Skip to main content

Current Prospective of Nanomaterials in Agriculture and Farming

  • Chapter
  • First Online:
Nanomaterials for Advanced Technologies

Abstract

Recently, nanotechnology has gained an intense attention in agriculture and quality farming system to meet the demand of sustainable agriculture. The unique properties of nanomaterials at nanoscale enables their employment for the design and development of diverse range of novel tools that supports sustainable agriculture. It is popular among the scientists due to its positive impact on agrifood sector by reducing the adverse impact of agripractices on environment, human health and improving food quality and productivity. In present chapter, application of various kinds of nanoparticles (NPs) in stress management of crops, as pesticides, herbicides, as nanobiosensors for disease detection, as seed growth promotes, for management of agricultural waste and shelf-life enhancement of agriproduce has been discussed in detail. Nanotechnology in agriculture significantly reduced the wastage of natural resources such as water, biofertilizers and also reduces the environmental pollution by reducing the application of harmful chemical fertilizers and pesticides. The application of nanomaterials found to be beneficial for sustainable agriculture. The recently available literature revealed the positive impact of nanotechnology application in different practices of agriculture such as crop nutrient management, stress resistance, insect and pest management, agriculture waste management, improving food security and productivity that, in turn, meet the food demands of global population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • T. Adhikari, S. Kundu, A.S. Rao, Zinc delivery toplants through seed coating with nano-zinc oxide particles. J. Plant Nutr. 39(1), 136–146 (2016)

    Article  Google Scholar 

  • T. Ahmed, M. Noman, N. Manzoor, M. Shahid, L. Ali, G. Wang, A. Hashem, A.B. Al-Arjani, F. Allah, Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition. Ecotoxicol. Environ. Safety 209, 111829 (2021)

    Article  Google Scholar 

  • S.M. Ali, N.M.H. Yousef, N.A. Nafady, Application of biosynthesized silver nanoparticles for the control of land snail Eobaniavermiculata and some plant pathogenic fungi. Nanomater 218904, 10 (2015)

    Google Scholar 

  • M. Auffan, J. Rose, J.Y. Bottero, G.V. Lowry, J.P. Jolivet, M.R. Wiesner, Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4, 634–664 (2009)

    Article  ADS  Google Scholar 

  • P. Babula, Uncommon heavy metals, metalloids and their plant toxicity: a review, in Pest Control and Remediation of Soil Pollutants. ed. by O. Farming (Berlin, Springer-Verlag, GmbH, 2009), pp. 275–317

    Chapter  Google Scholar 

  • S.N. Baker, G.A. Baker, Luminescent carbon nano dots: emergent nano lights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010)

    Article  Google Scholar 

  • P. Bansal, J.S. Duhan, S.K. Gahlawat, Biogenesis of nanoparticles: a review. Afr. J. Biotechnol. 13, 2778–2785 (2014)

    Article  Google Scholar 

  • F.J. Bellesi, A.F. Arata, M. Martínez, A.C. Arrigoni, S.A. Stenglein, M.I. Dinolfo, Degradation of gluten proteins by Fusarium species and their impact on the grain quality of bread wheat. J. Stored Prod. Res. 83, 1–8 (2019)

    Article  Google Scholar 

  • R. Bharati, S. Suresh, A review on nano-catalyst from waste for production of bio fuel-via-bioenergy, in, Biofuels and Bioenergy (Springer, Cham, 2017), pp. 25–32

    Google Scholar 

  • D.A. Brock, T.E. Douglas, D.C. Queller, J.E. Strassmann, Primitive agriculture in asocial amoeba. Nature 469, 393–396 (2011)

    Article  ADS  Google Scholar 

  • L. Bromham, C.H. Saslis-Lagoudakis, T.H. Bennett, T.J. Flowers, Soil alkalinity and salt tolerance: adapting to multiple stresses. Biol. Lett. 9, 20130642 (2013)

    Article  Google Scholar 

  • M. Capuana, Heavy metal sand woody plants biotechnologies for phyto remediation. J. Biogeo. Sci. for. 4, 7–15 (2011)

    Google Scholar 

  • P. Chamoli, M.K. Das, K.K. Kar, Structural, optical and electrical characteristics of graphene nanosheets synthesized from microwave-assisted exfoliated graphite. J. Appl. Phys. 122, 185105 (2017)

