Skip to main content

Impact of Arabidopsis thaliana Root Exudates on Dissimilatory Nitrate Reduction to Ammonium (DNRA) Activities in Shewanella loihica PV-4 and Agricultural Soil Enrichments

  • Chapter
  • First Online:
Impact of COVID-19 on Emerging Contaminants

Abstract

Enhancement of dissimilatory nitrate/nitrite reduction to ammonium (DNRA) in agricultural soils has recently gained attention as a means to decelerate nitrogen loss. Here, the potential effects of plant root exudates on the DNRA activity of a model organism Shewanella loihica and agricultural soil consortia were examined. The chemical composition of the root exudate collected from Arabidopsis thaliana (Col-0) plant was analyzed by gas chromatography time-of-flight mass spectrometry (GC TOF-MS) and applied to S. loihica cultures grown on lactate and \({\text{NO}}_{3}^{{^{ - } }}\) to examine the effects on the \({\text{NO}}_{3}^{{^{ - } }}\) fate. Additionally, artificial root exudate was synthesized consisting of the major root exudate constituents, and its impacts on denitrification vs. DNRA competition in agricultural soil extracts, as well as S. loihica cultures, were investigated. Incubation of S. loihica in media amended with A. thaliana root exudates or artificial root exudates both resulted in a significant enhancement of DNRA activity. The agricultural soil consortia amended with root exudates did not exhibit significant DNRA enhancement; however, artificial root exudates addition had significant DNRA enhancement effect, which was confirmed with \(^{{{15}}} {\text{NH}}_{4}^{ + }\) production from added \(^{{{15}}} {\text{NO}}_{3}^{{^{ - } }}\). The findings of this study suggest that plants’ root exudates may have stimulatory impact on the environmentally beneficial DNRA pathway.

Both authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

Download references

Acknowledgements

This research was financially supported by the National Research Foundation of Korea (NRF) (Grant no. 2015M3D3A1A01064881). The authors were also financially supported by the Brain Korea 21 Plus Project (Grant no. 21A20132000003). Authors would like to also acknowledge Dr. Sukhwan Yoon at KAIST, South Korea, and Dr. Chian Kwon and Da Jeong Cho at Dankook University, South Korea, for providing support in various forms for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basanta Kumar Biswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswal, B.K., Chang, J. (2022). Impact of Arabidopsis thaliana Root Exudates on Dissimilatory Nitrate Reduction to Ammonium (DNRA) Activities in Shewanella loihica PV-4 and Agricultural Soil Enrichments. In: Kumar, M., Mohapatra, S. (eds) Impact of COVID-19 on Emerging Contaminants. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-1847-6_9

Download citation

Publish with us

Policies and ethics