Skip to main content

A Unified Algorithm for Interfacial Flows with Incompressible and Compressible Fluids

  • Chapter
  • First Online:
Advances in Fluid Mechanics

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

Abstract

The majority of available numerical algorithms for interfacial two-phase flows either treat both fluid phases as incompressible (constant density) or treat both phases as compressible (variable density). This presents a limitation for the prediction of many two-phase flows, as treating both phases as compressible is computationally expensive due to the very stiff pressure–density–temperature coupling of liquids. A framework with the capability of treating one phase compressible and the other phase incompressible, therefore, has a significant potential to improve the computational performance and still capture all important physical mechanisms. We propose a numerical algorithm that can simulate interfacial flows in all Mach number regimes, from \(M=0\) to \(M > 1\), including interfacial flows in which compressible and incompressible fluids interact, within the same pressure-based framework and conservative finite-volume discretisation. For interfacial flows with only incompressible fluids or with only compressible fluids, the presented algorithm reduces to numerical frameworks that have already been presented in the literature. Representative test cases are used to validate the proposed algorithm, including mixed compressible–incompressible interfacial flows with acoustic waves, shock waves and rarefaction fans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The term “acoustically-conservative” refers to the acoustic properties of this discretisation method in the context of fully compressible flows and is not indicative of its application to incompressible fluids.

References

  1. Aanjaneya, M., Patkar, S., Fedkiw, R.: A monolithic mass tracking formulation for bubbles in incompressible flow. J. Comput. Phys. 247, 17–61 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169, 594–623 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181(2), 577–616 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, J.D.: Modern Compressible Flow: With a Historical Perspective. McGraw-Hill, New York (2003)

    Google Scholar 

  5. Baer, M., Nunziato, J.: A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Int. J. Multiphase Flow 12(6), 861–889 (1986)

    Article  MATH  Google Scholar 

  6. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Gropp, W.D., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 3.8, Argonne National Laboratory (2017)

    Google Scholar 

  7. Bartholomew, P., Denner, F., Abdol-Azis, M., Marquis, A., van Wachem, B.: Unified formulation of the momentum-weighted interpolation for collocated variable arrangements. J. Comput. Phys. 375, 177–208 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 85(2), 257–283 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bijl, H., Wesseling, P.: A unified method for computing incompressible and compressible flows in boundary-fitted coordinates. J. Comput. Phys. 141, 153–173 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Billaud, M., Gallice, G., Nkonga, B.: A simple stabilized finite element method for solving two phase compressible-incompressible interface flows. Comput. Methods Appl. Mech. Eng. 200(9–12), 1272–1290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boger, M., Jaegle, F., Weigand, B., Munz, C.D.: A pressure-based treatment for the direct numerical simulation of compressible multi-phase flow using multiple pressure variables. Comput. Fluids 96, 338–349 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brackbill, J., Kothe, D., Zemach, C.: Continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caiden, R., Fedkiw, R., Anderson, C.: A numerical method for two-phase flow consisting of separate compressible and incompressible regions. J. Comput. Phys. 166, 1–27 (2001)

    Article  MATH  Google Scholar 

  14. Caltagirone, J.P., Vincent, S., Caruyer, C.: A multiphase compressible model for the simulation of multiphase flows. Comput. Fluids 50(1), 24–34 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2(1), 12–26 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, Berlin (1993)

    Google Scholar 

  17. Coralic, V., Colonius, T.: Finite-volume WENO scheme for viscous compressible multicomponent flows. J. Comput. Phys. 274, 95–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cordier, F., Degond, P., Kumbaro, A.: An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations. J. Comput. Phys. 231(17), 5685–5704 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Darwish, M., Moukalled, F.: A fully coupled Navier-Stokes solver for fluid flow at all speeds. Numer. Heat Tr. B-Fund. 65(5), 410–444 (2014)

    Article  Google Scholar 

  20. Denner, F.: Fully-coupled pressure-based algorithm for compressible flows: linearisation and iterative solution strategies. Comp. Fluids 175, 53–65 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Denner, F., Charogiannis, A., Pradas, M., Markides, C.N., van Wachem, B., Kalliadasis, S.: Solitary waves on falling liquid films in the inertia-dominated regime. J. Fluid Mech. 837, 491–519 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Denner, F., Evrard, F., van Wachem, B.: Conservative finite-volume framework and pressure-based algorithm for flows of incompressible, ideal-gas and real-gas fluids at all speeds. J. Comput. Phys. 409, 109348 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Denner, F., Evrard, F., van Wachem, B.: Modeling acoustic cavitation using a pressure-based algorithm for polytropic fluids. Fluids 5(2), 69 (2020)