    Article  ADS  Google Scholar 

  • P. Chamoli, R.K. Shukla, A. Bezbaruah, K.K. Kar, K.K. Raina, Microwave-assisted rapid synthesis of honeycomb core-ZnO tetrapods nanocomposites for excellent photocatalytic activity against different organic dyes. Appl. Surf. Sci. 555, 149663 (2021a)

    Article  Google Scholar 

  • P. Chamoli, R.K. Shukla, A. Bezbaruah, K.K. Kar, K.K. Raina, Rapid Microwave growth of mesoporous TiO2 nano tripods for excellent photocatalysis and adsorption. J. Appl. Phys. 130, 164901 (2021b)

    Article  ADS  Google Scholar 

  • N. Chartuprayoon, Y. Rheem, J.C.K. Ng, J. Nam, W. Chen, N.V. Myung, Polypyrrole nano ribbon based chemiresistive immune sensors for viral plant pathogen detection. Anal. Methods. 5, 3497–3502 (2013)

    Article  Google Scholar 

  • D. Charych, Q. Cheng, A. Reichert, G. Kuziemko, N. Stroh, J. Nagy, W. Spevak, R. Stevens, A ‘litmus test’ for molecular recognition using artificial membranes. Chem. Biol. 3, 113 (1996)

    Article  Google Scholar 

  • F. Chen, X. Hu, Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin. Internat. J. Food Microbiol. 103, 331–337 (2005)

    Article  Google Scholar 

  • H. Chhipa, Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 15(1), 15–22 (2017)

    Article  Google Scholar 

  • K.H. Cho, J.E. Park, T.O. Saka, S.G. Park, The study of antimicrobial activity and preservateive effects of nano silver ingredient. Electrochem. Acta. 51, 956–960 (2005)

    Article  Google Scholar 

  • R.N. Chopra, R. Badhwar, S. Ghosh, Poisonous Plants of India (Indian Council of Agricultural Research, New Delhi, India, 1994)

    Google Scholar 

  • M.K. Cik, D. Ernst, M. Komar, M. Urík, M. Sebesta, E.D. Cka, I. Cern, Y.R. Illa, R. Kanike, Y. Qian, H. Feng, D. Orlová, G. Kratosova, Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setariaitalica L.) under field conditions. Nanomaterials 9, 1559 (2019)

    Article  Google Scholar 

  • M.-C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Article  Google Scholar 

  • E.H. Dehkourdi, M. Mosavi, Effect of anatase nanoparticles (TiO2) on parsley seed germination (petroselinum crispum) In Vitro. Biol. Trace Elem. Res. 155, 283–286 (2013)

    Article  Google Scholar 

  • D.G. Devi, K. Murugan, P.C. Selvam, Green synthesis of silver nanoparticles using Euphorbia hirta (Euphorbiaceae) leaf extract against crop pest of cotton bollworm, Helicoverpaarmegera (Lepidoptera: Noctuidae). J. Biopest 7, 54–66 (2014)

    Google Scholar 

  • Ditta, How helpful is nanotechnology in agriculture? Adv. Nat. Sci. Nanosci. Nanotechnol. 3(3), 033002 (2012)

    Google Scholar 

  • W. Elmer, J.C. White, The future of nanotechnology in plant pathology. Annu. Rev. Phytopathol. 56, 111–133 (2018)

    Article  Google Scholar 

  • K. Elumalai, S. Velmurugan, S. Ravi, V. Kathiravan, S. Ashok kumar, Green synthesis of zinc oxide nanoparticles using Moringaoleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim. ActaMol. Biomol. Spectro sc. 158–164 (2015)

    Google Scholar 

  • FAO, High level expert forum-how to feed the world in 2050. Economic and social development, food and agricultural Organization of the United Nations, Rome, Italy (2009)

    Google Scholar 

  • C. Feigl, S. Russo, A. Barnard, Safe, stable and effective nanotechnology: phase mapping of ZnS nano-particles. J. Mater. Chem. 20(24), 4971–4980 (2010)

    Article  Google Scholar 

  • W.J. Gangloff, D.G. Westfall, G.A. Peterson, J.J. Mortvedt, Mobility of organic and inorganic zinc fertilizers in soils. Commun. Soilsci. Plant Anal. 37, 199–209 (2006)

