Skip to main content

Applications of Emerging Materials: High Power Devices

  • Chapter
  • First Online:
Emerging Materials

Abstract

SiC power MOSFETs, AlGaN/GaN-HEMTs (High Electron Mobility Transistors), AlGaN/GaN-MOSHEMTs and β-Ga2O3 MOSFETs have become the most attractive transistors for future high power electronic applications due to their unique characteristics like very low RON (ON Resistance), excellent mobility of electrons in the channel, outstanding breakdown performance and high temperature operation. This chapter highlights the various architectures and RF & power performance of SiC power MOSFETs, AlGaN/GaN-HEMTs (High Electron Mobility Transistors), AlGaN/GaN-MOSHEMTs and β-Ga2O3 MOSFETs. Moreover, it also describes the emergence of new materials for the development of above mentioned emerging transistors. This chapter also throw lights on the use of AlGaN as a channel layer material in AlGaN/GaN-HEMTs, ITO (Indium tin oxide) as a transparent gate electrode material in p-GaN/AlGaN-HEMTs, Gd2O3 as a high-k gate oxide material in AlGaN/GaN-HEMTs and also ScAlN as a barrier layer material in AlGaN/GaN-HEMTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Carey, F. Ren, A. Baca, B. Klein, A. Allerman, A. Armstrong, E. Douglas, R. Kaplar, P. Kotula, S. Pearton, Operation Up to 500 °C of Al0.85Ga0.15N/Al0.7Ga0.3N high electron mobility transistors. IEEE J. Electron Dev. Soc. 7, 444–452 (2019)

    Article  Google Scholar 

  2. L. Li, A. Wakejima, Polarization-engineered quaternary barrier InAlGaN/AlGaN heterostructure field-effect transistors toward robust high-frequency power performance in AlGaN channel electronics. IEEE Trans. Electron Dev. 68(11), 5535–5540 (2021)

    Google Scholar 

  3. Y. Wu, W. Zhang, J. Zhang, S. Zhao, J. Luo, X. Tan, W. Mao, C. Zhang, Y. Zhang, K. Cheng, Z. Liu, Y. Hao, Au-Free Al0.4Ga0.6N/Al0.1Ga0.9N HEMTs on Silicon substrate with high reverse blocking voltage of 2 kV. IEEE Trans. Electron Dev. 68(9), 4543–4549 (2021)

    Google Scholar 

  4. H. Tokuda et al., High Al composition AlGaN-channel high-electronmobility transistor on AlN substrate. Appl. Phys. Exp. 3(12) (2010), Art. no. 121003

    Google Scholar 

  5. S. Liu et al., AlN/GaN superlattice channel HEMTs on silicon substrate. IEEE Trans. Electron Dev. 68(7), 3296–3301 (2021)

    Google Scholar 

  6. Li., Lingxia, G. Rui, Z. Ping, Z. Jing, W. Hongru, Effect of doping Gd2O3 on dielectric properties of metal-dielectric composite materials. J. Rare Earths 25(Supplement 1), 151–153 (2007)

    Google Scholar 

  7. S. Li, Wu., Yanqing, G. Li, Yu., Hongen, Fu., Kai, Wu., Yong, J. Zheng, W. Tian, X. Li, Ta-doped modified Gd2O3 film for a novel high k gate dielectric. J. Mater. Sci. Technol. 35(10), 2305–2311 (2019)

    Google Scholar 

  8. Y.U.E. Shoujing, W.E.I. Feng, W.A.N.G. Yi, Y.A.N.G. Zhimin, T.U. Hailing, D.U. Jun, Phase control of magnetron sputtering deposited Gd2O3 thin films as high-κ gate dielectrics. J. Rare Earths 26(3), 371–374 (2008)

    Article  Google Scholar 

  9. R. Sarkar et al., Epi-Gd2O3-MOSHEMT: a potential solution toward leveraging the application of AlGaN/GaN/Si HEMT with improved ION/IOFF operating at 473 K. IEEE Trans. Electron Dev. 68(6), 2653–2660 (2021)

    Google Scholar 

  10. R. Sarkar et al., Epi-Gd2O3/AlGaN/GaN MOS HEMT on 150 mm Si wafer: a fully epitaxial system for high power application. Appl. Phys. Lett. 115(6) (2019) Art. no. 063502

