Skip to main content

Advertisement

Log in

Insect antimicrobial peptides and their applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin, and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides, and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20–50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdallah NA, Shah D, Abbas D, Madkour M (2010) Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM crops 1:344–350

    PubMed  Google Scholar 

  • Abdel-latief M, Hilker M (2008) Innate immunity: eggs of Manduca sexta are able to respond to parasitism by Trichogramma evanescens. Insect Biochem Mol Biol 38:136–145

    CAS  PubMed  Google Scholar 

  • Aerts AM, François IE, Cammue BP, Thevissen K, (2008) The mode of antifungal action of plant, insect and human defensins. Cell Mol Life Sci 65:2069–2079

  • Ahmad A, Ahmad E, Rabbani G, Haque S, Arshad M, Khan RH (2012) Identification and design of antimicrobial peptides for therapeutic applications. Curr Protein Pept Sci 13:211–223

    CAS  PubMed  Google Scholar 

  • Ando K, Natori S (1988) Molecular cloning, sequencing, and characterization of cDNA for sarcotoxin IIA, an inducible antibacterial protein of Sarcophaga peregrina (flesh fly). Biochemistry 27:1715–1721

    CAS  PubMed  Google Scholar 

  • Ando K, Okada M, Natori S (1987) Purification of sarcotoxin II, antibacterial proteins of Sarcophaga peregrina (flesh fly) larvae. Biochemistry 26:226–230

    CAS  PubMed  Google Scholar 

  • Andres E (2012) Cationic antimicrobial peptides in clinical development, with special focus on thanatin and heliomicin. Eur J Clin Microbiol Infect Dis 31:881–888

    CAS  PubMed  Google Scholar 

  • Arrowood MJ, Jaynes JM, Healey MC (1991) In vitro activities of lytic peptides against the sporozoites of Cryptosporidium parvum. Antimicrob Agents Chemother 35:224–227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asling B, Dushay MS, Hultmark D (1995) Identification of early genes in the Drosophila immune response by PCR-based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect Biochem Mol Biol 25:511–518

    CAS  PubMed  Google Scholar 

  • Axen A, Carlsson A, Engstrom A, Bennich H (1997) Gloverin, an antibacterial protein from the immune hemolymph of Hyalophora pupae. Eur J Biochem 247:614–619

    CAS  PubMed  Google Scholar 

  • Baba K, Okada M, Kawano T, Komano H, Natori S (1987) Purification of sarcotoxin III, a new antibacterial protein of Sarcophaga peregrina. J Biochem 102:69–74

    CAS  PubMed  Google Scholar 

  • Bang K, Park S, Yoo JY, Cho S (2012) Characterization and expression of attacin, an antibacterial protein-encoding gene, from the beet armyworm, Spodoptera exigua (Hubner) (Insecta: Lepidoptera: Noctuidae). Mol Biol Rep 39:5151–5159

    CAS  PubMed  Google Scholar 

  • Bao Y, Yamano Y, Morishima I (2005) A novel lebocin-like gene from eri-silkworm, Samia cynthia ricini, that does not encode the antibacterial peptide lebocin. Comp Biochem Physiol B Biochem Mol Biol 140:127–131

    PubMed  Google Scholar 

  • Barr SC, Rose D, Jaynes JM (1995) Activity of lytic peptides against intracellular Trypanosoma cruzi amastigotes in vitro and parasitemias in mice. J Parasitol 81:974–978

    CAS  PubMed  Google Scholar 

  • Bell A (2011) Antimalarial peptides: the long and the short of it. Curr Pharm Des 17:2719–2731

    CAS  PubMed  Google Scholar 

  • Boisbouvier J, Prochnicka-Chalufour A, Nieto AR, Torres JA, Nanard N, Rodriguez MH, Possani LD, Delepierre M (1998) Structural information on a cecropin-like synthetic peptide, Shiva-3 toxic to the sporogonic development of Plasmodium berghei. Eur J Biochem 257:263–273

    CAS  PubMed  Google Scholar 

  • Boman HG, Nilsson-Faye I, Paul K, Rasmuson T Jr (1974) Insect immunity. I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae. Infect Immun 10:136–145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonmatin JM, Bonnat JL, Gallet X, Vovelle F, Ptak M, Reichhart JM, Hoffmann JA, Keppi E, Legrain M, Achstetter T (1992) Two-dimensional 1H NMR study of recombinant insect defensin A in water: resonance assignments, secondary structure and global folding. J Biomol NMR 2:235–256

    CAS  PubMed  Google Scholar 

  • Boulanger N, Brun R, Ehret-Sabatier L, Kunz C, Bulet P (2002a) Immunopeptides in the defense reactions of Glossina morsitans to bacterial and Trypanosoma brucei brucei infections. Insect Biochem Mol Biol 32:369–375

    CAS  PubMed  Google Scholar 

  • Boulanger N, Munks RJ, Hamilton JV, Vovelle F, Brun R, Lehane MJ, Bulet P (2002b) Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J Biol Chem 277:49921–49926

    CAS  PubMed  Google Scholar 

  • Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD (2008) The discovery and analysis of a diverged family of novel antifungal moricin-like peptides in the wax moth Galleria mellonella. Insect Biochem Mol Biol 38:201–212

    CAS  PubMed  Google Scholar 

  • Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12:3–11

    CAS  PubMed  Google Scholar 

  • Bulet P, Cociancich S, Dimarcq JL, Lambert J, Reichhart JM, Hoffmann D, Hetru C, Hoffmann JA (1991) Insect immunity. Isolation from a coleopteran insect of a novel inducible antibacterial peptide and of new members of the insect defensin family. J Biol Chem 266:24520–24525

    CAS  PubMed  Google Scholar 

  • Bulet P, Cociancich S, Reuland M, Sauber F, Bischoff R, Hegy G, Van Dorsselaer A, Hetru C, Hoffmann JA (1992) A novel insect defensin mediates the inducible antibacterial activity in larvae of the dragonfly Aeschna cyanea (Paleoptera, Odonata). Eur J Biochem 209:977–984

    CAS  PubMed  Google Scholar 

  • Bulet P, Dimarcq JL, Hetru C, Lagueux M, Charlet M, Hegy G, Van Dorsselaer A, Hoffmann JA (1993) A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J Biol Chem 268:14893–14897