    Article  Google Scholar 

  • F.Ǫ Gao, F.S. Hong, C. Liu, L. Zheng, M.Y. Su, X. Wu, Mechanism of nanoanatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco-Rubiscoactivase. Biol. Trace Elem. Res. 11, 239–254 (2006a)

    Article  Google Scholar 

  • F.Ǫ Gao, F.S. Hong, C. Liu, L. Zheng, M.Y. Su, X. Wu, Mechanism of nanoanataseTiO2on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco-Rubisco activase. Biol. Trace Elem. Res. 11, 239–254 (2006b)

    Article  Google Scholar 

  • Y. Gao, Q. Huang, Q. Su, R. Liu, Green synthesis of silver nanoparticles at room temperature using Kiwifruit juice. Spectrosc. Lett. 47(10), 790–795 (2014)

    Article  ADS  Google Scholar 

  • G. Gholamreza, A. Mohammadi, A. Aakbri, S. Panahirad, R.D. Mohammad, K. Sesuke, Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci. Rep. 10(1), 912 (2020)

    Article  ADS  Google Scholar 

  • B. Gunjan, M.G.H. Zaidi, A. Sandeep, Impact of gold nano-particles on physiological and biochemical characteristics of Brassicajuncea. J. Plant Biochem. Physiol. 2, 133 (2014)

    Google Scholar 

  • M. Haghighi, Z. Afifipour, M. Mozafarian, The effect of N–Si on tomato seed germination under salinity levels. Intern. Environ. Sci. 6, 87–90 (2012a)

    Google Scholar 

  • M. Haghighi, Z. Afifipour, M. Mozafarian, The effect of N–Sion tomato seed germination unders alinity levels. Intern. Environ. Sci. 6, 87–90 (2012b)

    Google Scholar 

  • T. Haruyama, Micro- and nanobiotechnology for biosensing cellular responses. Adv. Drug Delivery Rev. 55, 393–401 (2003)

    Article  Google Scholar 

  • H. Hasanpour, R. Maali-Amiri, H. Zeinali, Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea. Russ. J. Plant Physiol. 62, 779–787 (2015)

    Article  Google Scholar 

  • M. Hasanuzzaman, K. Nahar, M. Fujita, Extreme temperature responses, oxidative stress a and antioxidant defense in plants, in Abiotic Stress Plan Responses and Applications in Agriculture, eds. by K. Vahdati, C. Leslie (InTech Open Access Publisher, 2013)

    Google Scholar 

  • S.S. Hojjat, Impact of silver nanoparticles on germinated fenugreek seed. Int. J. Agric. Crop. Sci. 8, 627–630 (2015)

    Google Scholar 

  • A.W. Hu, Z.H. Fu, Nano technology and its application in packaging and packaging machinery. Packag. Eng 24(2005), 22–24 (2003)

    Google Scholar 

  • S. Iravani, Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650 (2011)

    Article  Google Scholar 

  • C.A. Jaleel, Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 11, 100–105 (2009)

    Google Scholar 

  • C. Kamaraj, G. Rajakumar, A.A. Rahuman, K. Velayutham, A. Bagavan, Feeding deterrent activity of synthesized silver nanoparticles using Manilkara zapota leaf extract against the house (2012)

    Google Scholar 

  • S. Kantrao, M.A. Ravindra, S.M.D. Akbar, P.D.K. Jayanthi, A. Venkataraman, Effect of biosynthesized silver nanoparticles on growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae): interaction with midgut protease. J. Asia Pac. Entomol. 20(2), 583–589 (2017)

    Article  Google Scholar 

  • D.M. Kasote, J. Lee, G.K. Jayaprakasha, B.S. Patil, Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense linked hormones in watermelon seedlings. ACS Sustain. Chem. Eng. 7, 5142–5151 (2019)

    Article  Google Scholar 

  • H. Kato, In vitro assays: tracking nanoparticles inside cells. Nat. Nanotechnol. 6, 139–140 (2011)

    Article  ADS  Google Scholar 

  • M. Khodakovskaya, Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3, 3221–3227 (2009)

    Article  Google Scholar 

  • M.V. Khodakovskaya, de Silva, K. Biris, A.S. Dervishi, Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3), 2128–2135 (2012)

    Google Scholar 

  • L.R. Khot, Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot. 35, 64–70 (2012)

