Chem Eng Sci 63(21):5291–5297. https://doi.org/10.1016/j.ces.2008.07.002

    Article  CAS  Google Scholar 

  79. Reddy Cherlo SK, Pushpavanam S (2010) Effect of depth on onset of engulfment in rectangular micro-channels. Chem Eng Sci 65(24):6486–6490. https://doi.org/10.1016/j.ces.2010.08.025

    Article  CAS  Google Scholar 

  80. Fani A, Camarri S, Salvetti MV (2014) Unsteady asymmetric engulfment regime in a T-mixer. Phys Fluids 26(7). https://doi.org/10.1063/1.4885451

  81. Bello-Ochende T, Liebenberg L, Meyer JP (2007) Constructal cooling channels for micro-channel heat sinks. Int J Heat Mass Transf 50(21–22):4141–4150. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.019

    Article  CAS  Google Scholar 

  82. Salimpour MR, Sharifhasan M, Shirani E (2011) Constructal optimization of the geometry of an array of micro-channels. Int Commun Heat Mass Transfer 38(1):93–99. https://doi.org/10.1016/j.icheatmasstransfer.2010.10.008

    Article  Google Scholar 

  83. Kim S-M, Mudawar I (2010) Analytical heat diffusion models for heat sinks with circular micro-channels. Int J Heat Mass Transf 53(21–22):4552–4566. https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.038

    Article  Google Scholar 

  84. Leroy F, Muller-Plathe F (2010) Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method. J Chem Phys 133(4):044110. https://doi.org/10.1063/1.3458796

    Article  CAS  PubMed  Google Scholar 

  85. Leung WW-F, Ren Y (2013) Crossflow and mixing in obstructed and width-constricted rotating radial microchannel. Int J Heat Mass Transf 64:457–467. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.064

    Article  CAS  Google Scholar 

  86. Naher S, Orpen D, Brabazon D, Poulsen CR, Morshed MM (2011) Effect of micro-channel geometry on fluid flow and mixing. Simul Model Pract Theory 19(4):1088–1095. https://doi.org/10.1016/j.simpat.2010.12.008

    Article  Google Scholar 

  87. Hsiao K-Y, Wu C-Y, Huang Y-T (2014) Fluid mixing in a microchannel with longitudinal vortex generators. Chem Eng J 235:27–36. https://doi.org/10.1016/j.cej.2013.09.010

    Article  CAS  Google Scholar 

  88. Kim BS, Kwak BS, Shin S, Lee S, Kim KM, Jung H-I, Cho HH (2011) Optimization of microscale vortex generators in a microchannel using advanced response surface method. Int J Heat Mass Transf 54(1–3):118–125. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.061

    Article  Google Scholar 

  89. Aubin J, Fletcher DF, Xuereb C (2005) Design of micromixers using CFD modelling. Chem Eng Sci 60(8–9):2503–2516. https://doi.org/10.1016/j.ces.2004.11.043

    Article  CAS  Google Scholar 

  90. Tsai RT, Wu CY (2011) An efficient micromixer based on multidirectional vortices due to baffles and channel curvature. Biomicrofluidics 5(1):14103. https://doi.org/10.1063/1.3552992

    Article  PubMed  Google Scholar 

  91. Jeon W, Shin CB (2009) Design and simulation of passive mixing in microfluidic systems with geometric variations. Chem Eng J 152(2–3):575–582. https://doi.org/10.1016/j.cej.2009.05.035

    Article  CAS  Google Scholar 

  92. Chuan L, Wang X-D, Wang T-H, Yan W-M (2015) Fluid flow and heat transfer in microchannel heat sink based on porous fin design concept. Int Commun Heat Mass Transfer 65:52–57. https://doi.org/10.1016/j.icheatmasstransfer.2015.04.005

    Article  Google Scholar 

  93. Gumuslu G, Avci AK (2012) Parametric analysis of Fischer-tropsch synthesis in a catalytic microchannel reactor. AIChE J 58(1):227–235. https://doi.org/10.1002/aic.12558

    Article  CAS  Google Scholar 

  94. Kitson PJ, Symes MD, Dragone V, Cronin L (2013) Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification. Chem Sci 4(8):3099–3103. https://doi.org/10.1039/c3sc51253c

    Article  CAS  Google Scholar 

  95. Kitson PJ, Glatzel S, Chen W, Lin CG, Song YF, Cronin L (2016) 3D printing of versatile reactionware for chemical synthesis. Nat Protoc 11(5):920–936. https://doi.org/10.1038/nprot.2016.041