    CAS  PubMed  Google Scholar 

  • Campo S, Manrique S, Garcia-Martinez J, San Segundo B (2008) Production of cecropin A in transgenic rice plants has an impact on host gene expression. Plant Biotechnol J 6:585–608

    CAS  PubMed  Google Scholar 

  • Carlsson A, Engstrom P, Palva ET, Bennich H (1991) Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect Immun 59:3040–3045

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carlsson A, Nystrom T, de Cock H, Bennich H (1998) Attacin—an insect immune protein –binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology 144(Pt 8):2179–2188

    CAS  PubMed  Google Scholar 

  • Carvalho Ade O, Gomes VM (2011) Plant defensins and defensin-like peptides—biological activities and biotechnological applications. Curr Pharm Des 17:4270–4293

    PubMed  Google Scholar 

  • Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins: antibacterial peptides from honeybees. EMBO J 8:2387–2391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casteels P, Ampe C, Riviere L, Van Damme J, Elicone C, Fleming M, Jacobs F, Tempst P (1990) Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur J Biochem 187:381–386

    CAS  PubMed  Google Scholar 

  • Casteels P, Ampe C, Jacobs F, Tempst P (1993) Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem 268:7044–7054

    CAS  PubMed  Google Scholar 

  • Cavallarin L, Andreu D, San Segundo B (1998) Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens. Mol Plant Microbe Interact: MPMI 11:218–227

    CAS  PubMed  Google Scholar 

  • Cerovsky V, Zdarek J, Fucik V, Monincova L, Voburka Z, Bem R (2010) Lucifensin, the long-sought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cell Mol Life Sci 67:455–466

    CAS  PubMed  Google Scholar 

  • Chae JH, Kurokawa K, So YI, Hwang HO, Kim MS, Park JW, Jo YH, Lee YS, Lee BL (2012) Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor. Dev Comp Immunol 36:540–546

    CAS  PubMed  Google Scholar 

  • Chalk R, Townson H, Ham PJ (1995) Brugia pahangi: the effects of cecropins on microfilariae in vitro and in Aedes aegypti. Exp Parasitol 80:401–406

    CAS  PubMed  Google Scholar 

  • Chen HM, Wang W, Smith D, Chan SC (1997) Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim Biophys Acta 1336:171–179

    CAS  PubMed  Google Scholar 

  • Cheng T, Zhao P, Liu C, Xu P, Gao Z, Xia Q, Xiang Z (2006) Structures, regulatory regions, and inductive expression patterns of antimicrobial peptide genes in the silkworm Bombyx mori. Genomics 87:356–365

    CAS  PubMed  Google Scholar 

  • Cho WL, Fu YC, Chen CC, Ho CM (1996) Cloning and characterization of cDNAs encoding the antibacterial peptide, defensin A, from the mosquito, Aedes aegypti. Insect Biochem Mol Biol 26:395–402

    CAS  PubMed  Google Scholar 

  • Choi MS, Kim YH, Park HM, Seo BY, Jung JK, Kim ST, Kim MC, Shin DB, Yun HT, Choi IS, Kim CK, Lee JY (2009) Expression of BrD1, a plant defensin from Brassica rapa, confers resistance against brown planthopper (Nilaparvata lugens) in transgenic rices. Mol Cells 28:131–137

    CAS  PubMed  Google Scholar 

  • Chowdhury S, Taniai K, Hara S, Kadono-Okuda K, Kato Y, Yamamoto M, Xu J, Choi SK, Debnath NC, Choi HK, Miyanoshita A, Sugiyama M, Asaoka A, Yamakawa M (1995) cDNA cloning and gene expression of lebocin, a novel member of antibacterial peptides from the silkworm, Bombyx mori. Biochem Biophys Res Commun 214:271–278

    CAS  PubMed  Google Scholar 

  • Coca M, Penas G, Gomez J, Campo S, Bortolotti C, Messeguer J, Segundo BS (2006) Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta 223:392–406

    CAS  PubMed  Google Scholar 

  • Cociancich S, Ghazi A, Hetru C, Hoffmann JA, Letellier L (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J Biol Chem 268:19239–19245

    CAS  PubMed  Google Scholar 

  • Cociancich S, Dupont A, Hegy G, Lanot R, Holder F, Hetru C, Hoffmann JA, Bulet P (1994) Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem J 300(Pt 2):567–575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cornet B, Bonmatin JM, Hetru C, Hoffmann JA, Ptak M, Vovelle F (1995) Refined three-dimensional solution structure of insect defensin A. Structure 3:435–448

    CAS  PubMed  Google Scholar 

  • d’Alencon E, Bierne N, Girard PA, Magdelenat G, Gimenez S, Seninet I, Escoubas JM (2013) Evolutionary history of x-tox genes in three lepidopteran species: origin, evolution of primary and secondary structure and alternative splicing, generating a repertoire of immune-related proteins. Insect Biochem Mol Biol 43:54–64

    PubMed  Google Scholar 

  • Da Silva P, Jouvensal L, Lamberty M, Bulet P, Caille A, Vovelle F (2003) Solution structure of termicin, an antimicrobial peptide from the termite Pseudacanthotermes spiniger. Protein Sci 12:438–446

    PubMed Central  PubMed  Google Scholar 

  • Dai H, Rayaprolu S, Gong Y, Huang R, Prakash O, Jiang H (2008) Solution structure, antibacterial activity, and expression profile of Manduca sexta moricin. J Pept Sci Off Publ Eur Pept Soc 14:855–863

    CAS  Google Scholar 

  • DeLucca AJ, Bland JM, Jacks TJ, Grimm C, Cleveland TE, Walsh TJ (1997) Fungicidal activity of cecropin A. Antimicrob Agents Chemother 41:481–483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Destoumieux-Garzon D, Brehelin M, Bulet P, Boublik Y, Girard PA, Baghdiguian S, Zumbihl R, Escoubas JM (2009) Spodoptera frugiperda X-tox protein, an immune related defensin rosary, has lost the function of ancestral defensins. PLoS One 4:e6795

    PubMed Central  PubMed  Google Scholar 

  • Devi L (1991) Consensus sequence for processing of peptide precursors at monobasic sites. FEBS Lett 280:189–194

    CAS  PubMed  Google Scholar 

  • Dimarcq JL, Keppi E, Dunbar B, Lambert J, Reichhart JM, Hoffmann D, Rankine SM, Fothergill JE, Hoffmann JA (1988) Insect immunity. Purification and characterization of a family of novel inducible antibacterial proteins from immunized larvae of the dipteran Phormia terranovae and complete amino-acid sequence of the predominant member, diptericin A. Eur J Biochem 171:17–22