    Article  Google Scholar 

  • Y.D. Ko, Self-supported SnO2 nano wire electrodes for high-power lithium-ion batteries. Nanotechnology 20(45), 455701 (2009)

    Article  ADS  Google Scholar 

  • M.J. Lawrence, G.D. Rees, Microemulsion-based media as novel drug delivery systems. Adv. Drug Delivery Rev. 45, 89–121 (2000)

    Article  Google Scholar 

  • N. Lewinski, V. Colvin, R. Drezek, CytotoXicity of nanoparticles. Small 4, 26–49 (2008)

    Article  Google Scholar 

  • H.Y. Lin, C.H. Huang, S.H, Lu, I.T. Kuo, L.K. Chau, Direct detection of orchid viruses using nanorod based fiber optic particle plasma nresonance immune sensor. Biosens. Bioelectron. 51, 371–378 (2014)

    Google Scholar 

  • K. Logaranjan, A.J. Raiza, C.B. Subash, Y. Gopinath, Chen, shape- and size-controlled synthesis of silver nanoparticles using aloe vera plant extract and their antimicrobial activity. Nanoscale Res. Lett. 11, 520 (2016)

    Article  ADS  Google Scholar 

  • T.C. Long, N. Saleh, R.D. Tilton, G.V. Lowry, B. Veronesi, Titanium dioXide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ. Sci. Technol. 40, 4346–4352 (2006)

    Article  ADS  Google Scholar 

  • E. López-Vargas, H. Ortega-Ortíz, G. Cadenas-Pliego, K. de Alba Romenus, M. Cabrera de la Fuente, A. Benavides-Mendoza, A. Juárez-Maldonado, Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Appl. Sci. 8, 1020 (2018)

    Google Scholar 

  • J. Lovric, S.J. Cho, F.M. Winnik, D. Maysinger, Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organ elledamage and cell death. Chem. Biol. 12, 1227–1234 (2005)

    Article  Google Scholar 

  • H.M. Siddiqui, H.M. Al-Whaibi, M. Firoz, M.Y. Al-Khaishany, Role of nanoparticles in plants. Nanotechnol. Plant Sci. 19–35 (2015)

    Google Scholar 

  • M. Meenu, U. Kamboj, A. Sharma, P. Guha, S. Mishra, Green method for determination of phenolic compounds in mung bean (Vigna radiata L.) based on near-infrared spectroscopy and chemometrics. Int. J. Food Sci. Tech. 51, 2520–2527 (2016)

    Article  Google Scholar 

  • S. Mishra, B.R. Singh, A. Singh, C. Keswani, A.H. Naqvi, H.B. Singh, Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease n wheat. PLoS ONE 9, e97881 (2014). https://doi.org/10.1371/journal.pone.0097881

    Article  ADS  Google Scholar 

  • R. Mohammadi, R. MaaliAmiri, A. Abbasi, Effect of TiO2 nanoparticles on chickpea response to coldstress. Biol. Trace Elem. Res. 152, 403–410 (2013)

    Article  Google Scholar 

  • J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, M.J. Yacaman, The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2354 (2005)

    Article  ADS  Google Scholar 

  • A. Mostofizadeh, Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. J. Nanomater. 2011, 16 (2011)

    Article  Google Scholar 

  • S.S. Mukhopadhyay, Nanotechnology in agriculture: prospects and constraints. Nanotechnol. Sci. Appl. 7, 63 (2014)

    Article  Google Scholar 

  • C.N. Mulligan, R.N. Yong, B.F. Gibbs, Heavy metal removal from sediments by bio surfactants. J. Hazard. Mater. 85(1–2), 111–125 (2001)

    Article  Google Scholar 

  • K.R. Namburi, A.J. Kora, A. Chetukuri, V. Shree, M.K. Kota, Biogenic silver nanoparticles as an antibacterial agent against bacterial leaf, causing rice phytopathogen Xanthomonas oryzae pv. Oryzae (bioprocess. Biosyst. Eng.) 44(9), 1975–1988 (2021). https://doi.org/10.1007/s00449-021-02579-7

    Article  Google Scholar 

  • M. Nuruzzaman, M.M. Rahman, Y. Liu, R. Naidu, Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J. Agric. Food Chem. 64, 1447–1483 (2016)

