Skip to main content

HDL and microRNAs

  • Chapter
  • First Online:
HDL Metabolism and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1377))

Abstract

In previous chapters, we know that high-density lipoproteins (HDLs) could act at multiple cell lines and then trigger intracellular molecular pathway to prevent several metabolic diseases. Besides the classic genes regulating cholesterol efflux and reverse cholesterol transport (RCT), microRNAs (miRNAs) could also affect HDLs biogenesis, metabolism, and functions. This chapter summarizes the miRNAs, which regulate HDLs functions in table. In addition, HDLs are good vectors for miRNAs. They could carry miRNAs in circulation and take them into several cells such as macrophages and endothelial cells. Complete understanding of the miRNAs associated with HDL regulation would give us broader insights to prevent and treat metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Näär AM (2010) MicroRNA-33 and the SREBP host genescooperate to control cholesterol homeostasis. Science 328(5985):1566–1569

    Article  CAS  PubMed  Google Scholar 

  2. Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, van Gils JM, Rayner AJ, Chang AN, Suarez Y, Fernandez-Hernando C, Fisher EA, Moore KJ (2011) Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 121(7):2921–2931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoekstra M, van der Sluis RJ, Kuiper J, Van Berkel TJC (2012) Nonalcoholic fatty liver disease is associated with an altered hepatocyte microRNA profile in LDL receptor knockout mice. J Nutr Biochem 23(6):622–628

    Article  CAS  PubMed  Google Scholar 

  4. Meiler S, Baumer Y, Toulmin E, Seng K, Boisvert WA (2015) MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis. Arterioscler Thromb Vasc Biol 35(2):323–331

    Article  CAS  PubMed  Google Scholar 

  5. Ramirez CM, Dávalos A, Goedeke L, Salerno AG, Warrier N, Cirera-Salinas D, Suárez Y, Fernández-Hernando C (2011) MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol 31(11):2707–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liang B, Wang X, Song X, Bai R, Yang H, Yang Z, Xiao C, Bian Y (2017) MicroRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1. Biochim Biophys Acta Mol Cell Biol Lipids 1862(9):929–938

    Article  CAS  PubMed  Google Scholar 

  7. Sun D, Zhang J, Xie J, Wei W, Chen M, Zhao X (2012) MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett 586(10):1472–1479

    Article  CAS  PubMed  Google Scholar 

  8. de Aguiar Vallim TQ, Tarling EJ, Kim T, Civelek M, Baldán Á, Esau C, Edwards PA (2013) MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor. Circ Res 112(12):1602–1612

    Article  PubMed  PubMed Central  Google Scholar 

  9. Adlakha YK, Khanna S, Singh R, Singh VP, Agrawal A, Saini N (2013) Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis. Cell Death Dis 4(8):e780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Geng S, Chen K, Yuan R, Peng L, Maitra U, Diao N, Chen C, Zhang Y, Hu Y, Qi C, Pierce S, Ling W, Xiong H, Li L (2016) The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis. Nat Commun 7:13436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ren K, Zhu X, Zheng Z, Mo Z, Peng X, Zeng Y, Ou H, Zhang Q, Qi H, Zhao G, Yi G (2018) MicroRNA-24 aggravates atherosclerosis by inhibiting selective lipid uptake from HDL cholesterol via the post-transcriptional repression of scavenger receptor class B type I. Atherosclerosis 270:57–67

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Jia X, Jiang H, Du Y, Yang F, Si S, Hong B (2013) MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol Cell Biol 33(10):1956–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vickers KC, Landstreet SR, Levin MG, Shoucri BM, Toth CL, Taylor RC, Palmisano BT, Tabet F, Cui HL, Rye K, Sethupathy P, Remaley AT (2014) MicroRNA-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci U S A 111(40):14518–14523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu Z, Shen W, Kraemer FB, Azhar S (2012) MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type I in steroidogenic cells. Mol Cell Biol 32(24):5035–5045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D’Amore S, Härdfeldt J, Cariello M, Graziano G, Copetti M, Di Tullio G, Piglionica M, Scialpi N, Sabbà C, Palasciano G, Vacca M, Moschetta A (2018) Identification of miR-9-5p as direct regulator of ABCA1 and HDL-driven reverse cholesterol transport in circulating CD14+ cells of patients with metabolic syndrome. Cardiovasc Res 114(8):1154–1164

    Article  PubMed  Google Scholar 

  16. Kang MH, Zhang L, Wijesekara N, de Haan W, Butland S, Bhattacharjee A, Hayden MR (2013) Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arterioscler Thromb Vasc Biol 33(12):2724–2732