    Google Scholar 

  11. Z. Gao, M.F. Romero, M.Á. Pampillón, E. San Andrés, F. Calle, Thermal assessment of AlGaN/GaN MOS-HEMTs on Si substrate using Gd2O3 as gate dielectric. IEEE Trans. Electron Dev. 63(7), 2729–2734 (2016)

    Google Scholar 

  12. M. Manikandan, D. Nirmal, J. Ajayan et al., Numerical investigation of traps and optical response in III-V nitride quantum LED. Opt. Quant. Electron. 52, 513 (2020)

    Article  Google Scholar 

  13. A.S.A. Fletcher, D. Nirmal, J. Ajayan et al., 60 GHz double deck T-gate AlN/GaN/AlGaN HEMT for V-band satellites. SILICON (2021). https://doi.org/10.1007/s12633-021-01367-y

    Article  Google Scholar 

  14. P. Murugapandiyan, D. Nirmal, T. Hasan, A. Varghese, J. Ajayan, A.S. Augustine Fletcher, N. Ramkumar, Influence of AlN passivation on thermal performance of AlGaN/GaN high-electron mobility transistors on sapphire substrate: a simulation study. Mater. Sci. Eng. B 273, 115449 (2021)

    Google Scholar 

  15. L. Arivazhagan, D. Nirmal, S. Chander et al., Variable thermal resistance model of GaN-on-SiC with substrate scalability. J. Comput. Electron. 19, 1546–1554 (2020)

    Article  Google Scholar 

  16. J.S.R. Kumar, D. Nirmal, M.K. Hooda et al., Intensive study of field-plated AlGaN/GaN HEMT on silicon substrate for high power RF applications. Silicon (2021)

    Google Scholar 

  17. K. Husna Hamza, D. Nirmal, A.S. Augustine Fletcher, L. Arivazhagan, J. Ajayan, Ramkumar Natarajan, highly scaled graded channel GaN HEMT with peak drain current of 2.48 A/mm, AEU. Int. J. Electron. Commun. 136, 153774 (2021)

    Google Scholar 

  18. L. Arivazhagan, D. Nirmal, P.P.K. Reddy et al., A numerical investigation of heat suppression in HEMT for power electronics application. SILICON 13, 3039–3046 (2021)

    Article  Google Scholar 

  19. P. Murugapandiyan, T. Hasan, V. Rajya Lakshmi, M. Wasim, J. Ajayan, N. Ramkumar, D. Nirmal, Breakdown voltage enhancement of gate field plate Al0.295Ga0.705N/GaN HEMTs. Int. J. Electron. 108, 8, 1273–1287 (2021)

    Google Scholar 

  20. P. Murugapandiyan, D. Nirmal, J. Ajayan et al., Investigation of influence of SiN and SiO2 Passivation in gate field plate double heterojunction Al0.3Ga0.7N/GaN/Al0.04Ga0.96N high electron mobility transistors. Silicon (2021). https://doi.org/10.1007/s12633-020-00899-z

  21. P. Murugapandiyan, S. Ravimaran, J. William, J. Ajayan, D. Nirmal, DC and microwave characteristics of 20 nm T-gate InAlN/GaN high electron mobility transistor for high power RF applications. Superlattices Microstruct. 109, 725–734 (2017)

    Article  ADS  Google Scholar 

  22. A.S.A. Fletcher, D. Nirmal, J. Ajayan et al., An intensive study on assorted substrates suitable for high JFOM AlGaN/GaN HEMT. SILICON 13, 1591–1598 (2021)

    Article  Google Scholar 

  23. A.S. Augustine Fletcher, D. Nirmal, L. Arivazhagan, J. Ajayan, A. Varghese, Enhancement of Johnson figure of merit in III-V HEMT combined with discrete field plate and AlGaN blocking layer. Int. J. RF Microw. Comput. Aided. Eng. 30, e22040 (2020).