    Article  Google Scholar 

  • M. Ǫi, Y. Liu, T. Li, Nano TiO2 improves the photosynthesis of tomato leaves under mild heat stress. Biol. Trace Elem. Res. 156, 323–328 (2013)

    Article  Google Scholar 

  • A. Patel, S. Tiwari, P. Parihar, R. Singh, S.M. Prasad, Carbon nanotubes as plant growth regulators: impacts on growth reproductive system, and soil microbial community. Nanomater. Plants, Algae Microorganisms, Concepts Controversies 2, 23–42 (2019)

    Article  Google Scholar 

  • M. Patel, M. Meenu, J.K. Pandey, P. Kumar, R. Patel, Recent development in upconversion nanoparticles and their application in optogenetics: a review. J. Rare Earths (2021). https://doi.org/10.1016/j.jre.2021.10.003

    Article  Google Scholar 

  • K. Petersen, P.V. Nielsen, G. Bertelsen, M. Lawther, M.B. Olsen, N.H. Nilssonk, Potential of biobased materials for food packaging. Trends Food Sci. Technol. 10, 52–68 (1999)

    Article  Google Scholar 

  • T.N.V.K.V. Prasad, P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, K.R. Reddy, T.S. Sreeprasad, P.R. Sajanlal, T Pradeep, Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 35, 905–927 (2012)

    Google Scholar 

  • F. Puoci, F. Lemma, U.G. Spizzirri, G. Cirillo, M. Curcio, N. Picci, Polymer in agriculture: a review. Am. J. Agri. Biol. Sci. 3, 299–314 (2008)

    Article  Google Scholar 

  • R. Rahimi, A. Mohammakhani, V. Roohi, N. Armand, Effects of salts tress and silicon nutrition on chlorophyll content, yield, and yield components in fennel (Foeniculum vulgare Mill). Int. J. Agric. Crop. Sci. 4, 1591–1595 (2012)

    Google Scholar 

  • G. Rajakumar, A.A. Rahuman, Larvicidal activity of synthesized silver nanoparticles using Ecliptaprostrata leaf extract against filarias is and malaria vectors. Acta. Trop 18(3), 196–203 (2011)

    Article  Google Scholar 

  • P. Rajiv, S. Rajeshwari, R. Venckatesh, Bio-fabrication of zinc oxide nanoparticles synthesis of zinc oxide nano particles using Moringaoleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim. Acta Mol. Biomol Spectrosc. 143, 158–164 (2015)

    Article  Google Scholar 

  • N. Rascio, F. NavariIzzo, Heavy metal hyper accumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 169–180 (2011)

    Google Scholar 

  • C.M. Rico, J. Hong, M.I. Morales, L. Zhao, A.C. Zhang, J.Y. Barrios, Effect of cerium oxide nanoparticles on rice: are scence imaging. Environ. Sci. Technol. 47, 5635 (2013)

    Article  ADS  Google Scholar 

  • S.W. Ryter, H.P. Kim, A. Hoetzel, J.W. Park, K. Nakahira, X. Wang, A.M. Choi, Mechanisms of cell death in oxidative stress. AntioXid. Redox Signal. 9, 49–89 (2007)

    Article  Google Scholar 

  • N. Sabaghnia, M. Janmohammad, Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes. Ann. UMCS. Biol. 69(2), 39–55 (2015)

    Google Scholar 

  • Z. Sadowski, Biosynthesis and applications of silver and gold nanoparticles, in Silver Nanoparticles, ed. by David Pozo Perez (2010), pp. 257–276

    Google Scholar 

  • H. Safarpour, M.R. Safarnejad, M. Tabatabaei, A. Mohsenifar, F. Rad, M. Basirat, F. Shahryari, F. Hasanzadeh, Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxabetae. Can. J. Plant Pathol. 34, 507–515 (2012)

    Article  Google Scholar 

  • A. Sarkar, G. Praveen, Utilization of waste biomass into useful forms of energy, in Biofuels and Bio-energy (BICE (2016)) (Springer, Cham, 2017), pp. 117–132

    Google Scholar 

  • G. Savvasd, D. Giotes, E. Chatzieustratiou, M. Bakea, G. Patakioutad, Silicon supply in soilless cultivation of Zucchini allevi-ates stress induced by salinity and powdery mildew infection. Environ. Exp. Bot. 65, 11–17 (2009)