    Article  CAS  PubMed  Google Scholar 

  17. Sene A, Khan AA, Cox D, Nakamura RE, Santeford A, Kim BM, Sidhu R, Onken MD, Harbour JW, Hagbi-Levi S, Chowers I, Edwards PA, Baldan A, Parks JS, Ory DS, Apte RS (2013) Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration. Cell Metab 17(4):549–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karunakaran D, Thrush AB, Nguyen M, Richards L, Geoffrion M, Singaravelu R, Ramphos E, Shangari P, Ouimet M, Pezacki JP, Moore KJ, Perisic L, Maegdefessel L, Hedin U, Harper M, Rayner KJ (2015) Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis. Circ Res 117(3):266–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Price NL, Rotllan N, Zhang X, Canfrán-Duque A, Nottoli T, Suarez Y, Fernández-Hernando C (2019) Specific disruption of Abca1 targeting largely mimics the effects of miR-33 knockout on macrophage cholesterol efflux and atherosclerotic plaque development. Circ Res 124(6):874–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang S, Ye Z, Chen S, Luo X, Chen S, Mao L, Li Y, Jin H, Yu C, Xiang F, Xie M, Chang J, Xia Y, Hu B (2018) MicroRNA-23a-5p promotes atherosclerotic plaque progression and vulnerability by repressing ATP-binding cassette transporter A1/G1 in macrophages. J Mol Cell Cardiol 123:139–149

    Article  CAS  PubMed  Google Scholar 

  21. Lv Y, Tang Y, Peng J, Zhao G, Yang J, Yao F, Ouyang X, He P, Xie W, Tan Y, Zhang M, Liu D, Tang D, Cayabyab FS, Zheng X, Zhang D, Tian G, Tang C (2014) MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1. Atherosclerosis 236(1):215–226

    Article  CAS  PubMed  Google Scholar 

  22. Wang D, Xia M, Yan X, Li D, Wang L, Xu Y, Jin T, Ling W (2012) Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ Res 111(8):967–981

    Article  CAS  PubMed  Google Scholar 

  23. Wang D, Wang W, Lin W, Yang W, Zhang P, Chen M, Ding D, Liu C, Zheng J, Ling W (2018) Apoptotic cell induction of miR-10b in macrophages contributes to advanced atherosclerosis progression in ApoE−/− mice. Cardiovasc Res 114(13):1794–1805

    Article  CAS  PubMed  Google Scholar 

  24. Canfrán-Duque A, Rotllan N, Zhang X, Fernández-Fuertes M, Ramírez-Hidalgo C, Araldi E, Daimiel L, Busto R, Fernández-Hernando C, Suárez Y (2017) Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Mol Med 9(9):1244–1262

    Article  PubMed  PubMed Central  Google Scholar 

  25. Santovito D, Marcantonio P, Mastroiacovo D, Natarelli L, Mandolini C, De Nardis V, Paganelli C, De Cesare D, Affaitati G, Giamberardino MA, Stellin L, Pinelli M, Weber C, De Blasis G, Occhiuzzi U, Bucci M, Desideri G, Cipollone F (2020) High dose rosuvastatin increases ABCA1 transporter in human atherosclerotic plaques in a cholesterol-independent fashion. Int J Cardiol 299:249–253

    Article  PubMed  Google Scholar 

  26. Sala F, Aranda JF, Rotllan N, Ramírez CM, Aryal B, Elia L, Condorelli G, Catapano AL, Fernández-Hernando C, Norata GD (2014) MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr−/− mice. Thromb Haemost 112(4):796–802

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tabet F, Vickers KC, Cuesta Torres LF, Wiese CB, Shoucri BM, Lambert G, Catherinet C, Prado-Lourenco L, Levin MG, Thacker S, Sethupathy P, Barter PJ, Remaley AT, Rye K (2014) HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat Commun 5:3292

    Article  PubMed  Google Scholar 

  28. Wagner J, Riwanto M, Besler C, Knau A, Fichtlscherer S, Röxe T, Zeiher AM, Landmesser U, Dimmeler S (2013) Characterization of levels and cellular transfer of circulating lipoprotein-bound MicroRNAs. Arterioscler Thromb Vasc Biol 33(6):1392–1400

    Article  CAS  PubMed  Google Scholar 

  29. Florijn BW, Duijs JMGJ, Levels JH, Dallinga-Thie GM, Wang Y, Boing AN, Yuana Y, Stam W, Limpens RWAL, Au YW, Nieuwland R, Rabelink TJ, Reinders MEJ, van Zonneveld AJ, Bijkerk R (2019) Diabetic nephropathy alters the distribution of circulating Angiogenic MicroRNAs among extracellular vesicles, HDL, and Ago-2. Diabetes 68(12):2287–2300

    Article  CAS  PubMed  Google Scholar 

  30. Riedel S, Radzanowski S, Bowen TS, Werner S, Erbs S, Schuler G, Adams V (2015) Exercise training improves high-density lipoprotein-mediated transcription of proangiogenic microRNA in endothelial cells. Eur J Prev Cardiol 22(7):899–903

    Article  PubMed  Google Scholar 

  31. Briand O, Touche V, Colin S, Brufau G, Davalos A, Schonewille M, Bovenga F, Carrière V, de Boer JF, Dugardin C, Riveau B, Clavey V, Tailleux A, Moschetta A, Lasunción MA, Groen AK, Staels B, Lestavel S (2016) Liver X receptor regulates triglyceride absorption through intestinal Down-regulation of scavenger receptor class B, type 1. Gastroenterology 150(3):650–658

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nana Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cui, H., Lv, K., Yang, N. (2022). HDL and microRNAs. In: Zheng, L. (eds) HDL Metabolism and Diseases. Advances in Experimental Medicine and Biology, vol 1377. Springer, Singapore. https://doi.org/10.1007/978-981-19-1592-5_12

Download citation

Publish with us

Policies and ethics