    Google Scholar 

  24. L. Arivazhagan, D. Nirmal, D. Godfrey, J. Ajayan, P. Prajoon, A.S. Augustine Fletcher, A. Amir Anton Jone, J.S. Raj Kumar, Improved RF and DC performance in AlGaN/GaN HEMT by P-type doping in GaN buffer for millimetre-wave applications, AEU. Int. J. Electron. Commun. 108, 189–194 (2019)

    Google Scholar 

  25. D. Nirmal, L. Arivazhagan, A.S. Augustine Fletcher, J. Ajayan, P. Prajoon, Current collapse modeling in AlGaN/GaN HEMT using small signal equivalent circuit for high power application. Superlattices Microstruct. 113, 810–820 (2018)

    Google Scholar 

  26. A.S. Augustine Fletcher, D. Nirmal, J. Ajayan, L. Arivazhagan, Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications, AEU. Int. J. Electron. Commun. 99, 325–330 (2019)

    Google Scholar 

  27. C.-Y. Chang et al., Fully transparent AlGaN/GaN high electron mobility transistors fabricated with indium-tin-oxide electrodes. IEEE Electron Dev. Lett. 42(2), 144–147 (Feb. 2021)

    Google Scholar 

  28. Y. Pei, K.J. Vampola, Z. Chen, R. Chu, S.P. DenBaars, U.K. Mishra, AlGaN/GaN HEMT with a transparent gate electrode. IEEE Electron Dev. Lett. 30(5), 439–441 (2009)

    Google Scholar 

  29. T.-H. Chang, K. Xiong, S.H. Park, H. Mi, H. Zhang, S. Mikael, Y.H. Jung, J. Han, Z. Ma, High power fast flexible electronics: transparent RF AlGaN/GaN HEMTs on plastic substrates. IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–4 (2015)

    Google Scholar 

  30. T. Itoh, A. Kobayashi, K. Ueno, J. Ohta, H. Fujioka, Fabrication of InGaN thin-film transistors using pulsed sputtering deposition, Sci. Rep. 6(1), Art. no. 29500 (2016)

    Google Scholar 

  31. G.J. Lee, J. Kim, J.-H. Kim, S.M. Jeong, J.E. Jang, J. Jeong, High performance, transparent a-IGZO TFTs on a flexible thin glass substrate. Semicond. Sci. Technol., 29(3), Art. no. 035003. https://doi.org/10.1088/0268-1242/29/3/035003 (2016)

  32. M.S. Grover, P.A. Hersh, H.Q. Chiang, E.S. Kettenring, J.F. Wager, D.A. Keszler, Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer. J. Phys. D, Appl. Phys. 40(5), 1335–1338 (2007). https://doi.org/10.1088/0022-3727/40/5/004

  33. K. Nomura, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300(5623), 1269–1272 (2003). https://doi.org/10.1126/science.1083212

  34. E.N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, W. Lu, Fully transparent thin-film transistor devices based on SnO2Nanowires. Nano Lett. 7(8), 2463–2469 (2007). https://doi.org/10.1021/nl0712217

  35. I.-C. Cheng, A.Z. Kattamis, K. Long, J.C. Sturm, S. Wagner, Selfaligned amorphous-silicon TFTs on clear plastic substrates. IEEE Electron Dev. Lett. 27(3), 166–168 (2006). https://doi.org/10.1109/LED.2006.870247

  36. S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, T. Kawai, Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. J. Appl. Phys. 93(3), 1624–1630 (2003). https://doi.org/10.1063/1.1534627

  37. R.L. Hoffman, B.J. Norris, J.F. Wager, ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82(5), 733–735 (2003). https://doi.org/10.1063/1.1542677

  38. D.C. Paine, B. Yaglioglu, Z. Beiley, S. Lee, Amorphous IZO-based transparent thin film transistors. Thin Solid Films 516(17), 5894–5898 (2008). https://doi.org/10.1016/j.tsf.2007.10.081

  39. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004). https://doi.org/10.1038/nature03090

  40. C.-Y. Chang et al., Demonstration of p-GaN/AlGaN/GaN High Electron Mobility Transistors With an Indium–Tin–Oxide Gate Electrode. IEEE J. Electron Dev. Soc. 9, 2–5 (2021)

    Google Scholar 

  41. A.J. Green et al., RF power performance of Sc(Al, Ga)N/GaN HEMTs at Ka-band. IEEE Electron Dev. Lett. 41(8), 1181–1184 (2020)

    Google Scholar 

  42. J. Cheng et al., Breakdown voltage enhancement in ScAlN/GaN high-electron-mobility transistors by high-k bismuth zinc niobate oxide. IEEE Trans. Electron Dev. 68(7), 3333–3338 (2021)

    Google Scholar 

  43. A.J. Green et al., ScAlN/GaN high-electron-mobility transistors with 2.4-A/mm current density and 0.67-S/mm transconductance. IEEE Electron Dev. Lett. 40(7), 1056–1059 (2019)

