Skip to main content

The Implication of Antimicrobial Peptides Against Bacteria and Their Clinical Aspects

  • Chapter
  • First Online:
Alternatives to Antibiotics

Abstract

Antimicrobial peptides (AMPs), also designated as the host’s protective peptide molecule, are short and usually positively charged peptides found extensively in life forms in this globe which range from microorganisms to humans. The continuous and rapid manifestation of multidrug-resistant bacteria is nowadays an alarming threat to human beings and becomes a global problem. In this scenario, AMPs have recently drawn substantial significance as impending preferences in respect to usual antibiotics having an undeniable wide range of antimicrobial activity. More than 3283 antimicrobial peptides (AMPs) have been acknowledged to date according to the antimicrobial peptide database (aps.unmc.edu), and among them (3036 AMPs) are directly acting in opposition against numerous bacteria. Several antimicrobial peptides have got an endorsement by the US Food and Drug Administration (FDA). About a few decades ago, such peptides have drawn considerable implications among scientists, health professionals, and pharmaceutical companies as therapeutics. Besides having antimicrobial efficacy, most AMPs even modulate the immunological synchronization of the host. Interestingly, the majority of AMPs are identified in soilborne gram-positive bacteria and the cutaneous secretion or body fluids of various animals. Furthermore, AMPs exhibit high selectivity, strong efficacy, decreased drug interaction, lower toxicity, and biological diversity. In this chapter, we provide an insight into the classification, biological role, mode of action, and clinical applications along with the prospects of antimicrobial peptides especially useful against bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPs:

Antimicrobial peptides

APD:

Antimicrobial peptide database

LPS:

Lipopolysaccharides

PAMP:

Pathogen-associated molecular patterns

STAMPs:

Selectively targeted AMPs

WHO:

World Health Organization

References

  • Ahmed TAE, Hammami R (2018) Recent insights into structure-function relationships of antimicrobial peptides. J Food Biochem 43:e12546

    Article  PubMed  Google Scholar 

  • Aisenbrey C, Amaro M, Pospisil P, Hof M, Bechinger B (2020) Highly synergistic antimicrobial activity of Magainin 2 and PGLa peptides is rooted in the formation of supramolecular complexes with lipids. Sci Rep 10:1–13

    Article  CAS  Google Scholar 

  • Amso Z, Hayouka Z (2019) Antimicrobial random peptide cocktails: a new approach to fight pathogenic bacteria. Commun Chem 55:2007–2014

    Article  CAS  Google Scholar 

  • Anaya-Lopez JL, Lopez-Meza JE, Ochoa-Zarzosa A (2012) Bacterial resistance to cationic antimicrobial peptides. Crit Rev Microbiol 39:180–195

    Article  PubMed  CAS  Google Scholar 

  • Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI (2004) The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 38:1673–1681

    Article  CAS  PubMed  Google Scholar 

  • Ball LJ, Goult CM, Donarski JA, Micklefield J, Ramesh V (2004) NMR structure determination and calcium binding effects of lipopeptide antibiotic daptomycin. Org Biomol Chem 2:1872–1878

    Article  CAS  PubMed  Google Scholar 

  • Ballantine RD, Li YX, Qian PY, Cochrane SA (2018) Rational design of new cyclic analogues of the antimicrobial lipopeptide tridecaptin A1. Chem Commun 54:10634–10637

    Article  CAS  Google Scholar 

  • Bals R (2000) Epithelial antimicrobial peptides in host defense against infection. Respir Res 1:141–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechinger B, Gorr SU (2016) Antimicrobial peptides: mechanisms of action and resistance. J Dent Res 96:254–260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ben-Efraim I, Shai Y (1997) The structure and organization of synthetic putative membranous segments of ROMK1 channel in phospholipid membranes. Biophys J 72:85–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berditsch M, Lux H, Babii O, Afonin S, Ulrich A (2016) Therapeutic potential of gramicidin S in the treatment of root canal infections. Pharmaceuticals 9:1–14

    Article  CAS  Google Scholar 

  • Bloom DE, Cadarette D (2019) Infectious disease threats in the twenty-first century: strengthening the global response. Front Immunol 10:1–12