    Article  Google Scholar 

  • R. Schils, J.E. Olesen, K.C. Kersebaum, B. Rijk, M. Oberforster, V. Kalyada, M. Khitrykau, A. Gobin, H. Kirchev, V. Manolova, Cereal yield gaps across Europe. Eur. J. Agron. 101, 109–120 (2018a)

    Article  Google Scholar 

  • R. Schils, J.E. Olesen, K.C. Kersebaum, B. Rijk, M. Oberforster, V. Kalyada, M. Khitrykau, A. Gobin, H. Kirchev, V. Manolova, Cereal yield gaps across Europe. Eur. J. Agron. 101, 109–120 (2018b)

    Article  Google Scholar 

  • N. Shabnam, P. Pardha-Saradhi, P. Sharmila, Phenolic simpartAu3 þ-stress tolerance to cowpea by generating nanoparticles. PLoSOne 9, 85242 (2014)

    Article  ADS  Google Scholar 

  • Y. Shang, K.M. Hasan, G.J. Ahammed, M. Li, H. Yin, J. Zhou, Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24, 2558 (2019)

    Article  Google Scholar 

  • M. Sharon, A.K. Choudhary, R. Kumar, Nanotechnology in agricultural diseases. J. Phytol. 2, 83–85 (2010)

    Google Scholar 

  • C. Shiva, M. Santosh, S. Kumar, Synthesized silver nanoparticles using Aristolochia indica extract against Helicoverpaarmigera Hubner (Lepidoptera:Noctuidae). Int. J. Adv. Sci. Tech. Res. 5(2), 197–226 (2020)

    Google Scholar 

  • T.R. Shojaei, The effect of plant growth regulators, cultivars and substrate combination on production of virus free potato mini tubers. Afr. J. Biotechnol. 8, 4864–4871 (2009)

    Google Scholar 

  • S. Shrivastava, D. Dash, Nanotechnology in food sector and agriculture. Proc. Natl. Acad. Sci. India Sect. BBiol. Sci. 82(1), 29–35 (2012)

    Google Scholar 

  • R.K. Shukla, P. Chamoli, K.K. Raina, Lyotropic liquid crystalline nano templates for synthesis of ZnS cogwheels. J. Mol. Liq. 283, 667–673 (2019)

    Article  Google Scholar 

  • V. Singh, Titanium dioxide nanoparticles and its impact on growth, biomass and yield of agricultural crops under environmental stress: A review. Res. J. Nanosci. Technol. 10, 1–8 (2020)

    Google Scholar 

  • J. Singh, B.K. Lee, Influence of nano-TiO2 particles on the bio accumulation of Cd in soybean plants (Glycinemax): possible mechanism for the removal of Cd from the contaminated soil. J. Environ. Manag. 170, 88–96 (2016)

    Article  Google Scholar 

  • S. Singh, B.K. Singh, S.M. Yadav, A.K. Gupta, Applications of nanotechnology in agricultural and their role in disease management. Res. J. Nanosci. Nanotechnol. 5, 1–5 (2015)

    Article  Google Scholar 

  • P. Singh, P. Chamoli, S. Suchdev, K.K. Raina, R.K. Shukla, Structural, optical and rheological behavior investigations of graphene oxide/ glycerol based lyotropic liquid crystalline phases. Appl. Surf. Sci. 509, 144710 (2020)

    Article  Google Scholar 

  • S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress Polym. Sci. 28, 1539–1641 (2003)

    Article  Google Scholar 

  • C.M. Stewart, R.B. Tompkin, M.B. Cole, Food safety: new concepts for the new millennium. Innov. Food Sci. Emerg. Technol. 3, 105–112 (2002)

    Article  Google Scholar 

  • R.N. Tharanathan, Biodegradable films and composite coatings: past, present and future. Trends Food Sci. Technol. 14(3), 71–78 (2003)

    Article  Google Scholar 

  • M. Thwala, N. Musee, L. Sikhwivhilu, V. Wepener, The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodelapunctuta and the role of testing media parameters. Environ. Sci. Process. Impacts 15, 1830–1843 (2013)

    Article  Google Scholar 

  • J. Tian, K.K. Wong, C.M. Ho, C.N. Lok, W.Y. Yu, C.M. Che, J.F. Chiu, P.K. Tam, Topical delivery of silver nano particles promotes wound healing. Chem. Med. Chem. 2, 129–136 (2007)

