Skip to main content

History and Evolution of Additive Manufacturing

  • Chapter
  • First Online:
Additive Manufacturing for Chemical Sciences and Engineering

Abstract

Since its first use to build sculptures, additive manufacturing has come a long way to become a prominent and prolific modern technology with wide acceptance due to significant benefits and advantages arising from its adoption and implementation in different industrial and consumer sectors. AM is rapidly paving a path towards an intensified technological society by facilitating unprecedented accomplishments ranging from digital storage of production data and on-demand manufacturing to repair and maintenance of malfunctioning machines, tools, and even human’s anatomy. This chapter presents a state-of-the-art review on the history and evolution of additive manufacturing technologies along with the emerging paradigm for the incorporation of AM in major industrial and research sectors. Overall, the chapter provides all the necessary insights essentially required by young researchers to understand where AM came from and where it is going.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

4D:

Four-dimensional

AM:

Additive Manufacturing

ASTM:

American Society for Testing and Materials

CAD:

Computer Aided Design

CEN:

European Committee for Standardization

CT:

Computer Tomography

DED:

Directed Energy Deposition

DMLS:

Direct Metal Laser Sintering

EBM:

Electron Beam Melting

FDM:

Fused Deposition Modelling

HA:

Hydroxyapatite

IOP:

Integrated Organ Printing

IoT:

Internet of Things

IP:

Intellectual Property

ISO:

International Organization for Standardization

LM:

Layered Manufacturing

MRI:

Magnetic Resonance Imaging

PEEK:

Polyether ether ketone

RPD:

Rapid Plasma Deposition

SLA:

Stereolithography

SLS:

Selective Laser Sintering

SMP:

Shape Memory Polymers

UV:

Ultraviolet

References

  1. Chua CK, Leong KF (2014) 3d printing and additive manufacturing: principles and applications (with companion media pack)—, 4th edn. World Scientific Publishing Company, Of Rapid Prototyping

    Book  Google Scholar 

  2. Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC (2013) 3D printed bionic ears. Nano Lett 13(6):2634–2639. https://doi.org/10.1021/nl4007744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T (2019) 3D printing of personalized thick and Perfusable cardiac patches and hearts. Adv Sci (Weinh) 6(11):1900344. https://doi.org/10.1002/advs.201900344

    Article  CAS  PubMed Central  Google Scholar 

  4. The history and application of additive manufacturing for design personalisation (2016). In: Kuksa I, Fisher T (ed) Design for Personalisation (1st ed.). Routledge. https://doi.org/10.4324/9781315576633

  5. Bourell DL, Joseph J. Beaman J, Leu MC, Rosen DW (2009) A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: looking back and lookin ahead. US—Turkey workshop on rapid technologies, 5–11

    Google Scholar 

  6. D'Aveni R (2015) The 3-D printing revolution. harvard business review. https://hbr.org/2015/05/the-3-d-printing-revolution

  7. Singh S, Ramakrishna S, Singh R (2017) Material issues in additive manufacturing: a review. J Manuf Process 25:185–200. https://doi.org/10.1016/j.jmapro.2016.11.006

    Article  Google Scholar 

  8. Beaman JJ, Barlow JW, Bourell DL, Crawford RH, Marcus HL, McAlea KP (1997) Solid freeform fabrication: a new direction in manufacturing. Springer Science, Business Media, LLC.https://doi.org/10.1007/978-1-4615-6327-3

  9. Sobieszek RA (2014) Sculpture as the sum of its profiles: François Willème and Photosculpture in France, 1859–1868. The Art Bulletin 62(4):617–630. https://doi.org/10.1080/00043079.1980.10787818

    Article  Google Scholar 

  10. Baese C (1904) Photographic process for the production of plastic objects. US774549

    Google Scholar 

  11. Monteath FH (1924) Photomechanical process for producing bas reliefs. US1516199

    Google Scholar 

  12. Morioka I (1935) Process for manufacturing a relief by the aid of photography. US2015457

    Google Scholar 

  13. Morioka I (1944) Process for plastically reproducing objects. US2350796

    Google Scholar 

  14. Blanther JE (1892) Manufacture of contour relief maps. US473901

    Google Scholar 

  15. Perera BV (1940) Process of making relief maps. US2189592

    Google Scholar 

  16. Munz OJ (1956) Photo-glyph recording. US2775758

    Google Scholar 

  17. Zang EE (1964) Vitavue relief model technique. US3137080

    Google Scholar 

  18. Gaskin TA (1973) Earth science teaching device. US3751827

    Google Scholar 

  19. Swainson WK (1977) Method, medium and apparatus for producing three-dimensional figure product. US4041476

    Google Scholar 

  20. Woodin RL, Schwerzel RE, Kaldor A, Wood VE, McGinniss VD, Verber CM (1984) Three-dimensional photochemical machining with lasers. Paper presented at the applications of lasers to industrial chemistry