    Article  CAS  Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev. Immunol 13:61–92

    Article  CAS  PubMed  Google Scholar 

  • Bork K, Brauers J, Kresken M (1989) Efficacy and safety of 2% mupirocin ointment in the treatment of primary and secondary skin infections—an open multicentre trial. Br J Clin Pract 43:284–288

    CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD (2009) A peptidomics study reveals the impressive antimicrobial peptide arsenal of the Wax Moth Galleria Mellonella. Insect Biochem Mol Biol 39:792–800

    Article  CAS  PubMed  Google Scholar 

  • Bulet P, Stocklin R (2005) Insect antimicrobial peptides: Structures, properties and gene regulation. Protein Pept Lett 12:3–11

    Article  CAS  PubMed  Google Scholar 

  • Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immun 23:329–344

    Article  CAS  Google Scholar 

  • Cao X, He Y, Hu Y, Wang Y, Chen Y-R, Bryant B, Clem RJ, Schwartz LM, Blissard G, Jiang H (2015) The immune signaling pathways of Manduca sexta. Insect Biochem Mol Biol 62:64–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, de la Fuente-Nunez C, Ou RW, Torres MDT, Pande SG, Sinskey AJ, Lu TK (2018) Yeast-based synthetic biology platform for antimicrobial peptide production. ACS Synth Biol 7:896–902

    Article  CAS  PubMed  Google Scholar 

  • Cardoso P, Glossop H, Meikle TG, Aburto-Medina A, Conn CE, Sarojini V, Valery C (2021) Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities. Biophys Rev 13:35–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan D, Prenner E, Vogel H (2006) Tryptophan and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta Biomembr 1758:1184–1202

    Article  CAS  Google Scholar 

  • Chen CH, Lu TK (2020) Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 9:1–20

    Article  CAS  Google Scholar 

  • Chen AY, Zervos MJ, Vazquez JA (2007) Dalbavancin: a novel antimicrobial. Int J Clin Pract 61:853–863

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Starr CG, Troendle E, Wiedman G, Wimley WC, Ulmschneider JP, Ulmschneider MB (2019) Simulation-guided rational de novo design of a small pore-forming antimicrobial peptide. J Am Chem Soc 141:4839–4848

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Hwang JS, Lee DG (2015) Coprisin exerts antibacterial effects by inducing apoptosis-like death in Escherichia coli. IUBMB Life 68:72–78

    Article  PubMed  CAS  Google Scholar 

  • Chung PY, Khanum R (2017) Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect 50:405–410

    Article  CAS  PubMed  Google Scholar 

  • Coates ARM, Halls G, Hu Y (2011) Novel classes of antibiotics or more of the same? Br J Pharmacol 163:184–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlon JM, Mechkarska M (2014) Host-defense peptides with therapeutic potential from skin secretions of frogs from the family Pipidae. Pharmaceuticals 7:58–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa F, Teixeira C, Gomes P, Martins MC (2019) Clinical application of AMPs. Adv Exp Med Biol 1117:281–298

    Article  CAS  PubMed  Google Scholar 

  • Dawson RM, Liu C-Q (2008) Properties and applications of antimicrobial peptides in biodefense against biological warfare threat agents. Crit Rev Microbiol 34:89–107

    Article  CAS  PubMed  Google Scholar 

  • de Caleya RF, Gonzalez-Pascual B, Garcia-Olmedo F, Carbonero P (1972) Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol 23:998–1000

    Article  PubMed Central  Google Scholar 

  • De Gregorio E (2002) The toll and IMD pathways are the major regulators of the immune response in Drosophila. EMBO J 21:2568–2579

    Article  PubMed  PubMed Central  Google Scholar 

  • de Leeuw E, Li C, Zeng P, Li C, de Buin MD, Lu WY, Breukink E, Lu W (2010) Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett 584:1543–1548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di L (2015) Strategic approaches to optimizing peptide ADME properties. AAPS J 17:134–143

    Article  CAS  PubMed  Google Scholar 

  • Diamond G, Beckloff N, Weinberg A, Kisich K (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15:2377–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijksteel GS, Ulrich MM, Middelkoop E, Boekema BK (2021) Review: lessons learned from clinical trials using antimicrobial peptides (AMPS). Front Microbiol 12:1–12