    CAS  PubMed  Google Scholar 

  • Dimarcq JL, Zachary D, Hoffmann JA, Hoffmann D, Reichhart JM (1990) Insect immunity: expression of the two major inducible antibacterial peptides, defensin and diptericin, in Phormia terranovae. EMBO J 9:2507–2515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ding J, Chou YY, Chang TL (2009) Defensins in viral infections. J Innate Immun 1:413–420

    CAS  PubMed  Google Scholar 

  • Dushay MS, Roethele JB, Chaverri JM, Dulek DE, Syed SK, Kitami T, Eldon ED (2000) Two attacin antibacterial genes of Drosophila melanogaster. Gene 246:49–57

    CAS  PubMed  Google Scholar 

  • Eckert R (2011) Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol 6:635–651

    CAS  PubMed  Google Scholar 

  • Ekengren S, Hultmark D (1999) Drosophila cecropin as an antifungal agent. Insect Biochem Mol Biol 29:965–972

    CAS  PubMed  Google Scholar 

  • Engstrom A, Engstrom P, Tao ZJ, Carlsson A, Bennich H (1984a) Insect immunity. The primary structure of the antibacterial protein attacin F and its relation to two native attacins from Hyalophora cecropia. EMBO J 3:2065–2070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Engstrom P, Carlsson A, Engstrom A, Tao ZJ, Bennich H (1984b) The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli. EMBO J 3:3347–3351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Etebari K, Palfreyman RW, Schlipalius D, Nielsen LK, Glatz RV, Asgari S (2011) Deep sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum. BMC Genomics 12:446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eum JH, Seo YR, Yoe SM, Kang SW, Han SS (2007) Analysis of the immune-inducible genes of Plutella xylostella using expressed sequence tags and cDNA microarray. Dev Comp Immunol 31:1107–1120

    CAS  PubMed  Google Scholar 

  • Faye I, Pye A, Rasmuson T, Boman HG, Boman IA (1975) Insect immunity. 11. Simultaneous induction of antibacterial activity and selection synthesis of some hemolymph proteins in diapausing pupae of Hyalophora cecropia and Samia cynthia. Infect Immun 12:1426–1438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fieck A, Hurwitz I, Kang AS, Durvasula R (2010) Trypanosoma cruzi: synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Exp Parasitol 125:342–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujiwara S, Imai J, Fujiwara M, Yaeshima T, Kawashima T, Kobayashi K (1990) A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J Biol Chem 265:11333–11337

    CAS  PubMed  Google Scholar 

  • Fullaondo A, Lee SY (2012) Regulation of Drosophila-virus interaction. Dev Comp Immunol 36:262–266

    CAS  PubMed  Google Scholar 

  • Gandhe AS, Arunkumar KP, John SH, Nagaraju J (2006) Analysis of bacteria-challenged wild silkmoth, Antheraea mylitta (Lepidoptera) transcriptome reveals potential immune genes. BMC Genomics 7:184

    PubMed Central  PubMed  Google Scholar 

  • Ganz T, Lehrer RI (1994) Defensins. Curr Opin Immunol 6:584–589

    CAS  PubMed  Google Scholar 

  • Ghag SB, Shekhawat UK, Ganapathi TR (2012) Petunia floral defensins with unique prodomains as novel candidates for development of fusarium wilt resistance in transgenic banana plants. PLoS One 7:e39557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Girard PA, Boublik Y, Wheat CW, Volkoff AN, Cousserans F, Brehelin M, Escoubas JM (2008) X-tox: an atypical defensin derived family of immune-related proteins specific to Lepidoptera. Dev Comp Immunol 32:575–584

    CAS  PubMed  Google Scholar 

  • Gunne H, Steiner H (1993) Efficient secretion of attacin from insect fat-body cells requires proper processing of the prosequence. Eur J Biochem 214:287–293

    CAS  PubMed  Google Scholar 

  • Gunne H, Hellers M, Steiner H (1990) Structure of preproattacin and its processing in insect cells infected with a recombinant baculovirus. Eur J Biochem 187:699–703

    CAS  PubMed  Google Scholar 

  • Gwadz RW, Kaslow D, Lee JY, Maloy WL, Zasloff M, Miller LH (1989) Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect Immun 57:2628–2633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanzawa H, Shimada I, Kuzuhara T, Komano H, Kohda D, Inagaki F, Natori S, Arata Y (1990) 1H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin. FEBS Lett 269:413–420

    CAS  PubMed  Google Scholar 

  • Hao Z, Kasumba I, Lehane MJ, Gibson WC, Kwon J, Aksoy S (2001) Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc Natl Acad Sci U S A 98:12648–12653

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hara S, Yamakawa M (1995a) Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J Biol Chem 270:29923–29927

    CAS  PubMed  Google Scholar 

  • Hara S, Yamakawa M (1995b) A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Biochem J 310(Pt 2):651–656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hedengren M, Borge K, Hultmark D (2000) Expression and evolution of the Drosophila attacin/diptericin gene family. Biochem Biophys Res Commun 279:574–581

    CAS  PubMed  Google Scholar 

  • Hemmi H, Ishibashi J, Hara S, Yamakawa M (2002) Solution structure of moricin, an antibacterial peptide, isolated from the silkworm Bombyx mori. FEBS Lett 518:33–38

    CAS  PubMed  Google Scholar 

  • Hetru C, Hoffmann JA (2009) NF-kappaB in the immune response of Drosophila. Cold Spring Harb Perspect Biol 1:a000232

    PubMed Central  PubMed  Google Scholar 

  • Holak TA, Engstrom A, Kraulis PJ, Lindeberg G, Bennich H, Jones TA, Gronenborn AM, Clore GM (1988) The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27:7620–7629

    CAS  PubMed  Google Scholar 

  • Hu Y, Aksoy S (2005) An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans. Insect Biochem Mol Biol 35:105–115

    CAS  PubMed  Google Scholar 

  • Hultmark D, Steiner H, Rasmuson T, Boman HG (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106:7–16

    CAS  PubMed  Google Scholar 

  • Hultmark D, Engstrom A, Bennich H, Kapur R, Boman HG (1982) Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur J Biochem 127:207–217