    Google Scholar 

  44. A. Kanale, B.J. Baliga, Theoretical optimization of the Si GSS-DMM device in the basic topology for SiC power MOSFET short-circuit capability improvement. IEEE Access 9, 70039–70047 (2021)

    Google Scholar 

  45. S. Nida, B. Kakarla, T. Ziemann, U. Grossner, Analysis of current capability of SiC power MOSFETs under avalanche conditions. IEEE Trans. Electron Dev. 68(9), 4587–4592 (2021)

    Google Scholar 

  46. T. Liu, S. Zhu, M.H. White, A. Salemi, D. Sheridan, A.K. Agarwal, Time-dependent dielectric breakdown of commercial 1.2 kV 4H-SiC power MOSFETs. IEEE J. Electron Dev. Soc. 9, 633–639 (2021)

    Google Scholar 

  47. A. Castellazzi, T. Funaki, T. Kimoto and T. Hikihara, Short-circuit tests on SiC power MOSFETs, in 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS) (2013), pp. 1297–1300

    Google Scholar 

  48. L. Anoldo et al., Study of the thermomechanical strain induced by current pulses in SiC-based power MOSFET. IEEE Electron Dev. Lett. 42(7), 1089–1092 (2021)

    Google Scholar 

  49. D.R. Ball et al., Effects of breakdown voltage on single-event burnout tolerance of high-voltage SiC power MOSFETs. IEEE Trans. Nucl. Sci. 68(7), 1430–1435 (2021)

    Google Scholar 

  50. T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide Technology (Singapore: Wiley, 2014). https://doi.org/10.1002/97811183135.

  51. J.A. Cooper et al., Demonstration of constant-gate-charge scaling to increase the robustness of silicon carbide power MOSFETs. IEEE Trans. Electron Dev. 68(9), 4577–4581 (Sept. 2021)

    Google Scholar 

  52. O. Seok, H. Kang, J.H. Moon, H.W. Kim, M.-W. Ha, W. Bahng, Double p-base structure for 1.2-kV SiC trench MOSFETs with the suppression of electric-field crowding at gate oxide. Microelectron. Eng. 225, 111280 (2020)

    Google Scholar 

  53. R. Chaujar, Analog and RF assessment of sub-20 nm 4H-SiC trench gate MOSFET for high frequency applications. AEU-Int. J. Electron. C. 98, 51–57 (2019)

    Article  Google Scholar 

  54. Q. Molin, M. Kanoun, C. Raynaud, H. Morel, Measurement and analysis of SiC-MOSFET threshold voltage shift. Microelectron. Reliab. 88–90, 656–660 (2018)

    Article  Google Scholar 

  55. C. Fei, S. Bai, Q. Wang, R. Huang, Z. He, H. Liu, Q. Liu, Influences of pre-oxidation nitrogen implantation and post-oxidation annealing on channel mobility of 4H-SiC MOSFETs. J. Cryst. Growth 531, 125338 (2020)

    Google Scholar 

  56. M. Cabello, V. Soler, G. Rius, J. Montserrat, J. Rebollo, P. Godignon, Advanced processing for mobility improvement in 4H-SiC MOSFETs: a review. Mater. Sci. Semicond. Process. 78, 22–31 (2018)

    Article  Google Scholar 

  57. M. Sievers, B. Findenig, M. Glavanovics, T. Aichinger, B. Deutschmann, Monitoring of parameter stability of SiC MOSFETs in real application tests. Microelectron. Reliab. 114, 113731 (2020)

    Google Scholar 

  58. A.A. Lebedev, V.V. Kozlovski, M.E. Levinshtein, A.E. Ivanov, A.M. Strel'chuk, A.V. Zubov, L. Fursin, Impact of 0.9 MeV electron irradiation on main properties of high voltage vertical power 4H-SiC MOSFETs. Radiat. Phys. Chem. 177, 109200 (2020)

    Google Scholar 

  59. J. Ortiz Gonzalez, O. Alatise, Bias temperature instability and condition monitoring in SiC power MOSFETs. Microelectron. Reliab. 88–90, 557–562 (2018)

    Google Scholar 

  60. M. Cabello, V. Soler, L. Knoll, J. Montserrat, J. Rebollo, A. Mihaila, P. Godignon, Comparative study of boron doped gate oxide impact on 4H and 6H-SiC n-MOSFETs. Mater. Sci. Semicond. Process. 93, 357–359 (2019)