    Article  Google Scholar 

  • Duperthuy M (2020) Antimicrobial peptides: virulence and resistance modulation in gram-negative bacteria. Microorganisms 8:1–12

    Article  CAS  Google Scholar 

  • Dutta SR, Gauri SS, Mondal B, Vemula A, Halder SK, DasMohapatra PK, Mondal KC, Ghosh AK (2016) Screening of antimicrobial peptides from hemolymph extract of tasar silkworm Antheraea mylitta against urinary tract and wound infecting multidrug-resistant bacteria. Acta Biol Szeged 60:49–55

    Google Scholar 

  • Dutta SR, Gauri SS, Ghosh T, Halder SK, DasMohapatra PK, Mondal KC, Ghosh AK (2017) Elucidation of structural and functional integration of a novel antimicrobial peptide from Antheraea mylitta. Bioorg Med Chem Lett 27:1686–1692

    Article  CAS  PubMed  Google Scholar 

  • Ebenhan T, Gheysens O, Kruger HG, Zeevaart JR, Sathekge MM (2014) Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. Biomed Res Int 2014:1–15

    Article  CAS  Google Scholar 

  • Ehrenstein G, Lecar H (1977) Electrically gated ionic channels in lipid bilayers. Q Rev Biophys 10:1–34

    Article  CAS  PubMed  Google Scholar 

  • El Shazely B, Yu G, Johnston PR, Rolff J (2020) Resistance evolution against antimicrobial peptides in Staphylococcus aureus alters pharmacodynamics beyond the mic. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00103

  • Feng M, Fei S, Xia J, Labropoulou V, Swevers L, Sun J (2020) Antimicrobial peptides as potential antiviral factors in insect antiviral immune response 11:1–12

    Google Scholar 

  • Field CJ (2005) The immunological components of human milk and their effect on immune development in infants. J Nutr 135:1–4

    Article  CAS  PubMed  Google Scholar 

  • Florin T, Maracci C, Graf M, Karki P, Klepacki D, Berninghausen O, Beckmann R, Vazquez-Laslop N, Wilson DN, Rodnina MV, Mankin AS (2017) An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome. Nat Struct Mol Biol 24:752–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox JL (2013) Antimicrobial peptides stage a comeback. Nat Biotechnol 31:379–382

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Bjorstad Å, Dahlgren C, Bylund J (2004) A bactericidal Cecropin-A peptide with a stabilized α-helical structure possess an increased killing capacity but no proinflammatory activity. Inflammation 28:337–343

    Article  CAS  PubMed  Google Scholar 

  • Fullaondo A, Lee SY (2012) Regulation of drosophila-virus interaction. Dev Comp Immunol 36:262–266

    Article  CAS  PubMed  Google Scholar 

  • Gagnon MG, Roy RN, Lomakin IB, Florin T, Mankin AS, Steitz TA (2016) Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. Nucleic Acids Res 44:2439–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR (2021) The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 50:7820–7880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaynes R (2017) The discovery of penicillin—new insights after more than 75 years of clinical use. J Emerg Infect Dis 23:849–853

    Article  Google Scholar 

  • Giuliani A, Pirri G, Nicoletto S (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Open Life Sci 2:1–33

    Article  CAS  Google Scholar 

  • Gomaa AI, Martinent C, Hammami R, Fliss I, Subirade M (2017) Dual coating of liposomes as encapsulating matrix of antimicrobial peptides: development and characterization. Front Chem 5:1–12

    Article  CAS  Google Scholar 

  • Greber E, Dawgul M (2017) Antimicrobial peptides under clinical trials. Curr Top Med Chem 17:620–628

    Article  CAS  PubMed  Google Scholar 

  • Greco I, Molchanova N, Holmedal E, Jenssen H, Hummel BD, Watts JL, Hakansson J, Hansen PR, Svenson J (2020) Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep 10:1–13