    CAS  PubMed  Google Scholar 

  • Hultmark D, Engstrom A, Andersson K, Steiner H, Bennich H, Boman HG (1983) Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J 2:571–576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hurwitz I, Fieck A, Read A, Hillesland H, Klein N, Kang A, Durvasula R (2011) Paratransgenic control of vector borne diseases. Int J Biol Sci 7:1334–1344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hurwitz I, Fieck A, Durvasula R (2012) Antimicrobial peptide delivery strategies: use of recombinant antimicrobial peptides in paratransgenic control systems. Curr Drug Targets 13:1173–1180

    CAS  PubMed  Google Scholar 

  • Hwang J, Kim Y (2011) RNA interference of an antimicrobial peptide, gloverin, of the beet armyworm, Spodoptera exigua, enhances susceptibility to Bacillus thuringiensis. J Invertebr Pathol 108:194–200

    CAS  PubMed  Google Scholar 

  • Hwang JS, Lee J, Kim YJ, Bang HS, Yun EY, Kim SR, Suh HJ, Kang BR, Nam SH, Jeon JP, Kim I, Lee DG (2009) Isolation and characterization of a defensin-like peptide (coprisin) from the dung beetle, Copris tripartitus. Int J Pept, pii: 136284

  • Hwang B, Hwang JS, Lee J, Kim JK, Kim SR, Kim Y, Lee DG (2011) Induction of yeast apoptosis by an antimicrobial peptide, Papiliocin. Biochem Biophys Res Commun 408:89–93

    CAS  PubMed  Google Scholar 

  • Imamura M, Wada S, Koizumi N, Kadotani T, Yaoi K, Sato R, Iwahana H (1999) Acaloleptins A: inducible antibacterial peptides from larvae of the beetle, Acalolepta luxuriosa. Arch Insect Biochem Physiol 40:88–98

    CAS  PubMed  Google Scholar 

  • Imler JL, Bulet P (2005) Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 86:1–21

    CAS  PubMed  Google Scholar 

  • Iwai H, Nakajima Y, Natori S, Arata Y, Shimada I (1993) Solution conformation of an antibacterial peptide, sarcotoxin IA, as determined by 1H-NMR. Eur J Biochem 217:639–644

    CAS  PubMed  Google Scholar 

  • Jan PS, Huang HY, Chen HM (2010) Expression of a synthesized gene encoding cationic peptide cecropin B in transgenic tomato plants protects against bacterial diseases. Appl Environ Microbiol 76:769–775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jarczak J, Kosciuczuk EM, Lisowski P, Strzalkowska N, Jozwik A, Horbanczuk J, Krzyzewski J, Zwierzchowski L, Bagnicka E (2013) Defensins: natural component of human innate immunity. Hum Immunol 74:1069–1079

    CAS  PubMed  Google Scholar 

  • Jaynes JM, Burton CA, Barr SB, Jeffers GW, Julian GR, White KL, Enright FM, Klei TR, Laine RA (1988) In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi. FASEB J 2:2878–2883

    CAS  PubMed  Google Scholar 

  • Jha S, Chattoo BB (2010) Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res 19:373–384

    CAS  PubMed  Google Scholar 

  • Kaneko Y, Tanaka H, Ishibashi J, Iwasaki T, Yamakawa M (2008) Gene expression of a novel defensin antimicrobial peptide in the silkworm, Bombyx mori. Biosci Biotechnol Biochem 72:2353–2361

    CAS  PubMed  Google Scholar 

  • Kang D, Lundstrom A, Steiner H (1996) Trichoplusia ni attacin A, a differentially displayed insect gene coding for an antibacterial protein. Gene 174:245–249

    CAS  PubMed  Google Scholar 

  • Kaur J, Thokala M, Robert-Seilaniantz A, Zhao P, Peyret H, Berg H, Pandey S, Jones J, Shah D (2012) Subcellular targeting of an evolutionarily conserved plant defensin MtDef4.2 determines the outcome of plant-pathogen interaction in transgenic Arabidopsis. Mol Plant Pathol 13:1032–1046

    CAS  PubMed  Google Scholar 

  • Kawaoka S, Katsuma S, Daimon T, Isono R, Omuro N, Mita K, Shimada T (2008) Functional analysis of four Gloverin-like genes in the silkworm, Bombyx mori. Arch Insect Biochem Physiol 67:87–96

    CAS  PubMed  Google Scholar 

  • Kim W, Koo H, Richman AM, Seeley D, Vizioli J, Klocko AD, O'Brochta DA (2004) Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to Plasmodium. J Med Entomol 41:447–455

    CAS  PubMed  Google Scholar 

  • Kim SR, Hong MY, Park SW, Choi KH, Yun EY, Goo TW, Kang SW, Suh HJ, Kim I, Hwang JS (2010) Characterization and cDNA cloning of a cecropin-like antimicrobial peptide, papiliocin, from the swallowtail butterfly, Papilio xuthus. Mol Cells 29:419–423

    CAS  PubMed  Google Scholar 

  • Kim JK, Lee E, Shin S, Jeong KW, Lee JY, Bae SY, Kim SH, Lee J, Kim SR, Lee DG, Hwang JS, Kim Y (2011) Structure and function of papiliocin with antimicrobial and anti-inflammatory activities isolated from the swallowtail butterfly, Papilio xuthus. J Biol Chem 286:41296–41311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kishimoto K, Fujimoto S, Matsumoto K, Yamano Y, Morishima I (2002) Protein purification, cDNA cloning and gene expression of attacin, an antibacterial protein, from eri-silkworm, Samia cynthia ricini. Insect Biochem Mol Biol 32:881–887

    CAS  PubMed  Google Scholar 

  • Kockum K, Faye I, Hofsten PV, Lee JY, Xanthopoulos KG, Boman HG (1984) Insect immunity. Isolation and sequence of two cDNA clones corresponding to acidic and basic attacins from Hyalophora cecropia. EMBO J 3:2071–2075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kokoza V, Ahmed A, Cho WL, Jasinskiene N, James AA, Raikhel A (2000) Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A 97:9144–9149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kokoza V, Ahmed A, Woon Shin S, Okafor N, Zou Z, Raikhel AS (2010) Blocking of Plasmodium transmission by cooperative action of Cecropin A and Defensin A in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A 107:8111–8116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komano H, Homma K, Natori S (1991) Involvement of sapecin in embryonic cell proliferation of Sarcophaga peregrina (flesh fly). FEBS Lett 289:167–170