    Google Scholar 

  21. Matsubara K (1974) Molding method of casting using Photocurable substance. Jpn Kokai Patent Appl Patent Sho 51[1976]-10813

    Google Scholar 

  22. Ciraud PA (1972) Process and device for the manufacture of any objects desired from any meltable material. FRG Disclosure Publication 2263777

    Google Scholar 

  23. Householder RF (1981) Molding process. US4247508

    Google Scholar 

  24. DiMatteo PL (1976) Method of generating and constructing three-dimensional bodies. US3932923

    Google Scholar 

  25. Nakagawa T (1979) Blanking tool by stacked bainite steel plates. Press Technique, pp 93–101

    Google Scholar 

  26. Kunieda M, Nakagawa T (1984) Development of laminated drawing dies by laser cutting. Bull of JSPE, pp 353–354

    Google Scholar 

  27. Nakagawa T (1985) Laser cut sheet laminated forming dies by diffusion bonding. Proc 25th MTDR Conf, pp 505–510

    Google Scholar 

  28. Zheng X, Deotte J, Alonso MP, Farquar GR, Weisgraber TH, Gemberling S, Lee H, Fang N, Spadaccini CM (2012) Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev Sci Instrum 83(12):125001. https://doi.org/10.1063/1.4769050

    Article  CAS  PubMed  Google Scholar 

  29. Herbert AJ (1982) Solid Object Generation Jour Appl Photo Eng 8(4):185–188

    Google Scholar 

  30. Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography US4575330

    Google Scholar 

  31. Wohlers T, Gornet T (2016) History of additive manufacturing

    Google Scholar 

  32. Sachs EM, Haggerty JS, Cima MJ, Williams PA (1993) Three-dimensional printing techniques. US5204055

    Google Scholar 

  33. ASTM (2015) Standard terminology for additive manufacturing—general principles. Part 1: terminology ISO/ASTM Stand. 52792

    Google Scholar 

  34. Sprinkle T The 5 most important standards in additive manufacturing. https://sn.astm.org/?q=features/5-most-important-standards-additive-manufacturing-.html

  35. Holzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002. https://doi.org/10.1088/1758-5090/8/3/032002

    Article  CAS  PubMed  Google Scholar 

  36. Yu Y (2014) Ozbolat IT Tissue strands as “bioink” for scale-up organ printing. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, 26–30 Aug. 2014 2014, pp 1428–1431. doi:https://doi.org/10.1109/EMBC.2014.6943868

  37. Zhao Y, Li Y, Mao S, Sun W, Yao R (2015) The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication 7(4):045002. https://doi.org/10.1088/1758-5090/7/4/045002

    Article  PubMed  Google Scholar 

  38. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M (2018) 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater 3(2):144–156. https://doi.org/10.1016/j.bioactmat.2017.11.008

    Article  PubMed  PubMed Central  Google Scholar 

  39. Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S (2015) Bioprinting for cancer research. Trends Biotechnol 33(9):504–513. https://doi.org/10.1016/j.tibtech.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  40. Daly AC, Cunniffe GM, Sathy BN, Jeon O, Alsberg E, Kelly DJ (2016) 3D Bioprinting of developmentally inspired templates for whole bone organ engineering. Adv Healthc Mater 5(18):2353–2362. https://doi.org/10.1002/adhm.201600182

    Article  CAS  PubMed  Google Scholar 

  41. Kesti M, Eberhardt C, Pagliccia G, Kenkel D, Grande D, Boss A, Zenobi-Wong M (2015) Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv Func Mater 25(48):7406–7417. https://doi.org/10.1002/adfm.201503423

    Article  Google Scholar 

  42. Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935. https://doi.org/10.1038/ncomms4935