    Article  CAS  Google Scholar 

  • Gschwandtner M, Zhong S, Tschachler A, Mlitz V, Karner S, Elbe-Burger A et al (2014) Fetal human keratinocytes produce large amounts of antimicrobial peptides: involvement of histone-methylation processes. J Invest Dermatol 134:2192–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock RE (1997) Peptide antibiotics. Lancet 349:418–422

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE (2000) Cationic antimicrobial peptides: towards clinical applications. Expert Opin Investig Drugs 9:1723–1729

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock REW, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8:402–410

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Haney EF, Brito-Sanchez Y, Trimble MJ, Mansour SC, Cherkasov A, Hancock REW (2018) Computer-aided discovery of peptides that specifically attack bacterial biofilms. Sci Rep 8:1–12

    Article  CAS  Google Scholar 

  • Hanson MA, Lemaitre B, Unckless RL (2019) Dynamic evolution of antimicrobial peptides underscores trade-offs between immunity and ecological fitness. Front Immunol 10:1–11

    Article  CAS  Google Scholar 

  • He SW, Zhang J, Li NQ, Zhou S, Yue B, Zhang M (2017) A TFPI-1 peptide that induces degradation of bacterial nucleic acids, and inhibits bacterial and viral infection in half-smooth tongue sole, Cynoglossus semilaevis. Fish Shellf Immunol 60:466–473

    Article  CAS  Google Scholar 

  • Higgins DL, Chang R, Debabov DV, Leung J, Wu T, Krause KM, Sandvik E, Hubbard JM, Kone K, Schmidt DE, Gao Q, Cass RT, Karr DE, Benton BM, Humphrey PP (2005) Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49:1127–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huan Y, Kong Q, Mou H, Yi H (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 11:1–21

    Article  Google Scholar 

  • Huang HJ, Ross CR, Blecha F (1997) Chemoattractant properties of PR-39, a neutrophil antibacterial peptide. J Leukoc Biol 61:624–629

    Article  CAS  PubMed  Google Scholar 

  • Hultmark D, Steiner H, Rasmuson T, Boman HG (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106:7–16

    Article  CAS  PubMed  Google Scholar 

  • Imler JL, Bulet P (2005) Antimicrobial peptides in drosophila: structures, activities and gene regulation. Chem Immunol Allergy 86:1–21

    CAS  PubMed  Google Scholar 

  • Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev. 19:491–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin K, Sam IH, Po KHL, Lin D, Ghazvini Zadeh EH, Chen S, Yuan Y, Li X (2016) Total synthesis of teixobactin. Nat Commun 7:1–6

    Article  Google Scholar 

  • Kalsy M, Tonk M, Hardt M, Dobrindt U, Zdybicka-Barabas A, Cytrynska M, Vilcinskas A, Mukherjee K (2020) The insect antimicrobial peptide cecropin A disrupts uropathogenic Escherichia coli biofilms. NPJ Biofilms Microbiomes 6:1–8

    Article  CAS  Google Scholar 

  • Kennedy DA, Read AF (2018) Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance. Proc Natl Acad Sci U S A 115:12878–12886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keymanesh K, Soltani S, Sardari S (2009) Application of antimicrobial peptides in agriculture and food industry. World J Microbiol Biotechnol 25:933–944

    Article  Google Scholar 

  • Knappe D, Henklein P, Hoffmann R, Hilpert K (2010) Easy strategy to protect antimicrobial peptides from fast degradation in serum. Antimicrobial Agents Chemother 54:4003–4005

    Article  CAS  Google Scholar 

  • Komal A (2021) Biologically active peptides from marine proteobacteria: discussion article. Open J Bacteriol 5:5–12

    Article  Google Scholar 

  • Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:3016–3026

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Kizhakkedathu J, Straus S (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8:1–24

    Article  CAS  Google Scholar 

  • Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26:2700–2707

    Article  CAS  PubMed  Google Scholar 

  • Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS (2013) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42:D1091–D1097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le CF, Fang CM, Sekaran SD (2017) Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother 61:1–16

    Article  Google Scholar 

  • Lee JK, Luchian T, Park Y (2018) New antimicrobial peptide kills drug-resistant pathogens without detectable resistance. Oncotarget 9:15616–15634

