Skip to main content

Ultrawide Bandgap AlGaN-Channel-Based HEMTs for Next-Generation Electronics

  • Chapter
  • First Online:
HEMT Technology and Applications

Abstract

This chapter reviews the recent progress in ultrawide bandgap AlGaN-channel-based high electron mobility transistors. AlGaN channel is the alternate substitute for the conventional GaN channel. In order to enhance the power handling capability of III-nitride-based heterostructure devices, improving the breakdown performance of the device without reduction in the current density is one of the simplest techniques. AlGaN-channel-based HEMTs favorably increase the critical electric field of the device. For the next-generation RF application, further improving the power handling capabilities of RF modules, AlGaN channel HEMT is the most optimistic applicant and it delivers four times larger GaN HEMT’s power performance and thus becoming the possible substitute to the GaN channel for the next generation power as well as RF devices and circuits. This chapter describes the polarization details of AlxGa1−xN/AlyGa1−yN heterostructure, and various device structure of AlGaN channel HEMTs and their static and dynamic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Nanjo, K. Kurahashi, A. Imai, Y. Suzuki, M. Nakmura, M. Suita, E. Yagyu, High-frequency performance of AlGaN channel HEMTs with high breakdown voltage. Electron. Lett. 50(22), 1577–1599 (2014)

    Google Scholar 

  2. A.G. Baca, B.A. Klein, A.A. Allerman, A.M. Armstrong, E.A. Douglas, C.A. Stephenson, T.R. Fortune, R.J. Kaplar, Al0.85Ga0.15N/Al0.70Ga0.30N high electron mobility transistors with schottky gates and large on/off current ratio over temperature. ECS J. Solid State Sci. Technol. 6(12), 161–165 (2017)

    Google Scholar 

  3. A.G. Baca, A.M. Armstrong, A.A. Allerman, B.A. Klein, E.A. Douglas, C.A. Sanchez, T.R. Fortune, High temperature operation of Al0.45Ga0.55N/Al0.30Ga0.70N high electron mobility transistors. ECS J. Solid State Sci. Technol. 6(11) S3010-S3013 (2017)

    Google Scholar 

  4. S.J. Pearton, J. Yang, P.H. Cary IV, F. Ren, J. Kim, MJ. Tadjer, M.A. Mastro, A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 5, 011301 (2018)

    Google Scholar 

  5. T. Oishi, Y. Koga, K. Harada, M. Kasu, High-mobility β-Ga2O3(\(\overline{2}\)01) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl. Phys. Express 8, 031101 (2015)

    Article  Google Scholar 

  6. Z. Xia, C. Joishi, S. Krishnamoorthy, S. Bajaj, Y. Zhang, M. Brenner, S. Lodha, S. Rajan, Delta doped β-Ga2O3 field effect transistors with regrown ohmic contacts. IEEE Electron Device Lett. 39(4), 568–571 (2018)

    Article  Google Scholar 

  7. Y. Zhang, C. Joishi, Z. Xia, M. Brenner, S. Lodha, S. Rajan, Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors. Appl. Phys. Lett. 112, 233503–233505 (2018)

    Article  Google Scholar 

  8. A.J. Green et al., β -Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett. 38(6), 790–793 (2017). https://doi.org/10.1109/LED.2017.2694805

    Article  Google Scholar 

  9. K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D.J. Twitchen, G.A. Scarsbrook, S.E. Coe, Diamond FET using high-quality polycrystallinediamond with fT of 45 GHz and fmax of 120 GHz, IEEE Electron Device Lett. 27(7), 570–572 (2006)

    Google Scholar 

  10. M. Kasu, K. Ueda, H. Ye, Y. Yamauchi, S. Sasaki, T. Makimoto, 2 W = mm output power density at 1 GHz fordiamond FETs, Electron. Lett. 41(22), 1249–1250 (2005)

    Google Scholar 

  11. M. Farahmand, C. Garetto, E. Bellotti, K.F. Brennan, M. Goano, E. Ghillino, G. Ghione, J.D. Albrecht, P. Paul Ruden, Monte Carlo simulation of electron transport in Theiii-nitride Wurtzite phase materials system: Binariesand ternaries. IEEE Trans. Electron Device 48(3), 535–542 (2001)

    Google Scholar 

  12. H. Tokuda, M. Hatano, N. Yafune, S. Hashimoto, K. Akita, Y. Yamamoto, M. Kuzuhara, High Al composition AlGaN-channel high-electron-mobility transistor on AlN substrate. Appl. Phys. Express 3, 121003, 1–3 (2010)