    CAS  PubMed  Google Scholar 

  • Korting HC, Schollmann C, Stauss-Grabo M, Schafer-Korting M (2012) Antimicrobial peptides and skin: a paradigm of translational medicine. Skin Pharmacol Physiol 25:323–334

    CAS  PubMed  Google Scholar 

  • Kwon YM, Kim HJ, Kim YI, Kang YJ, Lee IH, Jin BR, Han YS, Cheon HM, Ha NG, Seo SJ (2008) Comparative analysis of two attacin genes from Hyphantria cunea. Comp Biochem Physiol B Biochem Mol Biol 151:213–220

    CAS  PubMed  Google Scholar 

  • Lambert J, Keppi E, Dimarcq JL, Wicker C, Reichhart JM, Dunbar B, Lepage P, Van Dorsselaer A, Hoffmann J, Fothergill J, Hoffmann D (1989) Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci U S A 86:262–266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lamberty M, Ades S, Uttenweiler-Joseph S, Brookhart G, Bushey D, Hoffmann JA, Bulet P (1999) Insect immunity. Isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J Biol Chem 274:9320–9326

    CAS  PubMed  Google Scholar 

  • Lamberty M, Caille A, Landon C, Tassin-Moindrot S, Hetru C, Bulet P, Vovelle F (2001) Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities. Biochemistry 40:11995–12003

    CAS  PubMed  Google Scholar 

  • Landon C, Sodano P, Hetru C, Hoffmann J, Ptak M (1997) Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci 6:1878–1884

    CAS  PubMed Central  PubMed  Google Scholar 

  • Landon C, Meudal H, Boulanger N, Bulet P, Vovelle F (2006) Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation. Biopolymers 81:92–103

    CAS  PubMed  Google Scholar 

  • Lavine MD, Chen G, Strand MR (2005) Immune challenge differentially affects transcript abundance of three antimicrobial peptides in hemocytes from the moth Pseudoplusia includens. Insect Biochem Mol Biol 35:1335–1346

    CAS  PubMed  Google Scholar 

  • Lazzaro BP (2008) Natural selection on the Drosophila antimicrobial immune system. Curr Opin Microbiol 11:284–289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SY, Moon HJ, Kurata S, Kurama T, Natori S, Lee BL (1994) Purification and molecular cloning of cDNA for an inducible antibacterial protein of larvae of a coleopteran insect, Holotrichia diomphalia. J Biochem 115:82–86

    CAS  PubMed  Google Scholar 

  • Lee SY, Moon HJ, Kawabata S, Kurata S, Natori S, Lee BL (1995) A sapecin homologue of Holotrichia diomphalia: purification, sequencing and determination of disulfide pairs. Biol Pharm Bull 18:457–459

    CAS  PubMed  Google Scholar 

  • Lee KH, Hong SY, Oh JE (1998) Synthesis and structure-function study about tenecin 1, an antibacterial protein from larvae of Tenebrio molitor. FEBS Lett 439:41–45

    CAS  PubMed  Google Scholar 

  • Lee YS, Yun EK, Jang WS, Kim I, Lee JH, Park SY, Ryu KS, Seo SJ, Kim CH, Lee IH (2004) Purification, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella. Insect Mol Biol 13:65–72

    CAS  PubMed  Google Scholar 

  • Lee E, Jeong KW, Lee J, Shin A, Kim JK, Lee J, Lee DG, Kim Y (2013a) Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane. BMB Rep 46:282–287

    CAS  PubMed  Google Scholar 

  • Lee M, Bang K, Kwon H, Cho S (2013b) Enhanced antibacterial activity of an attacin-coleoptericin hybrid protein fused with a helical linker. Mol Biol Rep 40:3953–3960

    CAS  PubMed  Google Scholar 

  • Lehane MJ, Wu D, Lehane SM (1997) Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc Natl Acad Sci U S A 94:11502–11507

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehrer RI, Lu W (2012) alpha-Defensins in human innate immunity. Immunol Rev 245:84–112

    CAS  PubMed  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    CAS  PubMed  Google Scholar 

  • Lepage P, Bitsch F, Roecklin D, Keppi E, Dimarcq JL, Reichhart JM, Hoffmann JA, Roitsch C, Van Dorseelaer A (1991) Determination of disulfide bridges in natural and recombinant insect defensin A. Eur J Biochem 196:735–742

    CAS  PubMed  Google Scholar 

  • Levashina EA, Ohresser S, Bulet P, Reichhart JM, Hetru C, Hoffmann JA (1995) Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem 233:694–700

    CAS  PubMed  Google Scholar 

  • Levitin A, Whiteway M (2008) Drosophila innate immunity and response to fungal infections. Cell Microbiol 10:1021–1026

    CAS  PubMed  Google Scholar 

  • Li ZQ, Merrifield RB, Boman IA, Boman HG (1988) Effects on electrophoretic mobility and antibacterial spectrum of removal of two residues from synthetic sarcotoxin IA and addition of the same residues to cecropin B. FEBS Lett 231:299–302

    CAS  PubMed  Google Scholar 

  • Li WF, Ma GX, Zhou XX (2006) Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action. Peptides 27:2350–2359

    CAS  PubMed  Google Scholar 

  • Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B, Xu H, Xin Z (2011) Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genom 11:63–70

    CAS  Google Scholar 

  • Liu G, Kang D, Steiner H (2000) Trichoplusia ni lebocin, an inducible immune gene with a downstream insertion element. Biochem Biophys Res Commun 269:803–807

    CAS  PubMed  Google Scholar 

  • Lowenberger C, Bulet P, Charlet M, Hetru C, Hodgeman B, Christensen BM, Hoffmann JA (1995) Insect immunity: isolation of three novel inducible antibacterial defensins from the vector mosquito, Aedes aegypti. Insect Biochem Mol Biol 25:867–873

    CAS  PubMed  Google Scholar 

  • Lundstrom A, Liu G, Kang D, Berzins K, Steiner H (2002) Trichoplusia ni gloverin, an inducible immune gene encoding an antibacterial insect protein. Insect Biochem Mol Biol 32:795–801

    CAS  PubMed  Google Scholar 

  • Mackintosh JA, Gooley AA, Karuso PH, Beattie AJ, Jardine DR, Veal DA (1998a) A gloverin-like antibacterial protein is synthesized in Helicoverpa armigera following bacterial challenge. Dev Comp Immunol 22:387–399