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 84:553–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11:3919–3931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li WF, Ma GX, Zhou XX (2006) Apidaecin-type peptides: biodiversity, structure–function relationships and mode of action. Peptides 27:2350–2359

    Article  CAS  PubMed  Google Scholar 

  • Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW (2017) Membrane active antimicrobial peptides: translating mechanistic insights to design. Front Neurosci 11:1–18

    Article  Google Scholar 

  • Li B, Yang N, Wang X, Hao Y, Mao R, Li Z, Wang Z, Teng D, Wang J (2020) An enhanced variant designed from DLP4 cationic peptide against Staphylococcus aureus CVCC 546. Front Microbiol 11:1–14

    Google Scholar 

  • Lichtenstein AK, Ganz T, Nguyen TM, Selsted ME, Lehrer RI (1988) Mechanism of target cytolysis by peptide defensins. Target cell metabolic activities, possibly involving endocytosis, are crucial for expression of cytotoxicity. J Immunol 140:2686–2694

    CAS  PubMed  Google Scholar 

  • Lin TY, Weibel DB (2016) Organization and function of anionic phospholipids in bacteria. Appl Microbiol Biotechnol 100:4255–4267

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Ma Y, Wang X, Liang J, Zhang C, Zhang K, Lin G, Lai R (2008) The first antimicrobial peptide from sea amphibian. Mol Immunol 45:678–681

    Article  CAS  PubMed  Google Scholar 

  • Lundquist P, Artursson P (2016) Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 106:256–276

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Song Y (2021) Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci 22:11401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahlapuu M, Hakansson J, Ringstad L, Bjorn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:1–12

    Article  CAS  Google Scholar 

  • Mahlapuu M, Bjorn C, Ekblom J (2020) Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit Rev Biotechnol 40:978–992

    Article  CAS  PubMed  Google Scholar 

  • Malanovic N, Lohner K (2016) Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. Biochim Biophys Acta Biomembr 1858:936–946

    Article  CAS  Google Scholar 

  • Malmsten M (2016) Interactions of antimicrobial peptides with bacterial membranes and membrane components. Curr Top Med Chem 16:16–24

    Article  CAS  PubMed  Google Scholar 

  • Manabe T, Kawasaki K (2017) D-form KLKLLLLLKLK-NH2 peptide exerts higher antimicrobial properties than its L-form counterpart via an association with bacterial cell wall components. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  • Mangoni ML, Casciaro B (2020) Development of antimicrobial peptides from amphibians. Antibiotics 9:1–4

    Article  Google Scholar 

  • Mardirossian M, Grzela R, Giglione C, Meinnel T, Gennaro R, Mergaert P, Scocchi M (2014) The host antimicrobial peptide bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol 21:1639–1647

    Article  CAS  PubMed  Google Scholar 

  • Mardirossian M, Perebaskine N, Benincasa M, Gambato S, Hofmann S, Huter P, Muller C, Hilpert K, Innis CA, Tossi A, Wilson DN (2018) The dolphin proline-rich antimicrobial peptide TUR1A inhibits protein synthesis by targeting the bacterial ribosome. Cell Chem Biol 25:530–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta-Biomembr 1788:1687–1692

    Article  CAS  Google Scholar 

  • Micenkova L, Bosak J, Kucera J, Hrala M, Dolejsova T, Sedo O, Linke D, Fiser R, Smajs D (2019) Colicin Z, a structurally and functionally novel colicin type that selectively kills enteroinvasive Escherichia coli and Shigella strains. Sci Rep 9:1–12

    Article  CAS  Google Scholar 

  • Mishra A, Choi J, Moon E, Baek KH (2018) Tryptophan-rich and proline-rich antimicrobial peptides. Molecules 23:1–22

    Article  CAS  Google Scholar 

  • Moghaddam MM, Barjini KA, Ramandi MF, Amani J (2014) Investigation of the antibacterial activity of a short cationic peptide against multidrug-resistant Klebsiella pneumoniae and Salmonella typhimurium strains and its cytotoxicity on eukaryotic cells. World J Microbiol Biotechnol 30:1533–1540