    Article  CAS  PubMed  Google Scholar 

  96. Kitson PJ, Marshall RJ, Long D, Forgan RS, Cronin L (2014) 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up. Angew Chem Int Ed Engl 53(47):12723–12728. https://doi.org/10.1002/anie.201402654

    Article  CAS  PubMed  Google Scholar 

  97. Kitson PJ, Rosnes MH, Sans V, Dragone V, Cronin L (2012) Configurable 3D-printed millifluidic and microfluidic “lab on a chip” reactionware devices. Lab Chip 12(18):3267–3271. https://doi.org/10.1039/c2lc40761b

    Article  CAS  PubMed  Google Scholar 

  98. Rossi S, Porta R, Brenna D, Puglisi A, Benaglia M (2017) Stereoselective catalytic synthesis of active pharmaceutical ingredients in homemade 3D-printed mesoreactors. Angew Chem Int Ed Engl 56(15):4290–4294. https://doi.org/10.1002/anie.201612192

    Article  CAS  PubMed  Google Scholar 

  99. Capel AJ, Edmondson S, Christie SD, Goodridge RD, Bibb RJ, Thurstans M (2013) Design and additive manufacture for flow chemistry. Lab Chip 13(23):4583–4590. https://doi.org/10.1039/c3lc50844g

    Article  CAS  PubMed  Google Scholar 

  100. Symes MD, Kitson PJ, Yan J, Richmond CJ, Cooper GJ, Bowman RW, Vilbrandt T, Cronin L (2012) Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat Chem 4(5):349–354. https://doi.org/10.1038/nchem.1313

    Article  CAS  PubMed  Google Scholar 

  101. Shan Z, Van Kooten WEJ, Oudshoorn OL, Jansen JC, Van Bekkum H, Van Bleek CM, Calis HPA (2000) Optimization of the preparation of binderless ZSM-5 coatings on stainless steel monoliths by in situ hydrothermal synthesis. Microporous Mesoporous Mater 34:81–91

    Article  CAS  Google Scholar 

  102. Liu Y, Yang Z, Yu C, Gu X, Xu N (2011) Effect of seeding methods on growth of NaA zeolite membranes. Microporous Mesoporous Mater 143(2–3):348–356. https://doi.org/10.1016/j.micromeso.2011.03.016

    Article  CAS  Google Scholar 

  103. Lefevere J, Mullens S, Meynen V (2018) The impact of formulation and 3D-printing on the catalytic properties of ZSM-5 zeolite. Chem Eng J 349:260–268. https://doi.org/10.1016/j.cej.2018.05.058

    Article  CAS  Google Scholar 

  104. Konarova M, Aslam W, Ge L, Ma Q, Tang F, Rudolph V, Beltramini JN (2017) Enabling process intensification by 3D printing of catalytic structures. ChemCatChem 9(21):4132–4138. https://doi.org/10.1002/cctc.201700829

    Article  CAS  Google Scholar 

  105. Zhou X, Liu C-J (2020) Three-dimensional printing of porous carbon structures with tailorable pore sizes. Catal Today 347:2–9. https://doi.org/10.1016/j.cattod.2018.05.044

    Article  CAS  Google Scholar 

  106. Mehla S, Kandjani AE, Babarao R, Lee AF, Periasamy S, Wilson K, Ramakrishna S, Bhargava SK (2021) Porous crystalline frameworks for thermocatalytic CO2 reduction: an emerging paradigm. Energy Environ Sci 14(1):320–352. https://doi.org/10.1039/d0ee01882a

    Article  CAS  Google Scholar 

  107. Hurt C, Brandt M, Priya SS, Bhatelia T, Patel J, Selvakannan PR, Bhargava S (2017) Combining additive manufacturing and catalysis: a review. Catal Sci Technol 7(16):3421–3439. https://doi.org/10.1039/c7cy00615b

    Article  CAS  Google Scholar 

  108. Lawson S, Li X, Thakkar H, Rownaghi AA, Rezaei F (2021) Recent advances in 3D printing of structured materials for adsorption and catalysis applications. Chem Rev 121(10):6246–6291. https://doi.org/10.1021/acs.chemrev.1c00060

    Article  CAS  PubMed  Google Scholar 

  109. Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A, Samulski ET, DeSimone JM (2015) Continuous liquid interface production of 3D objects. Science 347(6228):1349–1352