    CAS  PubMed  Google Scholar 

  • Mackintosh JA, Veal DA, Beattie AJ, Gooley AA (1998b) Isolation from an ant Myrmecia gulosa of two inducible O-glycosylated proline-rich antibacterial peptides. J Biol Chem 273:6139–6143

    CAS  PubMed  Google Scholar 

  • Maget-Dana R, Ptak M (1997) Penetration of the insect defensin A into phospholipid monolayers and formation of defensin A-lipid complexes. Biophys J 73:2527–2533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuyama K, Natori S (1988a) Molecular cloning of cDNA for sapecin and unique expression of the sapecin gene during the development of Sarcophaga peregrina. J Biol Chem 263:17117–17121

    CAS  PubMed  Google Scholar 

  • Matsuyama K, Natori S (1988b) Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. J Biol Chem 263:17112–17116

    CAS  PubMed  Google Scholar 

  • Matsuyama K, Natori S (1990) Mode of action of sapecin, a novel antibacterial protein of Sarcophaga peregrina (flesh fly). J Biochem 108:128–132

    CAS  PubMed  Google Scholar 

  • McGwire BS, Olson CL, Tack BF, Engman DM (2003) Killing of African trypanosomes by antimicrobial peptides. J Infect Dis 188:146–152

    PubMed  Google Scholar 

  • Mitsuhara I, Matsufuru H, Ohshima M, Kaku H, Nakajima Y, Murai N, Natori S, Ohashi Y (2000) Induced expression of sarcotoxin IA enhanced host resistance against both bacterial and fungal pathogens in transgenic tobacco. Mol Plant Microbe Interact: MPMI 13:860–868

    CAS  PubMed  Google Scholar 

  • Moon HJ, Lee SY, Kurata S, Natori S, Lee BL (1994) Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor. J Biochem 116:53–58

    CAS  PubMed  Google Scholar 

  • Moore AJ, Beazley WD, Bibby MC, Devine DA (1996) Antimicrobial activity of cecropins. J Antimicrob Chemother 37:1077–1089

    CAS  PubMed  Google Scholar 

  • Moreno-Habel DA, Biglang-awa IM, Dulce A, Luu DD, Garcia P, Weers PM, Haas-Stapleton EJ (2012) Inactivation of the budded virus of Autographa californica M nucleopolyhedrovirus by gloverin. J Invertebr Pathol 110:92–101

  • Moy RH, Cherry S (2013) Antimicrobial autophagy: a conserved innate immune response in Drosophila. J Innate Immun 5:444–455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mrinal N, Nagaraju J (2008) Intron loss is associated with gain of function in the evolution of the gloverin family of antibacterial genes in Bombyx mori. J Biol Chem 283:23376–23387

    CAS  PubMed  Google Scholar 

  • Nadal A, Montero M, Company N, Badosa E, Messeguer J, Montesinos L, Montesinos E, Pla M (2012) Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness. BMC Plant Biol 12:159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakajima Y, Qu XM, Natori S (1987) Interaction between liposomes and sarcotoxin IA, a potent antibacterial protein of Sarcophaga peregrina (flesh fly). J Biol Chem 262:1665–1669

    CAS  PubMed  Google Scholar 

  • Nanbu R, Nakajima Y, Ando K, Natori S (1988) Novel feature of expression of the sarcotoxin IA gene in development of Sarcophaga peregrina. Biochem Biophys Res Commun 150:540–544

    CAS  PubMed  Google Scholar 

  • Ntui VO, Thirukkumaran G, Azadi P, Khan RS, Nakamura I, Mii M (2010) Stable integration and expression of wasabi defensin gene in “Egusi” melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot. Plant Cell Rep 29:943–954

    CAS  PubMed  Google Scholar 

  • Oard SV, Enright FM (2006) Expression of the antimicrobial peptides in plants to control phytopathogenic bacteria and fungi. Plant Cell Rep 25:561–572

    CAS  PubMed  Google Scholar 

  • Oh D, Shin SY, Lee S, Kang JH, Kim SD, Ryu PD, Hahm KS, Kim Y (2000) Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Biochemistry 39:11855–11864

    CAS  PubMed  Google Scholar 

  • Ohshima M, Mitsuhara I, Okamoto M, Sawano S, Nishiyama K, Kaku H, Natori S, Ohashi Y (1999) Enhanced resistance to bacterial diseases of transgenic tobacco plants overexpressing sarcotoxin IA, a bactericidal peptide of insect. J Biochem 125:431–435

    CAS  PubMed  Google Scholar 

  • Oizumi Y, Hemmi H, Minami M, Asaoka A, Yamakawa M (2005) Isolation, gene expression and solution structure of a novel moricin analogue, antibacterial peptide from a lepidopteran insect, Spodoptera litura. Biochim Biophys Acta 1752:83–92

    CAS  PubMed  Google Scholar 

  • Okada M, Natori S (1985) Primary structure of sarcotoxin I, an antibacterial protein induced in the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem 260:7174–7177

    CAS  PubMed  Google Scholar 

  • Okemoto K, Nakajima Y, Fujioka T, Natori S (2002) Participation of two N-terminal residues in LPS-neutralizing activity of sarcotoxin IA. J Biochem 131:277–281

    CAS  PubMed  Google Scholar 

  • Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18:1162–1166

    CAS  PubMed  Google Scholar 

  • Otvos L Jr (2000) Antibacterial peptides isolated from insects. J Pept Sci 6:497–511

    CAS  PubMed  Google Scholar 

  • Ourth DD, Lockey TD, Renis HE (1994) Induction of cecropin-like and attacin-like antibacterial but not antiviral activity in Heliothis virescens larvae. Biochem Biophys Res Commun 200:35–44

    CAS  PubMed  Google Scholar 

  • Portieles R, Ayra C, Gonzalez E, Gallo A, Rodriguez R, Chacon O, Lopez Y, Rodriguez M, Castillo J, Pujol M, Enriquez G, Borroto C, Trujillo L, Thomma BP, Borras-Hidalgo O (2010) NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Plant Biotechnol J 8:678–690

    CAS  PubMed  Google Scholar 

  • Pretzel J, Mohring F, Rahlfs S, Becker K (2013) Antiparasitic peptides. Adv Biochem Eng Biotechnol 135:157–192

    PubMed  Google Scholar 

  • Rabel D, Charlet M, Ehret-Sabatier L, Cavicchioli L, Cudic M, Otvos L Jr, Bulet P (2004) Primary structure and in vitro antibacterial properties of the Drosophila melanogaster attacin C Pro-domain. J Biol Chem 279:14853–14859