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi AZ, Moravej H, Fasihi-Ramandi M, Masjedian F, Nazari R, Mirnejad R, Moosazadeh Moghaddam M (2017) In vitro synergistic effects of a short cationic peptide and clinically used antibiotics against drug-resistant isolates of Brucella melitensis. J Med Microbiol 66:919–926

    Article  CAS  Google Scholar 

  • Moncla BJ, Pryke K, Rohan LC, Graebing PW (2011) Degradation of naturally occurring and engineered antimicrobial peptides by proteases. Adv Biosci Biotechnol 2:404–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ (2020) Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 19:311–332

    Article  CAS  PubMed  Google Scholar 

  • Mor A, Nicolas P (1994) The NH2-terminal alpha-helical domain 1-18 of dermaseptin is responsible for antimicrobial activity. J Biol Chem 21:1934–1939

    Article  Google Scholar 

  • Moravej H, Moravej Z, Yazdanparast M, Heiat M, Mirhosseini A, Moosazadeh Moghaddam M, Mirnejad R (2018) Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb Drug Resist 24:747–767

    Article  CAS  PubMed  Google Scholar 

  • Moreno F, Millan JLS, Hernandez-Chico C, Kolter R (1995) Microcins. Genetics and biochemistry of antibiotic production. Biotechnology 28:307–321

    CAS  PubMed  Google Scholar 

  • Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S, Niwa M, Takao T, Shimonishi Y (1988) Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus) isolation and chemical structure. Int J Biol Chem 263:16709–16713

    Article  CAS  Google Scholar 

  • Neshani A, Zare H, Akbari Eidgahi MR, Khaledi A, Ghazvini K (2019) Epinecidin-1, a highly potent marine antimicrobial peptide with anticancer and immunomodulatory activities. BMC Pharmacol Toxicol 20:1–11

    Article  CAS  Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472

    Article  CAS  PubMed  Google Scholar 

  • Oh R, Lee MJ, Kim Y-O, Nam B-H, Kong HJ, Kim J-W, Park J-Y, Seo JK, Kim D-G (2020) Myticusin-beta, antimicrobial peptide from the marine bivalve, Mytilus coruscus. Fish Shellfish Immunol 99:342–352

    Article  CAS  PubMed  Google Scholar 

  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers 47:451–463

    Article  CAS  PubMed  Google Scholar 

  • Parachin NS, Mulder KC, Viana AA, Dias SC, Franco OL (2012) Expression systems for heterologous production of antimicrobial peptides. Peptides 38:446–456

    Article  CAS  PubMed  Google Scholar 

  • Park CB, Kim MS, Kim SC (1996) A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem Biophys Res. 218:408–413

    Article  CAS  Google Scholar 

  • Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257

    Article  CAS  PubMed  Google Scholar 

  • Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE (2002) Sublethal concentrations of pleurocidin- derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46:605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfalzgraff A, Brandenburg K, Weindl G (2018) Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol 9:1–23

    Article  CAS  Google Scholar 

  • Piotrowska U, Oledzka E, Zgadzaj A, Bauer M, Sobczak M (2018) A novel delivery system for the controlled release~of antimicrobial peptides: citropin 1.1 and temporin A. Polymers 10:1–13

    Article  CAS  Google Scholar 

  • Pirtskhalava M, Vishnepolsky B, Grigolava M, Managadze G (2021) Physicochemical features and peculiarities of interaction of AMP with the membrane. Pharmaceuticals 14:1–36

    Article  CAS  Google Scholar 

  • Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry 31(12416–12):423

    Google Scholar 

  • Pretzel J, Mohring F, Rahlfs S, Becker K (2013) Antiparasitic peptides. Adv Biochem Eng Biotechnol 135:157–192

    CAS  PubMed  Google Scholar 

  • Rima M, Rima M, Fajloun Z, Sabatier JM, Bechinger B, Naas T (2021) Antimicrobial peptides: a potent alternative to antibiotics. Antibiotics 10:1–15

    Article  CAS  Google Scholar 

  • Rosenthal S, Decano AG, Bandali A, Lai D, Malat GE, Bias TE (2018) Oritavancin (Orbactiv): a new-generation lipoglycopeptide for the treatment of acute bacterial skin and skin structure infections. Pharm Ther 43:143–179