    Article  CAS  PubMed  Google Scholar 

  43. Schmolka IR (1972) Artificial skin 1. Preparation and properties of pluronic F-127 gels for treatment of burns. J Biomed Mater Res 6:571–582

    Article  CAS  Google Scholar 

  44. Merceron TK, Burt M, Seol YJ, Kang HW, Lee SJ, Yoo JJ, Atala A (2015) A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication 7(3):035003. https://doi.org/10.1088/1758-5090/7/3/035003

    Article  CAS  PubMed  Google Scholar 

  45. Binder KW (2011) In situ bioprinting of the skin

    Google Scholar 

  46. Zhang YS, Yue K, Aleman J, Moghaddam KM, Bakht SM, Yang J, Jia W, Dell’Erba V, Assawes P, Shin SR, Dokmeci MR, Oklu R, Khademhosseini A (2017) 3D Bioprinting for tissue and organ fabrication. Ann Biomed Eng 45(1):148–163. https://doi.org/10.1007/s10439-016-1612-8

    Article  CAS  PubMed  Google Scholar 

  47. Mironov V, Prestwich G, Forgacs G (2007) Bioprinting living structures. J Mater Chem 17(20). https://doi.org/10.1039/b617903g

  48. Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C, Gruene M, Toelk A, Wang W, Mark P, Wang F, Chichkov B, Li W, Steinhoff G (2011) Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32(35):9218–9230. https://doi.org/10.1016/j.biomaterials.2011.08.071

    Article  CAS  PubMed  Google Scholar 

  49. Nahmias Y, Odde DJ (2006) Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic–endothelial sinusoid-like structures. Nat Protoc 1(5):2288–2296. https://doi.org/10.1038/nprot.2006.386

    Article  CAS  PubMed  Google Scholar 

  50. Lu Y, Mapili G, Suhali G, Chen S, Roy K (2006) A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A 77(2):396–405. https://doi.org/10.1002/jbm.a.30601

    Article  CAS  PubMed  Google Scholar 

  51. Mehla S, Kandjani A, Coyle V, Harrison CJ, Low MX, Kaner RB, Sabri Y, Bhargava SK (2022) Gold sunflower microelectrode arrays with dendritic nanostructures on the lateral surfaces for antireflection and surface-enhanced Raman scattering. ACS Appl. Nano Mater. 5(2):1873–1890.https://doi.org/10.1021/acsanm.1c03501

  52. Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2(4):265–271. https://doi.org/10.1038/nmat863

    Article  CAS  PubMed  Google Scholar 

  53. Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23(24):H178-183. https://doi.org/10.1002/adma.201004625

    Article  CAS  PubMed  Google Scholar 

  54. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A 113(12):3179–3184. https://doi.org/10.1073/pnas.1521342113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yan Q, Dong H, Su J, Han J, Song B, Wei Q, Shi Y (2018) A Review of 3D printing technology for medical applications. Engineering 4(5):729–742. https://doi.org/10.1016/j.eng.2018.07.021

    Article  CAS  Google Scholar 

  56. Hager I, Golonka A, Putanowicz R (2016) 3D printing of buildings and building components as the future of sustainable construction? Procedia Engineering 151:292–299. https://doi.org/10.1016/j.proeng.2016.07.357

    Article  Google Scholar 

  57. Sakin M, Kiroglu YC (2017) 3D printing of buildings: construction of the sustainable houses of the future by BIM. Energy Procedia 134:702–711

    Article  Google Scholar 

  58. Lloret E, Shahab AR, Linus M, Flatt RJ, Gramazio F, Kohler M, Langenberg S (2015) Complex concrete structures. Comput Aided Des 60:40–49. https://doi.org/10.1016/j.cad.2014.02.011

    Article  Google Scholar 

  59. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  60. Tay YWD, Panda B, Paul SC, Noor Mohamed NA, Tan MJ, Leong KF (2017) 3D printing trends in building and construction industry: a review. Virt Phys Prototyping 12(3):261–276. https://doi.org/10.1080/17452759.2017.1326724

    Article  Google Scholar 

  61. Xia M, Sanjayan J (2016) Method of formulating geopolymer for 3D printing for construction applications. Mater Des 110:382–390. https://doi.org/10.1016/j.matdes.2016.07.136

