Skip to main content
Log in

Extension of AUSM-type fluxes: from single-phase gas dynamics to multi-phase cryogenic flows at all speeds

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Despite their simple formulations, advection upstream splitting method (AUSM)-type flux schemes treat linear and nonlinear waves of complex flow fields in a robust and accurate manner. This paper presents the progress of AUSM-type fluxes augmented with pressure-based weight functions introduced by the authors and their colleagues. Starting from a flux designed for single-phase gas dynamics (AUSMPW+), its extensions to capture multi-phase flow physics with phase transition (AUSMPW+_N) have been carried out. The accuracy of the computed results by the AUSMPW+_N scheme for multi-phase flows is then further improved by introducing a simple phase interface-sharpening procedure, which scales the volume fraction in a mass-conserving manner. Various all-speed compressible tests ranging from interactions between a shock and phase interfaces, two- and three-dimensional interface-only problems, to a cryogenic three-component flow with phase change are computed to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.-J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169(2), 708–759 (2001). https://doi.org/10.1006/jcph.2001.6726

    Article  MathSciNet  MATH  Google Scholar 

  2. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988). https://doi.org/10.1016/0021-9991(88)90002-2

    Article  MathSciNet  MATH  Google Scholar 

  3. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999). https://doi.org/10.1006/jcph.1999.6236

    Article  MathSciNet  MATH  Google Scholar 

  4. Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow 12(6), 861–889 (1986). https://doi.org/10.1016/0301-9322(86)90033-9

    Article  MATH  Google Scholar 

  5. Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F., Stewart, D.S.: Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids 13(10), 3002–3024 (2001). https://doi.org/10.1063/1.1398042

    Article  MATH  Google Scholar 

  6. Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425–467 (1999). https://doi.org/10.1006/jcph.1999.6187

    Article  MathSciNet  MATH  Google Scholar 

  7. Liou, M.-S., Steffen, C.J.: A new flux splitting scheme. J. Comput. Phys. 107(1), 23–39 (1993). https://doi.org/10.1006/jcph.1993.1122

    Article  MathSciNet  MATH  Google Scholar 

  8. Liou, M.-S.: A sequel to AUSM: AUSM\(^+\). J. Comput. Phys. 129(2), 364–382 (1996). https://doi.org/10.1006/jcph.1996.0256

    Article  MathSciNet  MATH  Google Scholar 

  9. Liou, M.-S.: A sequel to AUSM, part II: AUSM\(^+\)-up for all speeds. J. Comput. Phys. 214(1), 137–170 (2006). https://doi.org/10.1016/j.jcp.2005.09.020

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang, C.-H., Liou, M.-S.: A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM\(^+\)-up scheme. J. Comput. Phys. 225(1), 840–873 (2007). https://doi.org/10.1016/j.jcp.2007.01.007

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim, K.H., Kim, C., Rho, O.-H.: Methods for the accurate computations of hypersonic flows: I. AUSMPW+scheme. J. Comput. Phys. 174(1), 38–80 (2001). https://doi.org/10.1006/jcph.2001.6873

    Article  MathSciNet  MATH  Google Scholar 

  12. Ihm, S.-W., Kim, C.: Computations of homogeneous-equilibrium two-phase flows with accurate and efficient shock-stable schemes. AIAA J. 46(12), 3012–3037 (2008). https://doi.org/10.2514/1.35097

    Article  Google Scholar 

  13. Kim, H., Kim, H., Kim, C.: Computations of homogeneous multiphase real fluid flows at all speeds. AIAA J. 56(7), 2623–2634 (2018). https://doi.org/10.2514/1.J056497

    Article  Google Scholar 

  14. Shukla, R.K., Pantano, C., Freund, J.B.: An interface capturing method for the simulation of multi-phase compressible flows. J. Comput. Phys. 229(19), 7411–7439 (2010). https://doi.org/10.1016/j.jcp.2010.06.025

    Article  MathSciNet  MATH  Google Scholar 

  15. So, K.K., Hu, X.Y., Adams, N.A.: Anti-diffusion interface sharpening technique for two-phase compressible flow simulations. J. Comput. Phys. 231(11), 4304–4323 (2012). https://doi.org/10.1016/j.jcp.2012.02.013

    Article  MathSciNet  MATH  Google Scholar 

  16. Shyue, K.-M., Xiao, F.: An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach. J. Comput. Phys. 268, 326–354 (2014). https://doi.org/10.1016/j.jcp.2014.03.010

    Article  MathSciNet  MATH  Google Scholar 

  17. Chiapolino, A., Saurel, R., Nkonga, B.: Sharpening diffuse interfaces with compressible fluids on unstructured meshes. J. Comput. Phys. 340, 389–417 (2017). https://doi.org/10.1016/j.jcp.2017.03.042

    Article  MathSciNet  MATH  Google Scholar 

  18. Kinzel, M.P., Lindau, J.W., Kunz, R.F.: A multiphase level-set approach for all-Mach numbers. Comput. Fluids 167, 1–16 (2018). https://doi.org/10.1016/j.compfluid.2018.02.026

    Article  MathSciNet  MATH  Google Scholar 

  19. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992). https://doi.org/10.1016/0021-9991(92)90240-Y