    Article  CAS  Google Scholar 

  110. Zhang X, Jiang XN, Sun C (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sens Actuators 77:149–156

    Article  CAS  Google Scholar 

  111. Chaparro-Garnica CY, Jorda-Faus P, Bailon-Garcia E, Ocampo-Perez R, Aguilar-Madera CG, Davo-Quinonero A, Lozano-Castello D, Bueno-Lopez A (2020) Customizable heterogeneous catalysts: nonchanneled advanced monolithic supports manufactured by 3D-printing for improved active phase coating performance. ACS Appl Mater Interfaces 12(49):54573–54584. https://doi.org/10.1021/acsami.0c14703

    Article  CAS  PubMed  Google Scholar 

  112. Knitter R, Liauw MA (2004) Ceramic microreactors for heterogeneously catalysed gas-phase reactions. Lab Chip 4(4):378–383. https://doi.org/10.1039/b403361b

    Article  CAS  PubMed  Google Scholar 

  113. Wendel B, Rietzel D, Kühnlein F, Feulner R, Hülder G, Schmachtenberg E (2008) Additive processing of polymers. Macromol Mater Eng 293(10):799–809. https://doi.org/10.1002/mame.200800121

    Article  CAS  Google Scholar 

  114. Hutter C, Zenklusen A, Lang R, Rudolf von Rohr P (2011) Axial dispersion in metal foams and streamwise-periodic porous media. Chem Eng Sci 66(6):1132–1141. https://doi.org/10.1016/j.ces.2010.12.016

    Article  CAS  Google Scholar 

  115. Potdar A, Protasova LN, Thomassen L, Kuhn S (2017) Designed porous milli-scale reactors with enhanced interfacial mass transfer in two-phase flows. React Chem & Eng 2(2):137–148. https://doi.org/10.1039/c6re00185h

    Article  CAS  Google Scholar 

  116. Fonte CM, Leblebici ME, Dias MM, Lopes JCB (2013) The NETmix reactor: pressure drop measurements and 3D CFD modeling. Chem Eng Res Des 91(11):2250–2258. https://doi.org/10.1016/j.cherd.2013.07.014

    Article  CAS  Google Scholar 

  117. Kenzari S, Bonina D, Marie Dubois J, Fournee V (2014) Complex metallic alloys as new materials for additive manufacturing. Sci Technol Adv Mater 15(2):024802. https://doi.org/10.1088/1468-6996/15/2/024802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Amorim FL, Lohrengel A, Neubert V, Higa CF, Czelusniak T (2014) Selective laser sintering of Mo-CuNi composite to be used as EDM electrode. Rapid Prototyp J 20(1):59–68. https://doi.org/10.1108/rpj-04-2012-0035

    Article  Google Scholar 

  119. Rombouts M, Kruth JP, Froyen L, Mercelis P (2006) Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann 55(1):187–192. https://doi.org/10.1016/s0007-8506(07)60395-3

    Article  Google Scholar 

  120. Tolosa I, Garciandía F, Zubiri F, Zapirain F, Esnaola A (2010) Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies. Int J Adv Manuf Technol 51(5–8):639–647. https://doi.org/10.1007/s00170-010-2631-5

    Article  Google Scholar 

  121. Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149(1–3):616–622. https://doi.org/10.1016/j.jmatprotec.2003.11.051

    Article  CAS  Google Scholar 

  122. Wang Y, Shen Y, Wang Z, Yang J, Liu N, Huang W (2010) Development of highly porous titanium scaffolds by selective laser melting. Mater Lett 64(6):674–676. https://doi.org/10.1016/j.matlet.2009.12.035

    Article  CAS  Google Scholar 

  123. Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Mater Process Technol 211(2):275–284. https://doi.org/10.1016/j.jmatprotec.2010.09.019

    Article  CAS  Google Scholar 

  124. Scotti G, Kanninen P, Matilainen V-P, Salminen A, Kallio T (2016) Stainless steel micro fuel cells with enclosed channels by laser additive manufacturing. Energy 106:475–481. https://doi.org/10.1016/j.energy.2016.03.086

    Article  CAS  Google Scholar 

  125. Dawson RJ, Patel AJ, Rennie AEW, White S (2015) An investigation into the use of additive manufacture for the production of metallic bipolar plates for polymer electrolyte fuel cell stacks. J Appl Electrochem 45(7):637–645. https://doi.org/10.1007/s10800-015-0832-1

    Article  CAS  Google Scholar 

  126. Calignano F, Tommasi T, Manfredi D, Chiolerio A (2015) Additive manufacturing of a microbial fuel cell–a detailed study. Sci Rep 5:17373. https://doi.org/10.1038/srep17373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. González-Garay A, Frei MS, Al-Qahtani A, Mondelli C, Guillén-Gosálbez G, Pérez-Ramírez J (2019) Plant-to-planet analysis of CO2-based methanol processes. Energy Environ Sci 12(12):3425–3436. https://doi.org/10.1039/c9ee01673b