    Article  Google Scholar 

  61. A. Castellazzi, F. Richardeau, A. Borghese, F. Boige, A. Fayyaz, A. Irace, G. Guibaud, V. Chazal, Gate-damage accumulation and off-line recovery in SiC power MOSFETs with soft short-circuit failure mode. Microelectron. Reliab. 114, 113943 (2020)

    Google Scholar 

  62. X. Jiang, J. Wang, Lu., Jiwu, J. Chen, X. Yang, Z. Li, C. Tu, Z. John Shen, Failure modes and mechanism analysis of SiC MOSFET under short-circuit conditions. Microelectron. Reliab. 88–90, 593–597 (2018)

    Google Scholar 

  63. H. Du, S. Letz, N. Baker, T. Goetz, F. Iannuzzo, A. Schletz, Effect of short-circuit degradation on the remaining useful lifetime of SiC MOSFETs and its failure analysis, Microelectron. Reliab. 114, 113784 (2020)

    Google Scholar 

  64. P.D. Reigosa, N. Schulz, R. Minamisawa, Short-circuit robustness of retrograde channel doping 1.2 kV SiC MOSFETs. Microelectron. Reliab. 120, 114117 (2021)

    Google Scholar 

  65. X. Ding, P. Lu, Z. Shan, A high-accuracy switching loss model of SiC MOSFETs in a motor drive for electric vehicles. Appl. Energy 291, 116827 (2021)

    Google Scholar 

  66. G. Carangelo, S. Reggiani, G. Consentino, F. Crupi, G. Meneghesso, TCAD modeling of bias temperature instabilities in SiC MOSFETs. Solid-State Electron. 185, 108067 (2021)

    Google Scholar 

  67. Z. Bai, X. Tang, Y. He, H. Yuan, Q. Song, Y. Zhang, Improving avalanche robustness of SiC MOSFETs by optimizing three-region P-well doping profile. Microelectron. Reliab. 124, 114332 (2021)

    Google Scholar 

  68. H. Fu, Z. Wei, S. Liu, J. Wei, H. Xu, L. Ni, Z. Yang, W. Sun, 1200V 4H-SiC trench MOSFET with superior figure of merit and suppressed quasi-saturation effect. Microelectron. Reliab. 123, 114249 (2021)

    Google Scholar 

  69. K. Yao, H. Yano, N. Iwamuro, Investigations of short-circuit failure in double trench SiC MOSFETs through three-dimensional electro-thermal-mechanical stress analysis. Microelectron. Reliab. 122, 114163 (2021)

    Google Scholar 

  70. P. Fiorenza, C. Bongiorno, F. Giannazzo, M.S. Alessandrino, A. Messina, M. Saggio, F. Roccaforte, Interfacial electrical and chemical properties of deposited SiO2 layers in lateral implanted 4H-SiC MOSFETs subjected to different nitridations. Appl. Surf. Sci. 557, 149752 (2021)

    Google Scholar 

  71. K. Bai, S. Feng, X. Zheng, X. He, S. Pan, X. Li, Effect of high- and low- side blocking on short-circuit characteristics of SiC MOSFET. Microelectron. Reliab. 123, 114227 (2021)

    Google Scholar 

  72. J.H. Moon, H. Kang, H.W. Kim, O. Seok, W. Bahng, M.-W. Ha (2020) TEOS-based low-pressure chemical vapor deposition for gate oxides in 4H–SiC MOSFETs using nitric oxide post-deposition annealing. Curr. Appl. Phys. 20(12), 1386–1390

    Google Scholar 

  73. B. Wang, J. Liu, W. Li, G. Zhang, Y. Geng, J. Wang, Multiple failure mode identification of SiC planar MOSFETs in short-circuit operation. Microelectron. Reliab. 114, 113804 (2020)

    Google Scholar 

  74. Z. Zhang, Y. Guo, J. Robertson, Mobility degradation in 4H-SiC MOSFETs and interfacial formation of carbon clusters. Solid-State Electron. 183, 108051 (2021)

    Google Scholar 

  75. A.J. Green et al., 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs. IEEE Electron Dev. Lett. 37(7), 902–905 (2016). https://doi.org/10.1109/LED.2016.2568139