    Article  MathSciNet  MATH  Google Scholar 

  20. Merkle, C.L., Feng, J.Z., Buelow, P.E.O.: Computational modeling of the dynamics of sheet cavitation. 3rd International Symposium on Cavitation, Grenoble, France (1998)

  21. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996). https://doi.org/10.1006/jcph.1996.0085

    Article  MathSciNet  MATH  Google Scholar 

  22. Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 [Online]. http://www.nist.gov/srd/nist23.cfm. National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg (2007)

  23. International Association for the Properties of Water and Steam. Guideline on the Fast Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method (SBTL). Technical Report (2015)

  24. Weiss, J.M., Smith, W.A.: Preconditioning applied to variable and constant density flows. AIAA J. 33(11), 2050–2057 (1995). https://doi.org/10.2514/3.12946

    Article  MATH  Google Scholar 

  25. Venkateswaran, S., Merkle, C.L.: Dual time-stepping and preconditioning for unsteady computations. 33rd Aerospace Sciences Meeting and Exhibit, AIAA Paper 95-0078 (1995). https://doi.org/10.2514/6.1995-78

  26. Kim, H., Choe, Y., Kim, H., Min, D., Kim, C.: Methods for compressible multiphase flows and their applications. Shock Waves 29(1), 235–261 (2019). https://doi.org/10.1007/s00193-018-0829-x

    Article  Google Scholar 

  27. Wada, Y., Liou, M.-S.: A flux splitting scheme with high-resolution and robustness for discontinuities. 32nd Aerospace Sciences Meeting and Exhibit, AIAA Paper 94-0083 (1994). https://doi.org/10.2514/6.1994-83

  28. Kim, K.H., Lee, J.H., Rho, O.H.: An improvement of AUSM schemes by introducing the pressure based weight functions. Comput. Fluids 27(3), 311–346 (1998). https://doi.org/10.1016/S0045-7930(97)00069-8

    Article  MathSciNet  MATH  Google Scholar 

  29. Kim, K.H., Kim, C.: Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows. Part I: Spatial discretization. J. Comput. Phys. 208(2), 527–569 (2005). https://doi.org/10.1016/j.jcp.2005.02.021

    Article  MATH  Google Scholar 

  30. Edwards, J.R., Liou, M.-S.: Low-diffusion flux-splitting methods for flows at all speeds. AIAA J. 36(9), 1610–1617 (1998). https://doi.org/10.2514/2.587

    Article  Google Scholar 

  31. Yoon, S.-H., Kim, C., Kim, K.-H.: Multi-dimensional limiting process for three-dimensional flow physics analyses. J. Comput. Phys. 227, 6001–6043 (2008). https://doi.org/10.1016/j.jcp.2008.02.012

    Article  MathSciNet  MATH  Google Scholar 

  32. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1998). https://doi.org/10.1090/S0025-5718-98-00913-2

    Article  MathSciNet  MATH  Google Scholar 

  33. Nonomura, T., Kitamura, K., Fujii, K.: A simple interface sharpening technique with a hyperbolic tangent function applied to compressible two-fluid modeling. J. Comput. Phys. 258, 95–117 (2014). https://doi.org/10.1016/j.jcp.2013.10.021

    Article  MathSciNet  MATH  Google Scholar 

  34. Yoon, S., Jameson, A.: Lower-upper symmetric-Gauss–Seidel method for the Euler and Navier–Stokes equations. AIAA J. 26(9), 1025–1026 (1988). https://doi.org/10.2514/3.10007

    Article  Google Scholar 

  35. Grace, J.R.: Shapes and velocities of bubbles rising in infinite liquids. Trans. Inst. Chem. Eng. 51, 116–120 (1973)

    Google Scholar 

  36. van Sint Annaland, M., Deen, N.G., Kuipers, J.A.M.: Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chem. Eng. Sci. 60(11), 2999–3011 (2005). https://doi.org/10.1016/j.ces.2005.01.031

    Article  Google Scholar 

  37. Clift, R., Grace, J.R., Weber, M.E., Weber, M.F.: Bubbles, Drops, and Particles. Academic Press, London (1978)

    Google Scholar 

  38. Pan, S., Han, L., Hu, X., Adams, N.A.: A conservative interface-interaction method for compressible multi-material flows. J. Comput. Phys. 371, 870–895 (2018). https://doi.org/10.1016/j.jcp.2018.02.007

    Article  MathSciNet  MATH  Google Scholar 

  39. Ahuja, V., Hosangadi, A., Mattick, S., Lee, C.P., Field, R.E., Ryan, H.: Computational analyses of pressurization in cryogenic tanks. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2008-4752 (2008). https://doi.org/10.2514/6.2008-4752

  40. Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transf. 4, 625–632 (2003)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the programs of the National Research Foundation of Korea (NRF-2014M1A3A3A02034856, NRF-2013R1A5A1073861).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kim.

Additional information

Communicated by C.-H. Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Kim, C. Extension of AUSM-type fluxes: from single-phase gas dynamics to multi-phase cryogenic flows at all speeds. Shock Waves 29, 735–753 (2019). https://doi.org/10.1007/s00193-019-00891-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00891-6

Keywords

Navigation