    Article  CAS  Google Scholar 

  128. Path to hydrogen competitiveness: a cost perspective (2020). Hydrogen Council

    Google Scholar 

  129. Liu G, Sheng Y, Ager JW, Kraft M, Xu R (2019) Research advances towards large-scale solar hydrogen production from water. EnergyChem 1(2). https://doi.org/10.1016/j.enchem.2019.100014

  130. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1(18):2655–2661. https://doi.org/10.1021/jz1007966

    Article  CAS  Google Scholar 

  131. Chen S, Takata T, Domen K (2017) Particulate photocatalysts for overall water splitting. Nat Rev Mater 2(10). https://doi.org/10.1038/natrevmats.2017.50

  132. Nishiyama H, Yamada T, Nakabayashi M, Maehara Y, Yamaguchi M, Kuromiya Y, Nagatsuma Y, Tokudome H, Akiyama S, Watanabe T, Narushima R, Okunaka S, Shibata N, Takata T, Hisatomi T, Domen K (2021) Photocatalytic solar hydrogen production from water on a 100-m(2) scale. Nature 598(7880):304–307. https://doi.org/10.1038/s41586-021-03907-3

    Article  CAS  PubMed  Google Scholar 

  133. Ambrosi A, Pumera M (2018) Multimaterial 3D-printed water electrolyzer with earth-abundant electrodeposited catalysts. ACS Sustain Chem & Eng 6(12):16968–16975. https://doi.org/10.1021/acssuschemeng.8b04327

    Article  CAS  Google Scholar 

  134. Pumera M (2019) Three-dimensionally printed electrochemical systems for biomedical analytical applications. Curr Opin Electrochem 14:133–137. https://doi.org/10.1016/j.coelec.2019.02.001

    Article  CAS  Google Scholar 

  135. Gusmao R, Sofer Z, Marvan P, Pumera M (2019) MoS2 versatile spray-coating of 3D electrodes for the hydrogen evolution reaction. Nanoscale 11(20):9888–9895. https://doi.org/10.1039/c9nr01876j

    Article  CAS  PubMed  Google Scholar 

  136. Camus P, Dufault JF, Mehanovic D, Braidy N, Fréchette LG, Picard M (2019) Testing of a 3D-printed solar micro-reactor for hydrogen production via natural gas reforming. J Phys Conf Ser 1407(1). https://doi.org/10.1088/1742-6596/1407/1/012005

  137. Elkoro A, Soler L, Llorca J, Casanova I (2019) 3D printed microstructured Au/TiO2 catalyst for hydrogen photoproduction. Appl Mater Today 16:265–272. https://doi.org/10.1016/j.apmt.2019.06.007

    Article  Google Scholar 

  138. Martínez L, Soler L, Angurell I, Llorca J (2019) Effect of TiO2 nanoshape on the photoproduction of hydrogen from water-ethanol mixtures over Au3Cu/TiO2 prepared with preformed Au-Cu alloy nanoparticles. Appl Catal B 248:504–514. https://doi.org/10.1016/j.apcatb.2019.02.053

    Article  CAS  Google Scholar 

  139. Castedo A, Mendoza E, Angurell I, Llorca J (2016) Silicone microreactors for the photocatalytic generation of hydrogen. Catal Today 273:106–111. https://doi.org/10.1016/j.cattod.2016.02.053

    Article  CAS  Google Scholar 

  140. Castedo A, Uriz I, Soler L, Gandía LM, Llorca J (2017) Kinetic analysis and CFD simulations of the photocatalytic production of hydrogen in silicone microreactors from water-ethanol mixtures. Appl Catal B 203:210–217. https://doi.org/10.1016/j.apcatb.2016.10.022

    Article  CAS  Google Scholar 

  141. Chiefari J, Hornung C (2021) Mobile hydrogen reformers as a novel approach to decarbonise the transport sector. Curr Opin Chem Eng 34. https://doi.org/10.1016/j.coche.2021.100756

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh K. Bhargava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehla, S., Gudi, R.D., Mandaliya, D.D., Hisatomi, T., Domen, K., Bhargava, S.K. (2022). Additive Manufacturing as the Future of Green Chemical Engineering. In: Bhargava, S.K., Ramakrishna, S., Brandt, M., Selvakannan, P. (eds) Additive Manufacturing for Chemical Sciences and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-2293-0_8

Download citation

Publish with us

Policies and ethics