    Article  Google Scholar 

  24. Denner, F., Paré, G., Zaleski, S.: Dispersion and viscous attenuation of capillary waves with finite amplitude. Euro. Phys. J. Spec. Top. 226, 1229–1238 (2017)

    Article  Google Scholar 

  25. Denner, F., van Wachem, B.: Compressive VOF method with skewness correction to capture sharp interfaces on arbitrary meshes. J. Comput. Phys. 279, 127–144 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Denner, F., van Wachem, B.: Fully-coupled balanced-force VOF framework for arbitrary meshes with least-squares curvature evaluation from volume fractions. Numer. Heat Tr. B-Fund. 65(3), 218–255 (2014)

    Article  Google Scholar 

  27. Denner, F., van Wachem, B.: Numerical time-step restrictions as a result of capillary waves. J. Comput. Phys. 285, 24–40 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Denner, F., van Wachem, B.: TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness. J. Comput. Phys. 298, 466–479 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Denner, F., Xiao, C.N., van Wachem, B.: Pressure-based algorithm for compressible interfacial flows with acoustically-conservative interface discretisation. J. Comput. Phys. 367, 192–234 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Evrard, F., Denner, F., van Wachem, B.: Height-function curvature estimation with arbitrary order on non-uniform Cartesian grids. J. Comput. Phys.: X 7, 100060 (2020)

    Google Scholar 

  31. Fedkiw, R., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ferziger, J.: Interfacial transfer in Tryggvason’s method. Int. J. Numer. Methods Fluids 41, 551–560 (2003)

    Article  MATH  Google Scholar 

  33. Ferziger, J., Perić, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  34. Ferziger, J.H., Peric, M., Street, R.L.: Computational Methods for Fluid Dynamics, 4th edn. Springer International Publishing, Berlin (2020)

    Google Scholar 

  35. Fuster, D., Popinet, S.: An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension. J. Comput. Phys. 374, 752–768 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Garrick, D.P., Owkes, M., Regele, J.D.: A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension. J. Comput. Phys. 339, 46–67 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Harlow, F., Amsden, A.: Fluid Dynamics. Monograph LA-4700, Los Alamos National Laboratory (1971)

    Google Scholar 

  38. Harlow, F.H., Amsden, A.A.: A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8(2), 197–213 (1971)

    Article  MATH  Google Scholar 

  39. Hauke, G., Hughes, T.J.: A comparative study of different sets of variables for solving compressible and incompressible flows. Comput. Methods Appl. Mech. Eng. 153(1–2), 1–44 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hirt, C., Nichols, B.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  41. Hou, T.Y., Floch, P.G.L.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62(206), 497–530 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. Issa, R.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62, 40–65 (1985)

    Article  MathSciNet  Google Scholar 

  43. Karimian, S.M.H., Schneider, G.E.: Pressure-based computational method for compressible and incompressible flows. J. Thermophys. Heat Trans. 8(2), 267–274 (1994)

    Article  Google Scholar 

  44. Karki, K.C., Patankar, S.V.: Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. AIAA J. 27(9), 1167–1174 (1989)

    Article  Google Scholar 

  45. Kunz, R., Cope, W., Venkateswaran, S.: Development of an implicit method for multi-fluid flow simulations. J. Comput. Phys. 152(1), 78–101 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lauterborn, W., Lechner, C., Koch, M., Mettin, R.: Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid. IMA J. Appl. Math. 83(4), 556–589 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Le Métayer, O., Massoni, J., Saurel, R.: Élaboration des lois d’état d’un liquide et de sa vapeur pour les modèles d’écoulements diphasiques. Int. J. Therm. Sci. 43(3), 265–276 (2004)

    Article  Google Scholar 

  48. Liu, C., Hu, C.: Adaptive THINC-GFM for compressible multi-medium flows. J. Comput. Phys. 342, 43–65 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Liu, T., Khoo, B., Yeo, K.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190(2), 651–681 (2003)