    Google Scholar 

  • Sanchez L, Calvo M, Brock JH (1992) Biological role of lactoferrin. Arch Dis Child 67:657–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravolatz LD, Stein GE, Johnson LB (2009) Telavancin: a novel lipoglycopeptide. Clin Infect Dis 49:1908–1914

    Article  CAS  PubMed  Google Scholar 

  • Semreen MH, El-Gamal MI, Abdin S, Alkhazraji H, Kamal L, Hammad S, El-Awady F, Waleed D, Kourbaj L (2018) Recent updates of marine antimicrobial peptides. Saudi Pharm J 26:396–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah P, Chen CS (2021) Systematical screening of intracellular protein targets of polyphemusin-I using Escherichia coli proteome microarrays. Int J Mol Sci 22:1–19

    Google Scholar 

  • Shah P, Hsiao FSH, Ho YH, Chen CS (2016) The proteome targets of intracellular targeting antimicrobial peptides. Proteomics 16:1225–1237

    Article  CAS  PubMed  Google Scholar 

  • Shelomi M, Jacobs C, Vilcinskas A, Vogel H (2020) The unique antimicrobial peptide repertoire of stick insects. Dev Comp Immunol 103:1–22

    Article  CAS  Google Scholar 

  • Shwaiki LN, Lynch KM, Arendt EK (2021) Future of antimicrobial peptides derived from plants in food application-a focus on synthetic peptides. Trends Food Sci Technol 112:312–324

    Article  CAS  Google Scholar 

  • Sierra JM, Vinas M (2021) Future prospects for antimicrobial peptide development: peptidomimetics and antimicrobial combinations. Expert Opin Drug Discov 16:601–604

    Article  CAS  PubMed  Google Scholar 

  • Silveira RF, Roque-Borda CA, Vicente EF (2021) Antimicrobial peptides as a feed additive alternative to animal production, food safety and public health implications: an overview. Anim Nutr 7:896–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver LL (2011) Challenges of antibacterial discovery. Clin Microbiol Rev 24:71–109. https://doi.org/10.1128/cmr.00030-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starr CG, Wimley WC (2017) Antimicrobial peptides are degraded by the cytosolic proteases of human erythrocytes. Biochim Biophys Acta Biomembr 1859:2319–2326

    Article  CAS  PubMed  Google Scholar 

  • Strom MB, Haug BE, Skar ML, Stensen W, Stiberg T, Svendsen JS (2003) The pharmacophore of short cationic antibacterial peptides. J Med Chem 46:1567–1570

    Article  CAS  PubMed  Google Scholar 

  • Subbalakshmi C, Sitaram N (1998) Mechanism of antimicrobial action of indolicidin. FEMS FEMS Microbiol Lett 160:91–96

    Article  CAS  PubMed  Google Scholar 

  • Sugiarto H, Yu P-L (2007) Mechanisms of action of ostrich beta-defensins against Escherichia coli. FEMS Microbiol Lett 270:195–200

    Article  CAS  PubMed  Google Scholar 

  • Tang SS, Prodhan ZH, Biswas SK, Le CF, Sekaran SD (2018) Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry 154:94–105

    Article  CAS  PubMed  Google Scholar 

  • Tanji T, Hu X, Weber AN, Ip YT (2007) Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Mol Cell Biol 27:4578–4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas CM, Hothersall J, Willis CL, Simpson TJ (2010) Resistance to and synthesis of the antibiotic mupirocin. Nat Rev Microbiol 8:281–289

    Article  CAS  PubMed  Google Scholar 

  • Torrent M, Pulido D, Rivas L, Andreu D (2012) Antimicrobial peptide action on parasites. Curr Drug Targets 13:1138–1147

    Article  CAS  PubMed  Google Scholar 

  • Touti F, Gates ZP, Bandyopadhyay A, Lautrette G, Pentelute BL (2019) In-solution enrichment identifies peptide inhibitors of protein–protein interactions. Nat Chem Biol 15:410–418. https://doi.org/10.1038/s41589-019-0245-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu YH, Ho YH, Chuang YC, Chen PC, Chen CS (2011) Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip. PLoS One 6:1–11