  76. Y. Lv, J. Mo, X. Song, Z. He, Y. Wang, X. Tan, X. Zhou, Gu., Guodong, H. Guo, Z. Feng, Influence of gate recess on the electronic characteristics of β-Ga2O3 MOSFETs. Superlattices Microstruct. 117, 132–136 (2018)

    Google Scholar 

  77. Y. Lv et al., Source-field-plated β-Ga2O3 MOSFET with record power figure of merit of 50.4 MW/cm2. IEEE Electron Dev. Lett. 40(1), 83–86 (2019). https://doi.org/10.1109/LED.2018.2881274

  78. N.A. Moser et al., Pulsed power performance of β-2O3 MOSFETs at L-Band. IEEE Electron Dev. Lett. 41(7), 989–992 (2020). https://doi.org/10.1109/LED.2020.2993555

  79. M.H. Wong, M. Higashiwaki, Vertical β-2O3 power transistors: a review. IEEE Trans. Electron Dev. 67(10), 3925–3937 (2020). https://doi.org/10.1109/TED.2020.3016609

  80. A. Bhattacharyya et al., Multi-kV class β-2O3 MESFETs with a lateral figure of merit up to 355 MW/cm2. IEEE Electron Dev. Lett. 42(9), 1272–1275 (2021). https://doi.org/10.1109/LED.2021.3100802

  81. J. Wang et al., ε-Ga2O3: a promising candidate for high-electron-mobility transistors. IEEE Electron Dev. Lett. 41(7), 1052–1055 (2020). https://doi.org/10.1109/LED.2020.2995446

  82. S. Kumar, R. Soman, A.S. Pratiyush, R. Muralidharan, D.N. Nath, A performance comparison between β-Ga2O3 and GaN HEMTs. IEEE Trans. Electron Dev. 66(8), 3310–3317 (2019). https://doi.org/10.1109/TED.2019.2924453

  83. J. Oh, J. Ma, G. Yoo, Simulation study of reduced self-heating in β-Ga2O3 MOSFET on a nano-crystalline diamond substrate. Results Phys. 13, 102151 (2019)

    Google Scholar 

  84. E. Fabris et al., Trapping and detrapping mechanisms in β-Ga2O3 vertical FinFETs investigated by electro-optical measurements. IEEE Trans. Electron Devices 67(10), 3954–3959 (2020). https://doi.org/10.1109/TED.2020.3013242

  85. X. Zhou et al., Realizing high-performance β-Ga2O3 MOSFET by using variation of lateral doping: a TCAD study. IEEE Trans. Electron Dev. 68(4), 1501–1506 (2021). https://doi.org/10.1109/TED.2021.3056326

  86. J. Ma, O. Lee, G. Yoo, Effect of Al2O3 passivation on electrical properties of β-Ga2O3 field-effect transistor. IEEE J. Electron Dev. Soc. 7, 512–516 (2019). https://doi.org/10.1109/JEDS.2019.2912186

    Article  Google Scholar 

  87. C. Joishi et al., Breakdown Characteristics of β-(Al0.22Ga0.78)2O3/Ga2O3 field-plated modulation-doped field-effect transistors. IEEE Electron Device Lett. 40(8), 1241–1244 (2019). https://doi.org/10.1109/LED.2019.2921116

  88. K. Tetzner, O. Hilt, A. Popp, S. B. Anooz, J. Würfl, Challenges to overcome breakdown limitations in lateral β-Ga2O3 MOSFET devices. Microelectron. Reliab. 114, 113951 (2020)

    Google Scholar 

  89. Y.J. Jeong, J.Y. Yang, C.H. Lee, R. Park, G. Lee, R.B.K. Chung, G. Yoo, Fluorine-based plasma treatment for hetero-epitaxial β-Ga2O3 MOSFETs. Appl. Surf. Sci. 558, 149936 (2021)

    Google Scholar 

  90. A.K. Rajapitamahuni, L.R. Thoutam, P. Ranga, S. Krishnamoorthy, B. Jalan, Impurity based conduction in Si-doped β-Ga2O3 films. Appl. Phys. Lett. 118, 072105 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ajayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ajayan, J., Tayal, S., Thoutam, L.R. (2022). Applications of Emerging Materials: High Power Devices. In: Thoutam, L.R., Tayal, S., Ajayan, J. (eds) Emerging Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-1312-9_11

Download citation

Publish with us

Policies and ethics