    Article  CAS  Google Scholar 

  62. Mueller S, Mohr T, Guenther K, Frohnhofen J, Baudisch P (2014) faBrickation. Paper presented at the proceedings of the SIGCHI conference on human factors in computing systems

    Google Scholar 

  63. http://s671151578.initial-website.com/

  64. Severini C. http://printinthemix.cad.rit.edu/Research/Show/127

  65. Sun J, Zhou W, Huang D, Fuh JYH, Hong GS (2015) An overview of 3D printing technologies for food fabrication. Food Bioprocess Technol 8(8):1605–1615. https://doi.org/10.1007/s11947-015-1528-6

    Article  CAS  Google Scholar 

  66. Liu Z, Zhang M, Bhandari B, Wang Y (2017) 3D printing: printing precision and application in food sector. Trends Food Sci Technol 69:83–94. https://doi.org/10.1016/j.tifs.2017.08.018

    Article  CAS  Google Scholar 

  67. Chen Z (2016) Research on the impact of 3D printing on the international supply Chain. Adv Mater Sci Eng 2016:1–16. https://doi.org/10.1155/2016/4173873

    Article  Google Scholar 

  68. Jia F, Wang X, Mustafee N, Hao L (2016) Investigating the feasibility of supply chain-centric business models in 3D chocolate printing: a simulation study. Technol Forecast Soc Chang 102:202–213. https://doi.org/10.1016/j.techfore.2015.07.026

    Article  Google Scholar 

  69. Payne CLR, Dobermann D, Forkes A, House J, Josephs J, McBride A, Müller A, Quilliam RS, Soares S (2016) Insects as food and feed: European perspectives on recent research and future priorities. J Insects Food Feed 2(4):269–276. https://doi.org/10.3920/JIFF2016.0011

    Article  Google Scholar 

  70. Vancauwenberghe V, Baiye Mfortaw Mbong V, Vanstreels E, Verboven P, Lammertyn J, Nicolai B (2019) 3D printing of plant tissue for innovative food manufacturing: encapsulation of alive plant cells into pectin based bio-ink. J Food Eng 263:454–464. https://doi.org/10.1016/j.jfoodeng.2017.12.003

    Article  CAS  Google Scholar 

  71. Sun J, Peng Z, Zhou W, Fuh JYH, Hong GS, Chiu A (2015) A review on 3D printing for customized food fabrication. Procedia Manuf 1:308–319. https://doi.org/10.1016/j.promfg.2015.09.057

    Article  Google Scholar 

  72. Pallottino F, Hakola L, Costa C, Antonucci F, Figorilli S, Seisto A, Menesatti P (2016) Printing on food or food printing: a review. Food Bioprocess Technol 9(5):725–733. https://doi.org/10.1007/s11947-016-1692-3

    Article  Google Scholar 

  73. Yang F, Zhang M, Bhandari B (2017) Recent development in 3D food printing. Crit Rev Food Sci Nutr 57(14):3145–3153. https://doi.org/10.1080/10408398.2015.1094732

    Article  PubMed  Google Scholar 

  74. Lipson H, Kurman M (2013) Fabricated: the new world of 3D printing. Wiley

    Google Scholar 

  75. Masuch T A world first: additively manufactured titanium components now onboard the Airbus A350 XWB. https://www.etmm-online.com/a-world-first-additively-manufactured-titanium-components-now-onboard-the-airbus-a350-xwb-a-486310/

  76. Wimpenny DI, Pandey PM, Kumar LJ (2017) Advances in 3D printing & additive manufacturing technologies

    Google Scholar 

  77. Khajavi SH, Partanen J, Holmström J (2014) Additive manufacturing in the spare parts supply chain. Comput Ind 65(1):50–63. https://doi.org/10.1016/j.compind.2013.07.008

    Article  Google Scholar 

  78. SpaceX—Capabilities & Services. https://www.spacex.com/media/Capabilities&Services.pdf

  79. Zhang Q, Zhang K, Hu G (2016) Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci Rep 6:22431. https://doi.org/10.1038/srep22431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F, Leong KW, Zhao X (2015) 3D printing of highly stretchable and tough hydrogels into complex. Cellularized Structures. Adv Mater 27(27):4035–4040. https://doi.org/10.1002/adma.201501099

    Article  CAS  PubMed  Google Scholar 

  81. Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, Lewis JA, Wood RJ (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617):451–455. https://doi.org/10.1038/nature19100