    Article  Google Scholar 

  • D.K. Tripathi, V.P. Singh, S.M. Prasad, D.K. Chauhan, N.K. Dubey, Silicon nanoparticles (SiNp) alleviate chromium(VI) phytotoxicity in Pisumsativum (L.) seedlings Plant Physiol. Biochem. 96, 189–198 (2015)

    Google Scholar 

  • A. Wahid, Physiological implications of metabolites biosynthesis proline assimilation and heat stress tolerance in Sugarcane (Saccharum officinarum) sprouts. J. Plant Res. 120, 219–228 (2007)

    Article  Google Scholar 

  • X. Wang, Microwave assisted one step greensynthes is of cell-permeable multi-color photo luminescent carbon dots without surface passivation reagents. J. Mater. Chem. 21, 2445–2450 (2011)

    Article  Google Scholar 

  • J. Wei, Simple one-step synthesis of water-soluble fluorescent carbon dots derived from paper ash. RSC Adv. 3, 13119–13122 (2013)

    Article  ADS  Google Scholar 

  • R. Welti, W. Li, M. Li, Y. Sang, H. Biesiada, H.E. Zhou, Profiling membrane lipids in plant stress responses: role of phospholipase Dain freezing induced lipid changes in Arabidopsis. J. Biol. Chem. 277, 31994–32002 (2002)

    Article  Google Scholar 

  • R.L. Whistler, J.R. Daniel, Functions of polysaccharides in foods, in Food Additives (Marcel Dekker, Inc., New York, NY, 1990), pp. 395–424

    Google Scholar 

  • I.A.M. Worms, J. Boltzman, M. Garcia, V.I. Slaveykova, Cell-wall-dependent effect of carboxyl-Cd Se/Zn S quantum dots on lead and copper availability to green microalgae. Environ. Pollut. 167, 27–33 (2012)

    Article  Google Scholar 

  • T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J.I. Yeh, M.R. Wiesner, A.E. Nel, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oXidative stress paradigm. Nano Lett. 6, 1794–1807 (2006)

    Article  ADS  Google Scholar 

  • Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nano particles against Campylobacter jejuni. Appl. Environ. Microbiol. 77, 2325–2331 (2011)

    Article  ADS  Google Scholar 

  • X. Xin, F. Zhao, J.Y. Rho, S.L. Goodrich, B.S. Sumerlin, Z. He, Use of polymeric nanoparticles to improve seed germination and plant growth under copper stress. Sci. Total Environ. 745(25), 141055 (2020)

    Article  ADS  Google Scholar 

  • F. Yang, F. Hong, W. You, C. Liu, F. Gao, C. Wu, P. Yang, Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace Elem. Res. 110, 179–190 (2006)

    Article  Google Scholar 

  • X.J. Yang, X. Duan, Y. Jiang, P. Zhang, Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biol. 14, 208 (2014)

    Article  Google Scholar 

  • R. Yordanova, L. Popova, Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. Gen. Appl. Plant Physiol. 33, 155–170 (2007)

    Google Scholar 

  • Y. Ze, C.L. Liu, M. Wang, F.H. Hong, The regulation ofTiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol. Traceelem. Res. 143, 1131–1141 (2011)

    Article  Google Scholar 

  • L. Zhao, B. Peng, J.A. Hernandez-Viezcas, C. Rico, Y. Sun, J.R. Peralta-Videa, Stress response and tolerance of Zeamaysto CeO2 nano particles: cross talk among H2O2, heat shock protein and lipid peroxidation. ACS Nano 6, 9615–9622 (2012)

    Article  Google Scholar 

  • L. Zheng, F. Hong, S. Lu, C. Liu, Effect of nano-TiO (2) on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 104, 83–91 (2005)

    Article  Google Scholar 

  • Zulfikar & Asraf, Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol. Biochem. 160, 257–268 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Chamoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhyani, K., Sobha, Meenu, M., Bezbaruah, A.N., Kar, K.K., Chamoli, P. (2022). Current Prospective of Nanomaterials in Agriculture and Farming. In: Katiyar, J.K., Panwar, V., Ahlawat, N. (eds) Nanomaterials for Advanced Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-1384-6_9

Download citation

Publish with us

Policies and ethics