    Article  Google Scholar 

  • Ulvatne H, Samuelsen AR, Haukland HH, Kramer M, Vorland LH (2004) Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol Lett 237:377–384

    CAS  PubMed  Google Scholar 

  • van Harten R, van Woudenbergh E, van Dijk A, Haagsman H (2018) Cathelicidins: immunomodulatory antimicrobials. Vaccines 6:1–23

    Google Scholar 

  • Veldhuizen EJ, Schneider VA, Agustiandari H, van Dijk A, Tjeerdsma-van Bokhoven JL, Bikker FJ, Haagsman HP (2014) Antimicrobial and immunomodulatory activities of PR-39 derived peptides. PLoS One 9:1–7

    Article  CAS  Google Scholar 

  • Vilcinskas A (2013) Evolutionary plasticity of insect immunity. J Insect Physiol 59:123–129

    Article  CAS  PubMed  Google Scholar 

  • Wang G (2014) Human antimicrobial peptides and proteins. Pharmaceuticals 7:545–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32:D590–D592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X (2015) Antimicrobial peptides in 2014. Pharmaceuticals 8:123–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Garlick S, Zloh M (2021) Deep learning for novel antimicrobial peptide design. Biomolecules 11:1–17

    Google Scholar 

  • Wiesner J, Vilcinskas A (2010) Antimicrobial peptides: the ancient arm of the human immune system. Virulence 1:440–464

    Article  PubMed  Google Scholar 

  • Wronska AK, Bogus MI (2020) Heat shock proteins (HSP 90, 70, 60, and 27) in Galleria mellonella (lepidoptera) hemolymph are affected by infection with Conidiobolus coronatus (entomophthorales). PLoS One 15:1–14

    Article  CAS  Google Scholar 

  • Wu Q, Patocka J, Kuca K (2018) Insect antimicrobial peptides, a mini review. Toxins 10:1–17

    Article  CAS  Google Scholar 

  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang G, Huang T, Wang Y, Wang H, Li Y, Yu K, Dong L (2018) Sustained release of antimicrobial peptide from self-assembling hydrogel enhanced osteogenesis. J Biomater Sci Polym Ed 29:1812–1824

    Article  CAS  PubMed  Google Scholar 

  • Yasir M, Dutta D, Willcox MDP (2019) Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability. PLoS One 14:1–22

    Article  CAS  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  PubMed  Google Scholar 

  • Yeung AT, Gellatly SL, Hancock RE (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176

    Article  CAS  PubMed  Google Scholar 

  • Yi HY, Chowdhury M, Huang YD, Yu X-Q (2014) Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 98:5807–5822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Li H, Gao D, Gao C, Qi Q (2015) Secretory production of antimicrobial peptides in Escherichia coli using the catalytic domain of a cellulase as fusion partner. J Biotechnol 214:77–82

    Article  CAS  PubMed  Google Scholar 

  • Zahedifard F, Lee H, No JH, Salimi M, Seyed N, Asoodeh A, Rafati S (2020) Comparative study of different forms of Jellein antimicrobial peptide on Leishmania parasite. Exp Parasitol 209:1–31

    Article  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci 84:5449–5453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhanel GG, Calic D, Schweizer F, Zelenitsky S, Adam H, Lagacé-Wiens PRS, Rubinstein E, Gin AS, Hoban DJ, Karlowsky JA (2010) New lipoglycopeptides. Drugs 70:859–886

    Article  CAS  PubMed  Google Scholar 

  • Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, Cheng XR, Liu J, Kang J, Fu CY (2021) Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 8:1–25

    Google Scholar 

Download references

Acknowledgments

We are thankful to the Dept. of Microbiology, Midnapore College (Autonomous), Midnapore and Dept. of Microbiology, Vidyasagar University, Midnapore.

Conflicts of Interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keshab Chandra Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, S.R., Mondal, K.C. (2022). The Implication of Antimicrobial Peptides Against Bacteria and Their Clinical Aspects. In: Saha, T., Deb Adhikari, M., Tiwary, B.K. (eds) Alternatives to Antibiotics. Springer, Singapore. https://doi.org/10.1007/978-981-19-1854-4_19

Download citation

Publish with us

Policies and ethics