    Article  CAS  PubMed  Google Scholar 

  82. Yu K, Ge Q, Qi HJ (2014) Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers. Nat Commun 5:3066. https://doi.org/10.1038/ncomms4066

    Article  CAS  PubMed  Google Scholar 

  83. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: nw behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120. https://doi.org/10.1016/j.progpolymsci.2015.04.001

    Article  CAS  Google Scholar 

  84. Choi J, Kwon OC, Jo W, Lee HJ, Moon M-W (2015) 4D printing technology: a review. 3D Printing Addit Manuf 2(4):159–167. https://doi.org/10.1089/3dp.2015.0039

  85. Tibbits S, McKnelly C, Olguin C, Dikovsky D, Hirsch S 4D printing and univerrsal transformation. In, 2014

    Google Scholar 

  86. Jung JP, Bhuiyan DB, Ogle BM (2016) Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomater Res 20(1):27. https://doi.org/10.1186/s40824-016-0074-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zarek M, Mansour N, Shapira S, Cohn D (2017) 4D printing of shape memory-based personalized Endoluminal medical devices. Macromol Rapid Commun 38 (2). https://doi.org/10.1002/marc.201600628

  88. Taylor DL, In Het Panhuis M (2016) Self-healing hydrogels. Adv Mater 28(41):9060–9093. https://doi.org/10.1002/adma.201601613

    Article  CAS  PubMed  Google Scholar 

  89. Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang S, An J, Leong KF, Yeong WY (2015) 3D printing of smart materials: a review on recent progresses in 4D printing. Virt Phys Prototyping 10(3):103–122. https://doi.org/10.1080/17452759.2015.1097054

    Article  Google Scholar 

  90. Jiang R, Kleer R, Piller FT (2017) Predicting the future of additive manufacturing: a Delphi study on economic and societal implications of 3D printing for 2030. Technol Forecast Soc Chang 117:84–97. https://doi.org/10.1016/j.techfore.2017.01.006

    Article  Google Scholar 

  91. Agarwal T, Hann SY, Chiesa I, Cui H, Celikkin N, Micalizzi S, Barbetta A, Costantini M, Esworthy T, Zhang LG, De Maria C, Maiti TK (2021) 4D printing in biomedical applications: emerging trends and technologies. J Mater Chem B 9(37):7608–7632. https://doi.org/10.1039/d1tb01335a

    Article  CAS  PubMed  Google Scholar 

  92. Momeni F, Mehdi Hassani MNS, Liu X, Ni J (2017) A review of 4D printing. Mater Design 122:42–79.https://doi.org/10.1016/j.matdes.2017.02.068

  93. Kamila, (2013) Introduction, classification and applications of smart materials: an overview. Am J Appl Sci 10(8):876–880. https://doi.org/10.3844/ajassp.2013.876.880

    Article  Google Scholar 

  94. Vaezi M, Chianrabutra S, Mellor B, Yang S (2013) Multiple material additive manufacturing—Part 1: a review. Virt Phys Prototyping 8(1):19–50. https://doi.org/10.1080/17452759.2013.778175

    Article  Google Scholar 

  95. Mitchell A, Lafont U, Hołyńska M, Semprimoschnig C (2018) Additive manufacturing—a review of 4D printing and future applications. Addit Manuf 24:606–626. https://doi.org/10.1016/j.addma.2018.10.038

    Article  CAS  Google Scholar 

  96. Shin D-G, Kim T-H, Kim D-E (2017) Review of 4D printing materials and their properties. Int J Precis Eng Manuf Green Technol 4(3):349–357. https://doi.org/10.1007/s40684-017-0040-z

    Article  Google Scholar 

  97. Yang W, Lu H, Huang W, Qi H, Wu X, Sun K (2014) Advanced shape memory technology to reshape product design. Manuf Recycling. Polymers 6(8):2287–2308. https://doi.org/10.3390/polym6082287

    Article  CAS  Google Scholar 

  98. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Bomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189

    Article  CAS  Google Scholar 

  99. Stavropoulos P, Foteinopoulos P, Papacharalampopoulos A, Bikas H (2018) Addressing the challenges for the industrial application of additive manufacturing: towards a hybrid solution. Int J Lightweight Mater Manuf 1(3):157–168. https://doi.org/10.1016/j.ijlmm.2018.07.002