    Article  MATH  Google Scholar 

  50. Meng, J.C., Colonius, T.: Numerical simulations of the early stages of high-speed droplet breakup. Shock Waves 25(4), 399–414 (2015)

    Article  Google Scholar 

  51. Moukalled, F., Mangani, L., Darwish, M.: The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab. Springer, Berlin (2016)

    Google Scholar 

  52. Murrone, A., Guillard, H.: A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202(2), 664–698 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Park, J.H., Munz, C.D.: Multiple pressure variables methods for fluid flow at all Mach numbers. Int. J. Numer. Methods Fluids 49(8), 905–931 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. Patankar, S.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Company (1980)

    Google Scholar 

  55. Plesset, M.S.: The dynamics of cavitation bubbles. J. App. Mech. 16, 277–282 (1949)

    Article  Google Scholar 

  56. Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228(16), 5838–5866 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Popinet, S.: Numerical models of surface tension. Annu. Rev. Fluid Mech. 50, 49–75 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Prosperetti, A.: Motion of two superposed viscous fluids. Phys. Fluids 24(7), 1217–1223 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  59. Rhie, C.M., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21(11), 1525–1532 (1983)

    Article  MATH  Google Scholar 

  60. Rohde, C., Zeiler, C.: A relaxation Riemann solver for compressible two-phase flow with phase transition and surface tension. Appl. Numer. Math. 95, 267–279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Scardovelli, R., Zaleski, S.: Analytical relations connecting linear interfaces and volume fractions in rectangular grids. J. Comput. Phys. 164(1), 228–237 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  62. Shyue, K.M.: A volume-fraction based algorithm for hybrid barotropic and non-barotropic two-fluid flow problems. Shock Waves 15(6), 407–423 (2006)

    Article  MATH  Google Scholar 

  63. Toro, E.F.: Riemann Solvers and Numerical Fluid Dynamics: A Practical Introduction, 3rd edn. Springer (2009)

    Google Scholar 

  64. Toutant, A.: General and exact pressure evolution equation. Phys. Lett. A 381(44), 3739–3742 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  65. Turkel, E., Fiterman, A., van Leer, B.: Preconditioning and the Limit to the Incompressible Flow Equations. Tech. rep., NASA CR-191500 (1993)

    Google Scholar 

  66. Ubbink, O., Issa, R.: A method for capturing sharp fluid interfaces on arbitrary meshes. J. Comput. Phys. 153, 26–50 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  67. van der Heul, D., Vuik, C., Wesseling, P.: A conservative pressure-correction method for flow at all speeds. Comp. Fluids 32(8), 1113–1132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  68. Van Doormaal, J., Raithby, G., McDonald, B.: The segregated approach to predicting viscous compressible fluid flows. J. Turbomach. 109(April 1987), 268–277 (1987)

    Google Scholar 

  69. van Wachem, B., Schouten, J.: Experimental validation of 3-D Lagrangian VOF model: Bubble shape and rise velocity. AIChE J. 48(12), 2744–2753 (2002)

    Article  Google Scholar 

  70. Wadhwa, A.R., Abraham, J., Magi, V.: Hybrid compressible-incompressible numerical method for transient drop-gas flows. AIAA J. 43(9), 1974–1983 (2005)

    Article  Google Scholar 

  71. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Berlin (2001)

    Google Scholar 

  72. Xiao, C.N., Denner, F., van Wachem, B.: Fully-coupled pressure-based finite-volume framework for the simulation of fluid flows at all speeds in complex geometries. J. Comput. Phys. 346, 91–130 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  73. Yamamoto, T., Takatani, K.: Pressure-based unified solver for gas-liquid two-phase flows where compressible and incompressible flows coexist. Int. J. Numer. Methods Fluids (2018)

    Google Scholar 

  74. Zhou, Z.W., Lin, S.P.: Effects of compressibility on the atomization of liquid jets. J. Propuls. Power 8(4), 736–740 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), grant numbers 420239128 and 447633787.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Denner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Denner, F., van Wachem, B. (2022). A Unified Algorithm for Interfacial Flows with Incompressible and Compressible Fluids. In: Zeidan, D., Zhang, L.T., Da Silva, E.G., Merker, J. (eds) Advances in Fluid Mechanics. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-19-1438-6_5

Download citation

Publish with us

Policies and ethics