    CAS  PubMed  Google Scholar 

  • Rahnamaeian M, Vilcinskas A (2012) Defense gene expression is potentiated in transgenic barley expressing antifungal peptide Metchnikowin throughout powdery mildew challenge. J Plant Res 125:115–124

    CAS  PubMed  Google Scholar 

  • Rahnamaeian M, Langen G, Imani J, Khalifa W, Altincicek B, von Wettstein D, Kogel KH, Vilcinskas A (2009) Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens. J Exp Bot 60:4105–4114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rao XJ, Yu XQ (2010) Lipoteichoic acid and lipopolysaccharide can activate antimicrobial peptide expression in the tobacco hornworm Manduca sexta. Dev Comp Immunol 34:1119–1128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rao XJ, Xu XX, Yu XQ (2011) Manduca sexta moricin promoter elements can increase promoter activities of Drosophila melanogaster antimicrobial peptide genes. Insect Biochem Mol Biol 41:982–992

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rao XJ, Xu XX, Yu XQ (2012) Functional analysis of two lebocin-related proteins from Manduca sexta. Insect Biochem Mol Biol 42:231–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rayaprolu S, Wang Y, Kanost MR, Hartson S, Jiang H (2010) Functional analysis of four processing products from multiple precursors encoded by a lebocin-related gene from Manduca sexta. Dev Comp Immunol 34:638–647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reed WA, White KL, Enright FM, Holck J, Jaynes JM, Jeffers GW (1992) Enhanced in vitro growth of murine fibroblast cells and preimplantation embryos cultured in medium supplemented with an amphipathic peptide. Mol Reprod Dev 31:106–113

    CAS  PubMed  Google Scholar 

  • Rees JA, Moniatte M, Bulet P (1997) Novel antibacterial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, Apoidea). Insect Biochem Mol Biol 27:413–422

    CAS  PubMed  Google Scholar 

  • Reichhart JM, Essrich M, Dimarcq JL, Hoffmann D, Hoffmann JA, Lagueux M (1989) Insect immunity. Isolation of cDNA clones corresponding to diptericin, an inducible antibacterial peptide from Phormia terranovae (Diptera). Transcriptional profiles during immunization. Eur J Biochem 182:423–427

    CAS  PubMed  Google Scholar 

  • Robertson M, Postlethwait JH (1986) The humoral antibacterial response of Drosophila adults. Dev Comp Immunol 10:167–179

    CAS  PubMed  Google Scholar 

  • Rodriguez MC, Zamudio F, Torres JA, Gonzalez-Ceron L, Possani LD, Rodriguez MH (1995) Effect of a cecropin-like synthetic peptide (Shiva-3) on the sporogonic development of Plasmodium berghei. Exp Parasitol 80:596–604

    CAS  PubMed  Google Scholar 

  • Sagisaka A, Miyanoshita A, Ishibashi J, Yamakawa M (2001) Purification, characterization and gene expression of a glycine and proline-rich antibacterial protein family from larvae of a beetle, Allomyrina dichotoma. Insect Mol Biol 10:293–302

    CAS  PubMed  Google Scholar 

  • Samakovlis C, Kimbrell DA, Kylsten P, Engstrom A, Hultmark D (1990) The immune response in Drosophila: pattern of cecropin expression and biological activity. EMBO J 9:2969–2976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarika, Iquebal MA, Rai A (2012) Biotic stress resistance in agriculture through antimicrobial peptides. Peptides 36:322–330

    CAS  PubMed  Google Scholar 

  • Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L (2003) Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch Insect Biochem Physiol 53:125–133

    CAS  PubMed  Google Scholar 

  • Scocchi M, Tossi A, Gennaro R (2011) Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell Mol Life Sci 68:2317–2330

    CAS  PubMed  Google Scholar 

  • Seitz V, Clermont A, Wedde M, Hummel M, Vilcinskas A, Schlatterer K, Podsiadlowski L (2003) Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev Comp Immunol 27:207–215

    CAS  PubMed  Google Scholar 

  • Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17:12276–12286

    CAS  PubMed  Google Scholar 

  • Seufi AM, Hafez EE, Galal FH (2011) Identification, phylogenetic analysis and expression profile of an anionic insect defensin gene, with antibacterial activity, from bacterial-challenged cotton leafworm, Spodoptera littoralis. BMC Mol Biol 12:47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shahabuddin M, Fields I, Bulet P, Hoffmann JA, Miller LH (1998) Plasmodium gallinaceum: differential killing of some mosquito stages of the parasite by insect defensin. Exp Parasitol 89:103–112

    CAS  PubMed  Google Scholar 

  • Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H (2000) Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett 484:7–11

    CAS  PubMed  Google Scholar 

  • Silva JL, Barbosa JF, Bravo JP, Souza EM, Huergo LF, Pedrosa FO, Esteves E, Daffre S, Fernandez MA (2010) Induction of a gloverin-like antimicrobial polypeptide in the sugarcane borer Diatraea saccharalis challenged by septic injury. Braz J Med Biol Res 43:431–436

    CAS  PubMed  Google Scholar 

  • Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248

    CAS  PubMed  Google Scholar 

  • Sugiyama M, Kuniyoshi H, Kotani E, Taniai K, Kadono-Okuda K, Kato Y, Yamamoto M, Shimabukuro M, Chowdhury S, Xu J, Choi SK, Kataoka H, Suzuki A, Yamakawa M (1995) Characterization of a Bombyx mori cDNA encoding a novel member of the attacin family of insect antibacterial proteins. Insect Biochem Mol Biol 25:385–392

    CAS  PubMed  Google Scholar 

  • Sun SC, Lindstrom I, Lee JY, Faye I (1991) Structure and expression of the attacin genes in Hyalophora cecropia. Eur J Biochem 196:247–254

    CAS  PubMed  Google Scholar 

  • Suttmann H, Retz M, Paulsen F, Harder J, Zwergel U, Kamradt J, Wullich B, Unteregger G, Stockle M, Lehmann J (2008) Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urol 8:5

    PubMed Central  PubMed  Google Scholar 

  • Swathi Anuradha T, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777–1786