    Article  Google Scholar 

  100. Wohlers Report 2012

    Google Scholar 

  101. Franke N, Piller F (2004) Value creation by toolkits for user innovation and design: the case of the watch market. J Product Innov Manag 21:401–415

    Article  Google Scholar 

  102. Lott P, Schleifenbaum H, Meiners W, Wissenbach K, Hinke C, Bültmann J (2011) Design of an optical system for the in situ process monitoring of selective laser melting (SLM). Phys Procedia 12:683–690. https://doi.org/10.1016/j.phpro.2011.03.085

    Article  Google Scholar 

  103. P R (2009) Additive manufacturing–a supply chain wide response to economic uncertainty and en-vironmental sustainability. In: Mass customization engineering and managing global operations

    Google Scholar 

  104. Huang SH, Liu P, Mokasdar A, Hou L (2012) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67(5–8):1191–1203. https://doi.org/10.1007/s00170-012-4558-5

    Article  Google Scholar 

  105. du Plessis A, Broeckhoven C, Yadroitsava I, Yadroitsev I, Hands CH, Kunju R, Bhate D (2019) Beautiful and functional: a review of biomimetic design in additive manufacturing. Addit Manuf 27:408–427. https://doi.org/10.1016/j.addma.2019.03.033

    Article  CAS  Google Scholar 

  106. Beyers RN, Blignaut AS, Mophuti L (2012) Mobile fablabs: local and rural innovation in South Africa. In: EdMedia+ innovate learning association for the advancement of computing in education (AACE), pp 112–122

    Google Scholar 

  107. Ishengoma FR, Mtaho AB (2014) 3D Printing: developing counties perspectives. Int J Comput Appl 104(11)

    Google Scholar 

  108. Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55(2):155–162. https://doi.org/10.1016/j.bushor.2011.11.003

    Article  Google Scholar 

  109. Loh GH, Pei E, Harrison D, Monzón MD (2018) An overview of functionally graded additive manufacturing. Addit Manuf 23:34–44. https://doi.org/10.1016/j.addma.2018.06.023

    Article  CAS  Google Scholar 

  110. Oxman N (2011) Variable property rapid prototyping. Virt Phys Prototyping 6(1):3–31. https://doi.org/10.1080/17452759.2011.558588

    Article  Google Scholar 

  111. Junk S, Sämann-Sun J, Niederhofer M (2010) Application of 3D printing for the rapid tooling of thermoforming moulds. In: Proceedings of the 36th international MATADOR conference Springer, London, pp 369–372

    Google Scholar 

  112. Wang PH, Kim G, Sterkenburg R (2019) Investigating the effectiveness of a 3D printed composite mold. Int Schol Scient Res Innov 13(11):684–688

    Google Scholar 

  113. Kumar K, Zindani D, Davim JP (2020) Rapid prototyping, rapid tooling and reverse engineering: from biological models to 3D Bioprinters. De Gruyter. https://doi.org/10.1515/9783110664904

    Article  Google Scholar 

  114. D HP (2000) Rapid tooling: technologies and industrial applications

    Google Scholar 

  115. T C (2015) Wohlers Report 2015: additive manufacturing and 3D printing state of the industry annual worldwide progress report

    Google Scholar 

  116. Mehla S, Kandjani AE, Babarao R, Lee AF, Periasamy S, Wilson K, Ramakrishna S, Bhargava SK (2021) Porous crystalline frameworks for thermocatalytic CO2 reduction: an emerging paradigm. Energy Environ Sci 14(1):320–352. https://doi.org/10.1039/d0ee01882a

    Article  CAS  Google Scholar 

  117. Zhakeyev A, Wang P, Zhang L, Shu W, Wang H, Xuan J (2017) Additive manufacturing: unlocking the evolution of energy materials. Adv Sci 4(10):1700187. https://doi.org/10.1002/advs.201700187

    Article  CAS  Google Scholar 

  118. Mehla S, Kukade S, Kumar P, Rao PVC, Sriganesh G, Ravishankar R (2019) Fine tuning H-transfer and β-scission reactions in VGO FCC using metal promoted dual functional ZSM-5. Fuel 242:487–495. https://doi.org/10.1016/j.fuel.2019.01.065