    Google Scholar 

  13. T. Nanjo, A. Imai, Y. Suzuki, Y. Abe, T. Oishi, M. Suita, E. Yagyu, Y. Tokuda, AlGaN Channel HEMT With Extremely High Breakdown Voltage. IEEE Trans. Electron Device 60(3), 1046–1053 (2013)

    Google Scholar 

  14. X. Hu, S. Hwang, K. Hussain, R. Floyd, S. Mollah, F. Asif, G. Simin, A. Khan, Doped Barrier Al0.65Ga0.35N/Al0.40Ga0.60N MOSHFETwith SiO2 Gate-insulator and Zr-based ohmic contacts.IEEE Electron Device Letters. 39(10):1–4 (2018)

    Google Scholar 

  15. E.A. Douglas, S. Reza, C. Sanchez, D. Koleske, A. Allerman, B. Klein, A.M. Armstrong, R.J. Kaplar, A.G. Baca, Ohmic contacts to Al-rich AlGaNheterostructures.Phys. Status Solidi A 214(8), 1600842, 1–7 (2017)

    Google Scholar 

  16. K. Harrouche, F. Medjdoub, GaN-Based HEMTs for millimeter-wave applications. Wiley Online Library, Chapter 3(Book Chapter), 99–135 (2020)

    Google Scholar 

  17. A.G. Baca, B.A. Klein, J.R. Wendt, S.M. Lepkowski, C.D. Nordquist, A.M. Armstrong, A.A. Allerman, E.A. Douglas, R.J. Kaplar, RF Performance of Al0.85Ga0.15N/Al0.70Ga0.30N high electron mobility transistors with 80 nm gates. IEEE Electron Device Lett. 40(1), 17–20 (2019)

    Google Scholar 

  18. S. Bajaj, F. Akyol, S. Krishnamoorthy, Y. Zhang, S. Rajan, AlGaN channel field effect transistors with graded heterostructure ohmic contacts. Appl. Phys. Lett. 109(13), 133508 (2016)

    Google Scholar 

  19. T. Razzak, S. Hwang, A. Coleman, H. Xue, S.H. Sohel, S. Bajaj, Y. Zhang, W. Lu, A. Khan, S. Rajan, Design of compositionally graded contact layers for MOCVD grown high Al-content AlGaN transistors. Appl. Phys. Lett. 115(4), 043502 (2019)

    Google Scholar 

  20. E.A. Douglas, S. Reza, C. Sanchez, D. Koleske, A. Allerman, B. Klein, A.M. Armstrong, R.J. Kaplar, A.G. Baca, Ohmic contacts to Al-rich AlGaN heterostructures. Phys. Status Solidi A 214(8), 1600842, 1–7 (2017)

    Google Scholar 

  21. H. Xue, S. Hwang, T. Razzak, C. Lee, G. C. Ortiz, Z. Xia, S.H. Sohel, J. Hwang, S. Rajan, A. Khan, Wu Lu, All MOCVD grown Al0.7Ga0.3N/Al0.5Ga0.5N HFET: An approach to makeohmic contacts to Al-Rich AlGaN channel transistors. 164, 30534–30539 (2020)

    Google Scholar 

  22. T. Razzak, S. Hwang, A. Coleman, S. Bajaj, H. Xue, Y. Zhang, Z. Jamal-Eddine, S. H. Sohel, W. Lu, A. Khan, S. Rajan, RF operation in graded AlxGa1-xN (x=0.65 to 0.82) Channel Transistors. IET—Inst. Eng. Technol. 54(23), 1351–1353 (2018)

    Google Scholar 

  23. H. Xue, C.H. Lee, K. Hussian, T. Razzak, M. Abdullah, Z. Xia, S.H. Sohel, A. Khan, S. Rajan, W. Lu, Al0.75Ga0.25N/Al0.6Ga0.4N heterojunction field effect transistor with fT of 40 GHz. Appl. Phys. Express 12(6), 066502 (2019)

    Google Scholar 

  24. P. Choi, U. Radhakrishna, C.C. Boon, L.-S. Peh, D. Antoniadis, Linearity enhancement of a fully integrated 6-GHz GaN power amplifier. IEEE Microwave Wireless Compon. Lett. 27(10), 927–929 (2017)

    Google Scholar 

  25. S. Bajaj, Z. Yang, F. Akyol, P.S. Park, Y. Zhang, A.L. Price, S. Krishnamoorthy, D.J. Meyer, S. Rajan, Graded AlGaN Channel Transistors for Improved Current and Power Gain Linearity. IEEE Trans. Electron Devices 64(8), 3114–3119 (2017)