    CAS  PubMed  Google Scholar 

  • Tamez-Guerra P, Valadez-Lira JA, Alcocer-Gonzalez JM, Oppert B, Gomez-Flores R, Tamez-Guerra R, Rodriguez-Padilla C (2008) Detection of genes encoding antimicrobial peptides in Mexican strains of Trichoplusia ni (Hubner) exposed to Bacillus thuringiensis. J Invertebr Pathol 98:218–227

    CAS  PubMed  Google Scholar 

  • Taniai K, Furukawa S, Shono T, Yamakawa M (1996a) Elicitors triggering the simultaneous gene expression of antibacterial proteins of the silkworm, Bombyx mori. Biochem Biophys Res Commun 226:783–790

    CAS  PubMed  Google Scholar 

  • Taniai K, Ishii T, Sugiyama M, Miyanoshita A, Yamakawa M (1996b) Nucleotide sequence of 5′-upstream region and expression of a silkworm gene encoding a new member of the attacin family. Biochem Biophys Res Commun 220:594–599

    CAS  PubMed  Google Scholar 

  • Thevissen K, Kristensen HH, Thomma BP, Cammue BP, Francois IE (2007) Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today 12:966–971

    CAS  PubMed  Google Scholar 

  • Ueda K, Imamura M, Satto A, Sato R (2005) Purification and cDNA cloning of an insect defensin from larvae of the longicorn beetle, Acalolepta luxuriosa. Appl Entomol Zool 40:335–345

    CAS  Google Scholar 

  • Veenstra JA (2000) Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem Physiol 43:49–63

    CAS  PubMed  Google Scholar 

  • Vizioli J, Bulet P, Charlet M, Lowenberger C, Blass C, Muller HM, Dimopoulos G, Hoffmann J, Kafatos FC, Richman A (2000) Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 9:75–84

    CAS  PubMed  Google Scholar 

  • Vizioli J, Richman AM, Uttenweiler-Joseph S, Blass C, Bulet P (2001) The defensin peptide of the malaria vector mosquito Anopheles gambiae: antimicrobial activities and expression in adult mosquitoes. Insect Biochem Mol Biol 31:241–248

    CAS  PubMed  Google Scholar 

  • Volkoff AN, Rocher J, d’Alencon E, Bouton M, Landais I, Quesada-Moraga E, Vey A, Fournier P, Mita K, Devauchelle G (2003) Characterization and transcriptional profiles of three Spodoptera frugiperda genes encoding cysteine-rich peptides. A new class of defensin-like genes from lepidopteran insects? Gene 319:43–53

    CAS  PubMed  Google Scholar 

  • Wachinger M, Kleinschmidt A, Winder D, von Pechmann N, Ludvigsen A, Neumann M, Holle R, Salmons B, Erfle V, Brack-Werner R (1998) Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 79(Pt 4):731–740

    CAS  PubMed  Google Scholar 

  • Wang J, Hu C, Wu Y, Stuart A, Amemiya C, Berriman M, Toyoda A, Hattori M, Aksoy S (2008) Characterization of the antimicrobial peptide attacin loci from Glossina morsitans. Insect Mol Biol 17:293–302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang LN, Yu B, Han GQ, Chen DW (2010a) Molecular cloning, expression in Escherichia coli of Attacin A gene from Drosophila and detection of biological activity. Mol Biol Rep 37:2463–2469

    CAS  PubMed  Google Scholar 

  • Wang Q, Liu Y, He HJ, Zhao XF, Wang JX (2010b) Immune responses of Helicoverpa armigera to different kinds of pathogens. BMC Immunol 11:9

    PubMed Central  PubMed  Google Scholar 

  • Wicker C, Reichhart JM, Hoffmann D, Hultmark D, Samakovlis C, Hoffmann JA (1990) Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J Biol Chem 265:22493–22498

    CAS  PubMed  Google Scholar 

  • Wilmes M, Cammue BP, Sahl HG, Thevissen K (2011) Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation. Nat Prod Rep 28:1350–1358

    CAS  PubMed  Google Scholar 

  • Wilson SS, Wiens ME, Smith JG (2013) Antiviral mechanisms of human defensins. J Mol Biol 425:4965–4980

    CAS  PubMed  Google Scholar 

  • Xu XX, Zhong X, Yi HY, Yu XQ (2012) Manduca sexta gloverin binds microbial components and is active against bacteria and fungi. Dev Comp Immunol 38:275–284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yagi-Utsumi M, Yamaguchi Y, Boonsri P, Iguchi T, Okemoto K, Natori S, Kato K (2013) Stable isotope-assisted NMR characterization of interaction between lipid A and sarcotoxin IA, a cecropin-type antibacterial peptide. Biochem Biophys Res Commun 431:136–140

    CAS  PubMed  Google Scholar 

  • Yamada K, Natori S (1993) Purification, sequence and antibacterial activity of two novel sapecin homologues from Sarcophaga embryonic cells: similarity of sapecin B to charybdotoxin. Biochem J 291(Pt 1):275–279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada K, Natori S (1994) Characterization of the antimicrobial peptide derived from sapecin B, an antibacterial protein of Sarcophaga peregrina (flesh fly). Biochem J 298(Pt 3):623–628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S (2005) Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. J Exp Bot 56:1685–1695

    CAS  PubMed  Google Scholar 

  • Yi HY, Deng XJ, Yang WY, Zhou CZ, Cao Y, Yu XQ (2013) Gloverins of the silkworm Bombyx mori: structural and binding properties and activities. Insect Biochem Mol Biol 43:612–625

    CAS  PubMed  Google Scholar 

  • Yoe SM, Kang CS, Han SS, Bang IS (2006) Characterization and cDNA cloning of hinnavin II, a cecropin family antibacterial peptide from the cabbage butterfly, Artogeia rapae. Comp Biochem Physiol B Biochem Mol Biol 144:199–205

    PubMed  Google Scholar 

  • Zhao L, Lu W (2014) Defensins in innate immunity. Curr Opin Hematol 21:37–42

    CAS  PubMed  Google Scholar 

  • Zhong X, Xu XX, Yi HY, Lin C, Yu XQ (2012) A Toll-Spatzle pathway in the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 42:514–524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu Y, Johnson TJ, Myers AA, Kanost MR (2003) Identification by subtractive suppression hybridization of bacteria-induced genes expressed in Manduca sexta fat body. Insect Biochem Mol Biol 33:541–559

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qiang Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, HY., Chowdhury, M., Huang, YD. et al. Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 98, 5807–5822 (2014). https://doi.org/10.1007/s00253-014-5792-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5792-6

Keywords

Navigation