    Article  CAS  Google Scholar 

  119. Nishiyama H, Yamada T, Nakabayashi M, Maehara Y, Yamaguchi M, Kuromiya Y, Nagatsuma Y, Tokudome H, Akiyama S, Watanabe T, Narushima R, Okunaka S, Shibata N, Takata T, Hisatomi T, Domen K (2021) Photocatalytic solar hydrogen production from water on a 100-m(2) scale. Nature 598(7880):304–307. https://doi.org/10.1038/s41586-021-03907-3

    Article  CAS  PubMed  Google Scholar 

  120. Mehla S, Krishsna V, Sriganesh G, Ravishankar R (2018) Mesoporous superacid catalysts for valorisation of refinery naphtha stream. RSC Adv 8(59):33702–33709. https://doi.org/10.1039/C8RA07024E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Path to hydrogen competitiveness: a cost perspective (2020). Hydrogen Council

    Google Scholar 

  122. Silveria GD, Borenstein D, Fogliatto FS (2001) Mass customization: literature review and research direction. Int J Product Econ 72:1–13

    Article  Google Scholar 

  123. Mai J, Zhang L, Tao F, Ren L (2015) Customized production based on distributed 3D printing services in cloud manufacturing. Int J Adv Manuf Technol 84(1–4):71–83. https://doi.org/10.1007/s00170-015-7871-y

    Article  Google Scholar 

  124. Liu N, Choi T-M, Yuen C-WM, Ng F (2012) Optimal pricing, modularity, and return policy under mass customization. IEEE Trans Syst Man Cybern Part A: Syst Hum 42(3):604–614. https://doi.org/10.1109/tsmca.2011.2170063

    Article  Google Scholar 

  125. Hart CWL (1994) Mass customization: conceptual underpinnings, opportunities and limits. Int J Serv Ind Manag 6(2):36–45

    Article  Google Scholar 

  126. Quinlan HE, Hasan T, Jaddou J, Hart AJ (2017) Industrial and consumer uses of additive manufacturing: a discussion of capabilities, trajectories, and challenges. J Ind Ecol 21(S1):S15–S20. https://doi.org/10.1111/jiec.12609

    Article  Google Scholar 

  127. Salvador F, Forza C, Rungtusanatham M (2002) Modularity, product variety, production volume, and component sourcing: theorizing beyond generic prescriptions. J Oper Manag 20(5):549–575. https://doi.org/10.1016/S0272-6963(02)00027-X

    Article  Google Scholar 

  128. Hu SJ (2013) Evolving paradigms of manufacturing: from mass production to mass customization and personalization. Procedia CIRP 7:3–8. https://doi.org/10.1016/j.procir.2013.05.002

    Article  Google Scholar 

  129. Acher M, Baudry B, Barais O, Jézéquel J-M (2014) Customization and 3D printing. Paper presented at the proceedings of the 18th international software product line conference, Vol 1

    Google Scholar 

  130. Banks J (2013) Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse 4(6):22–26. https://doi.org/10.1109/MPUL.2013.2279617

    Article  PubMed  Google Scholar 

  131. Kyriakou H, Nickerson JV, Sabnis G (2017) Knowledge reuse for customization: Metamodels in an open design community for 3D printing. MIS Q 41(1):315–332

    Article  Google Scholar 

  132. Qiu J, Gao Q, Zhao H, Fu J, He Y (2017) Rapid Customization of 3D integrated microfluidic chips via modular structure-based design. ACS Biomater Sci Eng 3(10):2606–2616. https://doi.org/10.1021/acsbiomaterials.7b00401

    Article  CAS  PubMed  Google Scholar 

  133. Mehla S, Das J, Jampaiah D, Periasamy S, Nafady A, Bhargava SK (2019) Recent advances in preparation methods for catalytic thin films and coatings. Catal Sci Technol 9:3582–3602. https://doi.org/10.1039/C9CY00518H

    Article  Google Scholar 

  134. Groeger D, Chong Loo E, Steimle J (2016) HotFlex. Paper presented at the Proceedings of the 2016 CHI conference on human factors in computing systems

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh K. Bhargava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Mehla, S., Bhargava, S.K., Ramakrishna, S. (2022). History and Evolution of Additive Manufacturing. In: Bhargava, S.K., Ramakrishna, S., Brandt, M., Selvakannan, P. (eds) Additive Manufacturing for Chemical Sciences and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-2293-0_2

Download citation

Publish with us

Policies and ethics