    Google Scholar 

  26. J.B. Khurgin, S. Bajaj, S. Rajan, Amplified spontaneous emission of phonons as a likely mechanism for density-dependent velocity saturation in GaN transistors. Appl. Phys. Express 9, 094101 (2016)

    Google Scholar 

  27. S.H. Sohel, A. Xie, E. Beam, H. Xue, T. Razzak, S. Bajaj, S. Campbell, D. White, K. Will, Y. Cao, W. Lu, S. Rajan, Improved DC-RF dispersion with epitaxial passivation for high linearity graded AlGaN channel field effect transistors. Appl. Phys. Express 13, 036502 (2020)

    Google Scholar 

  28. V. Sandeep, J. Charles Pravin, Influence of Graded AlGaN sub-channel over the DC and breakdown characteristics of a T-gated AlGaN/GaN/AlInN MOS-HEMT, superlattices and microstructures, vol. 156 (2021). https://doi.org/10.1016/j.spmi.2021.106954

  29. A.G. Baca, A.M. Armstrong, A.A. Allerman, E.A. Douglas, C.A. Sanchez, M.P. King, M.E. Coltrin, T.R. Fortune, R.J. Kaplar, An AlN/Al0.85Ga0.15N high electron mobility transistor, Appl. Phys. Lett. 109, 033509 (2016)

    Google Scholar 

  30. S. Muhtadi, S. Mo Hwang, A. Coleman, F. Asif, G. Simin, M.V.S. Chandrashekhar, A. Khan, High electron mobility transistors with Al0.65Ga0.35N channel layers on thick AlN/sapphire templates. IEEE Electron Device Lett. 38(7), 914–917 (2017)

    Google Scholar 

  31. W. Zhang, J. Zhang, M. Xiao, L. Zhang, Y. Hao, High breakdown-voltage (>2200 V) AlGaN-channel HEMTs with Ohmic/Schottky hybrid drains. IEEE J. Electron Devices Soc. 6, 931–935 (2018)

    Article  Google Scholar 

  32. M. Xiao, J. Zhang, X. Duan, W. Zhang, H. Shan, J. Ning, Y. Hao, High performance Al0.10Ga0.90N channel HEMTs. IEEE Electron Device Lett. 39(8), 1149–1151 (2018)

    Google Scholar 

  33. A.M. Armstrong, B.A. Klein, A.G. Baca, A.A. Allerman, E.A. Douglas, A. Colon, V.M. Abate, T.R. Fortune, AlGaN polarization-doped field effect transistor with compositionally graded channel from Al0.6Ga0.4N to AlN, Appl. Phys. Lett. 114 052103 (2019)

    Google Scholar 

  34. J.-K. Kang, H. Hara, A.M. Hava, E. Yamamoto, E. Watanabe, T. Kume, The matrix converter drive performance under abnormal input voltage conditions. IEEE Trans. Power Electron. 17(5), 721–730 (2002)

    Article  Google Scholar 

  35. P.W. Wheeler, J. Rodriguez, J.C. Clare, L. Empringham, A. Weinstein, Matrix converters: A technology review. IEEE Trans. Ind. Electron. 49(2), 276–288 (2002)

    Article  Google Scholar 

  36. T. Morita, S. Tamura, Y. Anda, M. Ishida, Y. Uemoto, T. Ueda, T. Tanaka, D. Ueda, 99.3% Efficiency of Three-Phase Inverter for Motor Drive Using GaN-Based Gate Injection Transistors. Conference Proceedings -Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 481–484 (2011)

    Google Scholar 

  37. J. Ma, M. Zhu, E. Matioli, 900 V reverse-blocking GaN-on-Si MOSHEMTs with a hybrid tri-anode Schottky drain. IEEE Electron Device Lett. 38(12), 1704–1707 (2017)

    Article  Google Scholar 

  38. Y. Wu et al., More Than 3000 V reverse blocking Schottky-drain AlGaN-channel HEMTs with >230 MW/cm2 power figure-of-merit. IEEE Electron Device Lett. 40(11), 1724–1727 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Murugapandiyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murugapandiyan, P., Ramkumar, N., Ravi, S. (2023). Ultrawide Bandgap AlGaN-Channel-Based HEMTs for Next-Generation Electronics. In: Lenka, T.R., Nguyen, H.P.T. (eds) HEMT Technology and Applications. Springer Tracts in Electrical and Electronics Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-2165-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2165-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2164-3

  • Online ISBN: 978-981-19-2165-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics