Skip to main content

Prospects of Vaccination in Crustaceans with Special Reference to Shrimp

  • Chapter
  • First Online:
Fish immune system and vaccines

Abstract

Among different categories of management options available to combat infectious diseases in shrimp, vaccination is one of the most promising ones. Several vaccination methods such as inactivated (using temperature, gamma irradiation, binary ethylenimine (BEI) and formalin), recombinant and DNA vaccine and RNAi technology have been employed over the years. For white spot syndrome virus (WSSV), many viral genes, especially structural protein VP28, have been targeted for producing different types of vaccines. Many prokaryotic and eukaryotic expression systems, with their own advantages and limitations, have been used for generating recombinant vaccines. DNA vaccine has been suggested to be an ideal approach, considering many advantages including the ability of plasmid DNA to be vertically transmitted from mother to progeny. However, the efficacy of vaccine depends on many host- and pathogen-associated factors. Among various delivery methods, oral vaccination has been suggested as the most appropriate method. Further, the stability of oral vaccines in the gastro-intestinal tract of the animal has been enhanced by encapsulation with chitosan, glucan, liposomes and Artemia sp. Use of polyvalent vaccine, vaccine supplemented with nutritional additives, adjuvants and immunostimulants has also been reported to enhance the protective efficacy of vaccine in shrimp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sommerset I, Krossoy B, Biering E, Frost P. Vaccines for fish in aquaculture. Expert Rev Vaccines. 2005;4(1):89–101.

    Article  CAS  PubMed  Google Scholar 

  2. Jiravanichpaisal P, Lee BL, Söderhäll K. Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology. 2006;211:213–36.

    Article  CAS  PubMed  Google Scholar 

  3. Li F, Xiang J. Recent advances in researches on the innate immunity of shrimp in China. Dev Comp Immunol. 2013;39(1–2):11–26.

    Article  PubMed  CAS  Google Scholar 

  4. Gudding R, Lillehaug A, Evensen O. Recent developments in fish vaccinology. Vet Immunol Immunopathol. 1999;72:203–12.

    Article  CAS  PubMed  Google Scholar 

  5. Venegas CA, Nonaka L, Mushiake K, Nishizawa T, Muroga K. Quasi-immune response of Penaeus japonicus to penaeid rod-shaped DNA virus (PRDV). Dis Aquat Org. 2000;42:83–9.

    Article  CAS  Google Scholar 

  6. Wu JL, Nishioka T, Mori K, Nishizawa T, Muroga K. A time-course study on the resistance of Penaeus japonicus induced by artificial infection with white spot syndrome virus. Fish Shellfish Immunol. 2002;13:391–403.

    Article  CAS  PubMed  Google Scholar 

  7. Namikoshi A, Wu JL, Yamashita T, Nishizawa T, Nishioka T, Arimoto M, Muroga K. Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus. Aquaculture. 2004;229:25–35.

    Article  Google Scholar 

  8. Zhu F, Du H, Miao ZG, Quan HZ, Xu ZR. Protection of Procambarus Clarkii against white spot syndrome virus using inactivated WSSV. Fish Shellfish Immunol. 2009;26(5):685–90.

    Article  CAS  PubMed  Google Scholar 

  9. Singh ISB, Manjusha M, Pai SS, Philip R. Fenneropenaeus indicus is protected from white spot disease by oral administration of inactivated white spot syndrome virus. Dis Aquat Org. 2005;66:265–70.

    Article  Google Scholar 

  10. Amar EC, Faisan JP. Efficacy of an inactivated vaccine and nutritional additives against white spot syndrome virus (WSSV) in shrimp (Penaeus monodon). Isr J Aquacult. 2011;63:9.

    Google Scholar 

  11. Yogeeswaran A, Velmurugan S, Punitha SMJ, Babu MM, Selvaraj T, Kumaran T, Citarasu T. Protection of Penaeus monodon against white spot syndrome virus by inactivated vaccine with herbal immunostimulants. Fish Shellfish Immunol. 2012;32(6):1058–67.

    Article  CAS  PubMed  Google Scholar 

  12. Heidarieh M, Sedeh FM, Soltani M, Rajabifar S, Afsharnasab M, Dashtiannasab A. White spot syndrome virus inactivation study by using gamma irradiation. Chin J Oceanol Limnol. 2014;32(5):1024–8.

    Article  Google Scholar 

  13. Sedeh FM, Afsharnasab M, Heidarieh M. Immunization of Litopenaeus vannamei shrimp against white spot syndrome virus (WSSV) by gamma-irradiated WSSV plus Vibrio paraheomolyticus. Vaccine Res. 2015;2(5):107–12.

    Article  Google Scholar 

  14. Boreyri D, Afsharnasab M, Motalebi AA, Haghigh A. Immunological findings in shrimp Litopenaeus vannamei exposed to attenuated WSSV vaccine produced by gamma irradiation. Iran J Fish Sci. 2017;16(1):382–96.

    Google Scholar 

  15. Adams A, Aoki T, Berthe C, Grisez L, Karunasagar I. Recent technological advancements on aquatic animal health and their contributions toward reducing disease risks-a review. In: Diseases in Asian aquaculture VI. Colombo: Fish Health Section, Asian Fisheries Society; 2008. p. 7188.

    Google Scholar 

  16. Jha RK, Xu ZR, Shen J, Bai SJ, Sun JY, Li WF. The efficacy of recombinant vaccines against white spot syndrome virus in Procambarus clarkii. Immunol Lett. 2006;105:68–76.

    Article  CAS  PubMed  Google Scholar 

  17. Jha RK, Xu ZR, Bai SJ, Sun JY, Li WF, Shen J. Protection of Procambarus clarkii against white spot syndrome virus using recombinant oral vaccine expressed in Pichia pastoris. Fish Shellfish Immunol. 2007;22(4):295–307.

    Article  CAS  PubMed  Google Scholar 

  18. Witteveldt J, Vlak JM, van Hulten MCW. Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine. Fish Shellfish Immunol. 2004a;16:571–9.

    Article  CAS  PubMed  Google Scholar 

  19. Witteveldt J, Cifuentes CC, Vlak JM, van Hulten MCW. Protection of Penaeus monodon against white spot syndrome virus by oral vaccination. J Virol. 2004b;78:2057–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi RM, Kim YJ, Jang JS, Kim SK. Transcriptional analysis for Oral vaccination of recombinant viral proteins against white spot syndrome virus (WSSV) in Litopenaeus vannamei. J Microbiol Biotechnol. 2011;21(2):170–5.

    Article  CAS  PubMed  Google Scholar 

  21. Ha YM, Soo-Jung G, Thi-Hoai N, Ra CH, Kim KH, Nam YK, Kim SK. Vaccination of shrimp (Penaeus chinensis) against white spot syndrome virus (WSSV). J Microbiol Biotechnol. 2008;18:964–7.

    CAS  PubMed  Google Scholar 

  22. Boonyakida J, Xu J, Satoh J, Nakanishi T, Mekata T, Kato T, Park EY. Antigenic properties of VP15 from white spot syndrome virus in kuruma shrimp Marsupenaeus japonicus. Fish Shellfish Immunol. 2020;101:152–8.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu C, Shi D, Liao S, He P, Jia R. Effects of Synechococcus sp. PCC 7942 harboring vp19, vp28, and vp (19 + 28) on the survival and immune response of Litopenaeus vannamei infected WSSV. Fish Shellfish Immunol. 2020;99:1–8.

    Article  CAS  PubMed  Google Scholar 

  24. Thomas A, Sudheer NS, Viswanathan K, Kiron V, Singh ISB, Narayanan RB. Immunogenicity and protective efficacy of a major White Spot Syndrome Virus (WSSV) envelope protein VP24 expressed in Escherichia coli against WSSV. J Invertebr Pathol. 2014;123:17–24.

    Article  CAS  PubMed  Google Scholar 

  25. Caipang CMA, Verjan N, Ooi EL, Kondo H, Hirono I, Aoki T, Kiyono H, Yuki Y. Enhanced survival of shrimp, Penaeus (Marsupenaeus) japonicus from white spot syndrome disease after oral administration of recombinant VP28 expressed in Brevibacillus brevis. Fish Shellfish Immunol. 2008;25:315–20.

    Article  CAS  PubMed  Google Scholar 

  26. Satoh J, Nishizawa T, Yoshimizu M. Protection against white spot syndrome virus (WSSV) infection in kuruma shrimp orally vaccinated with WSSV rVP26 and rVP28. Dis Aquat Org. 2008;82:89–96.

    Article  CAS  Google Scholar 

  27. Syed MS, Madhan S, Sahul Hameed AS, Kwang J. Localization of VP28 on the baculovirus envelope and its immunogenicity against white spot syndrome virus in Penaeus monodon. Virol J. 2009;391:315–24.

    Article  CAS  Google Scholar 

  28. Fu LL, Shuai JB, Xu ZR, Li JR, Li WF. Immune responses of Fenneropenaeus chinensis against white spot syndrome virus after oral delivery of VP28 using Bacillus subtilis as vehicles. Fish Shellfish Immunol. 2010;28:49–55.

    Article  CAS  PubMed  Google Scholar 

  29. Mavichak R, Takano T, Kondo H, Hirono I, Wada S, Hatai K, Inagawa H, Takahashi Y, Yoshimura T, Kiyono H, Yuki Y, Aoki T. The effect of liposome-coated recombinant protein VP28 against white spot syndrome virus in kuruma shrimp, Marsupenaeus japonicus. J Fish Dis. 2010;33:69–74.

    Article  CAS  PubMed  Google Scholar 

  30. Syed MS, Kwang J. Oral vaccination of baculovirus-expressed VP28 displays enhanced protection against white spot syndrome virus in Penaeus monodon. PLoS One. 2011;6:e26428. https://doi.org/10.1371/journal.pone.0026428.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Ning JF, Qu XQ, Meng XL, Xu JP. TAT-mediated oral subunit vaccine against white spot syndrome virus in crayfish. J Virol Methods. 2012;181(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  32. Yang JY, Chang CI, Liu KF, Hseu JR, Chen LH, Tsai JM. Viral resistance and immune responses of the shrimp Litopenaeus vannamei vaccinated by two WSSV structural proteins. Immunol Lett. 2012;148(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  33. Akhila DS, Rai P, Mani MK, Ballamoole KK, Karunasagar I, Karunasagar I. Protection of Litopenaeus vannamei against White Spot Syndrome Virus using bacterially expressed recombinant envelope proteins VP39 and VP28. Isr J Aquacult. 2014;64:1116.

    Google Scholar 

  34. Feng S, Feng W, Zhao L, Gu H, Li Q, Shi K, Guo S, Zhang N. Preparation of transgenic Dunaliella salina for immunization against white spot syndrome virus in crayfish. Arch Virol. 2014;159:519–25.

    Article  CAS  PubMed  Google Scholar 

  35. Valdez A, Yepiz-Plascencia G, Ricca E, Olmos J. First Litopenaeus vannamei WSSV 100% oral vaccination protection using CotC::Vp26 fusion protein displayed on Bacillus subtilis spores surface. J Appl Microbiol. 2014;117:347–57.

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen AT, Pham CK, Pham HT, Pham HL, Nguyen AH, Dang LT, Huynh HA, Cutting SM, Phan TN. Bacillus subtilis spores expressing the VP28 antigen: a potential oral treatment to protect Litopenaeus vannamei against white spot syndrome. FEMS Microbiol Lett. 2014;358(2):202–8.

    Article  CAS  PubMed  Google Scholar 

  37. Pham KC, Tran HTT, Doan CV, Le PH, Nguyen ATV, Nguyen HA, Hong HA, Cutting SM, Phan TN. Protection of Penaeus monodon against white spot syndrome by continuous oral administration of a low concentration of Bacillus subtilis spores expressing the VP28 antigen. Lett Appl Microbiol. 2017;64(3):184–91.

    Article  CAS  PubMed  Google Scholar 

  38. Solís-Lucero G, Manoutcharian K, Hernández-López J, Ascencio F. Injected phage-displayed-VP28 vaccine reduces shrimp Litopenaeus vannamei mortality by white spot syndrome virus infection. Fish Shellfish Immunol. 2016;55:401–6.

    Article  PubMed  CAS  Google Scholar 

  39. Thomas A, Sudheer NS, Viswanathan K, Kiron V, Singh ISB, Narayanan RB. Expression profile of key immune-related genes in Penaeus monodon juveniles after oral administration of recombinant envelope protein VP28 of white spot syndrome virus. Microb Pathog. 2016;96:72–9.

    Article  CAS  PubMed  Google Scholar 

  40. Taengchaiyaphum S, Nakayama H, Srisala J, Khiev R, Aldama-Cano DJ, Thitamadee S, Sritunyalucksana K. Vaccination with multimeric recombinant VP28 induces high protection against white spot syndrome virus in shrimp. Dev Comp Immunol. 2017;76:56–64.

    Article  CAS  PubMed  Google Scholar 

  41. Zhai YF, Shi DJ, He PM, Cai CE, Yin R, Jia R. Effect of trans-vp28 gene Synechocystis sp. PCC6803 on growth and immunity of Litopenaeus vannamei and defense against white spot syndrome virus (WSSV). Aquaculture. 2019;512:734306. https://doi.org/10.1016/j.aquaculture.2019.734306.

    Article  CAS  Google Scholar 

  42. Kiataramgul A, Maneenin S, Purton S, Areechon N, Hirono I, Brocklehurst TW, Unajak S. An oral delivery system for controlling white spot syndrome virus infection in shrimp using transgenic microalgae. Aquaculture. 2020;521:735022. https://doi.org/10.1016/j.aquaculture.2020.735022.

    Article  CAS  Google Scholar 

  43. Vaseeharan B, Prem Anand T, Murugan T, Chen JC. Shrimp vaccination trials with the VP292 protein of white spot syndrome virus. Lett Appl Microbiol. 2006;43:137–42.

    Article  CAS  PubMed  Google Scholar 

  44. Rout N, Kumar S, Jaganmohan S, Murugan V. DNA vaccines encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp. Vaccine. 2007;25:2778–86.

    Article  CAS  PubMed  Google Scholar 

  45. Kumar RS, Ahamed I, Sarathi A, Basha NA, Hameed AS. Immunological responses of Penaeus monodon to DNA vaccine and its efficacy to protect shrimp against white spot syndrome virus (WSSV). Fish Shellfish Immunol. 2008;24:467–78.

    Article  CAS  Google Scholar 

  46. Fu LL, Li WF, Du HH, Dai W, Xu ZR. Oral vaccination with envelope protein VP28 against white spot syndrome virus in Procambarus clarkii using Bacillus subtilis as delivery vehicles. Lett Appl Microbiol. 2008;46(5):581–6.

    Article  CAS  PubMed  Google Scholar 

  47. Ning JF, Zhu W, Xu JP, Zheng CY, Meng XL. Oral delivery of DNA vaccine encoding VP28 against white spot syndrome virus in crayfish by attenuated Salmonella typhimurium. Vaccine. 2009;27(7):1127–15.

    Article  CAS  PubMed  Google Scholar 

  48. Kono T, Sonoda K, Kitao Y, Mekata T, Itami T, Sakai M. The expression analysis of innate immune-related genes in Kuruma shrimp Penaeus japonicus after DNA vaccination against penaeid rod-shaped DNA virus. Fish Pathol. 2009;44:94–7.

    Article  Google Scholar 

  49. Li X, Liu QH, Hou L, Huang J. Effect of VP28 DNA vaccine on white spot syndrome virus in Litopenaeus vannamei. Aquac Int. 2010;18:1035–44.

    Article  CAS  Google Scholar 

  50. Ning D, Leng X, Li Q, Xu W. Surface-displayed VP28 on Bacillus subtilis spores induces protection against white spot syndrome virus in crayfish by oral administration. J Appl Microbiol. 2011;111(6):1327–36.

    Article  CAS  PubMed  Google Scholar 

  51. Wei KQ, Yang JX. Histological alterations and immune response in the crayfish Procambarus clarkii given rVP28-incorporated diets. Fish Shellfish Immunol. 2011;31(6):1122–8.

    Article  CAS  PubMed  Google Scholar 

  52. Qiu Z, Liu Q, Huang J. Efficiency of two fragments of VP28 against white spot syndrome virus in Litopenaeus vannamei. Aquaculture. 2012;338:2–12.

    Article  CAS  Google Scholar 

  53. Pathan M, Gireesh-Babu P, Pavan-Kumar A, Jeena K, Sharma R, Makesh M, Prasad KP, Krishna G. In vivo therapeutic efficacy of recombinant Penaeus monodon antiviral protein (rPmAV) administered in three different forms to WSSV infected Penaeus monodon. Aquaculture. 2013;376–379:64–7.

    Article  CAS  Google Scholar 

  54. Kono T, Fall J, Korenaga H, Sudhakaran R, Biswas G, Mekata T, Itami T, Sakai M. Recombinant VP28 produced by cell-free technique confers protection in kuruma shrimp (Marsupenaeus japonicus) against white spot syndrome virus. Turkish J Fish Aquat Sci. 2014;14:547–55.

    Google Scholar 

  55. Ramya VL, Sharma R, Gireesh-Babu P, Patchala SR, Rather A, Nandanpawar PC, Eswaran S. Development of chitosan conjugated DNA vaccine against nodavirus in M acrobrachium rosenbergii (De Man, 1879). J Fish Dis. 2014;37(9):815–24.

    Article  CAS  PubMed  Google Scholar 

  56. Sudheer NS, Poulose G, Thomas A, Viswanath K, Kulkarni A, Narayanan RB, Philip R, Singh ISB. Expression profile of bio-defense genes in Penaeus monodon gills in response to formalin inactivated white spot syndrome virus vaccine. Antivir Res. 2015;117:60–8.

    Article  CAS  PubMed  Google Scholar 

  57. Jia XH, Zhang CL, Shi DJ, Zhuang MM, Wang X, Jia R, Zhang ZY, Huang J, Sun YH, Qian WY, Peng GH, He PM. Oral administration of Anabaena-expressed VP28 for both drug and food against white spot syndrome virus in shrimp. J Appl Phycol. 2016;28:1001–9.

    Article  CAS  Google Scholar 

  58. Cho H, Park NH, Jang Y, Gwon YD, Cho Y, Heo YK, Park KH, Lee HJ, Choi TJ, Kim YB. Fusion of flagellin 2 with bivalent white spot syndrome virus vaccine increases survival in freshwater shrimp. J Invertebr Pathol. 2017;144:97–105.

    Article  CAS  PubMed  Google Scholar 

  59. Citarasu T, Lelin C, Babu MM, Anand SB, Nathan AA, Vakharia VN. Oral vaccination of Macrobrachium rosenbergii with baculovirus-expressed M. rosenbergii nodavirus (MrNV) capsid protein induces protective immunity against MrNV challenge. Fish Shellfish Immunol. 2019;86:1123–9.

    Article  CAS  PubMed  Google Scholar 

  60. Citarasu T, Lelin C, Thirumalaikumar E, Babu MM, Vakharia VN. Macrobrachium rosenbergii nodavirus (MrNV)-CP-RNA-2 DNA vaccine confers protective immunity in giant freshwater prawn Macrobrachium rosenbergii against MrNV infection. Fish Shellfish Immunol. 2019;86:319–26.

    Article  CAS  PubMed  Google Scholar 

  61. Duc LH, Hong HA, Cutting SM. Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen presentation. Vaccine. 2003;21:4215–24.

    Article  CAS  Google Scholar 

  62. Taju G, Madan N, Majeed SA, Kumar TR, Thamizvanan S, Otta SK, Hameed ASH. Immune responses of white leg shrimp, Litopenaeus vannamei (Boone, 1931) to bacterially expressed dsRNA specific to VP28 gene of white spot syndrome virus. J Fish Dis. 2015;38:451–65.

    Article  CAS  PubMed  Google Scholar 

  63. Kono T, Biswas G, Fall J, Mekata T, Hikima J, Itami T, Sakai M. Adjuvant effects of poly I:C and imiquimod on the immunization of kuruma shrimp (Marsupenaeus japonicus) with a recombinant protein, VP28 against white spot syndrome virus. Aquaculture. 2015;446:236–41.

    Article  CAS  Google Scholar 

  64. Ma J, Bruce TJ, Jones EM, Cain KD. A review of fish vaccine development strategies: conventional methods and modern biotechnological approaches. Microorganisms. 2019;7:569. https://doi.org/10.3390/microorganisms7110569.

    Article  CAS  PubMed Central  Google Scholar 

  65. Chowdhury LM, Gireesh-Babu P, Pavan-Kumar A, Suresh Babu PP, Chaudhari A. First report on vertical transmission of a plasmid DNA in freshwater prawn, Macrobrachium rosenbergii. J Invertebr Pathol. 2014;121:24–7.

    Article  CAS  PubMed  Google Scholar 

  66. Mu Y, Lan JF, Zhang XW, Wang XW, Zhao XF, Wang JX. A vector that expresses VP28 of WSSV can protect red swamp crayfish from white spot disease. Dev Comp Immunol. 2012;36(2):442–9.

    Article  CAS  PubMed  Google Scholar 

  67. Chotigeat W, Deachamag P, Phongdara A. Identification of a protein binding to the phagocytosis activating protein (PAP) in immunized black tiger shrimp. Aquaculture. 2007;271(1–4):112–20.

    Article  CAS  Google Scholar 

  68. Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev. 2003;67(4):657–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25–33.

    Article  CAS  PubMed  Google Scholar 

  70. Sanjuktha M, Stalin RV, Aravindan K, Alavandi SV, Poornima M, Santiago TC. Comparative efficacy of double-stranded RNAs targeting WSSV structural and nonstructural genes in controlling viral multiplication in Penaeus monodon. Arch Virol. 2012;157:993–8.

    Article  CAS  PubMed  Google Scholar 

  71. Su J, Oanh DTH, Lyons RE, Leeton L, van Hulten MCW, Tan SH, Song L, Rajendran KV, Walker PJ. A key gene of RNA interference pathway in the black tiger shrimp, Peaneus monodon: identification and functional characterization of Dicer-1. Fish Shellfish Immunol. 2008;24:223–33.

    Article  PubMed  CAS  Google Scholar 

  72. Unajak S, Boonsaeng V, Jitrapakdee S. Isolation and characterization of cDNA encoding Argonaute, a component of RNA silencing in shrimp (Penaeus monodon). Comp Biochem Physiol B Biochem Mol Biol. 2006;145(2):179–87.

    Article  PubMed  CAS  Google Scholar 

  73. Yao XM, Wang LL, Song LS, Zhang HA, Dong CH, Zhang Y, Qiu LM, Shi YH, Jianmin ZM, Bi YK. A Dicer-1 gene from white shrimp Litopenaeus vannamei: expression pattern in the processes of immune response and larval development. Fish Shellfish Immunol. 2010;29:565–70.

    Article  CAS  PubMed  Google Scholar 

  74. Chen YH, Jia XT, Zhao L, Li CZ, Zhang SA, Chen YG, Weng SP, He JG. Identification and functional characterization of Dicer2 and five single VWC domain proteins of Litopenaeus vannamei. Dev Comp Immunol. 2011;35:661–71.

    Article  CAS  PubMed  Google Scholar 

  75. Chen YH, Zhao L, Jia XT, Li XY, Li CZ, Yan H, Weng SP, He JG. Isolation and characterization of cDNAs encoding Ars2 and pasha homologues, two components of the RNA interference pathway in Litopenaeus vannamei. Fish Shellfish Immunol. 2012;32(2):373–80.

    Article  CAS  PubMed  Google Scholar 

  76. Huang T, Xu D, Zhang X. Characterization of shrimp Drosha in virus infection. Fish Shellfish Immunol. 2012;33(3):575–81.

    Article  CAS  PubMed  Google Scholar 

  77. Wang S, Chen AJ, Shi LJ, Zhao XF, Wang JX. TRBP and eIF6 homologue in Marsupenaeus japonicus play crucial roles in antiviral response. PLoS One. 2012;7:e30057. https://doi.org/10.1371/journal.pone.0030057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang L, Li X, Huang J, Zhou F, Su T, Jiang S. Isolation and characterization of homologous TRBP cDNA for RNA interference in Penaeus monodon. Fish Shellfish Immunol. 2012;34(2):704–11.

    Article  PubMed  CAS  Google Scholar 

  79. Phetrungnapha A, Ho T, Udomkit A, Panyim S, Ongvarrasopone C. Molecular cloning and functional characterization of Argonaute-3 gene from Penaeus monodon. Fish Shellfish Immunol. 2013;35(3):874–82.

    Article  CAS  PubMed  Google Scholar 

  80. Robalino J, Bartlett T, Shepard E, Prior S, Jaramillo G, Scura E, Chapman RW, Gross PS, Browdy CL, Warr GW. Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response? J Virol. 2005;79:13561–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Saksmerprome V, Thammasorn T, Jitrakorn S, Wongtripop S, Borwornpinyo S, Withyachumnarnkul B. Using double-stranded RNA for the control of Laem-Singh virus (LSNV) in Thai Penaeus monodon. J Biotechnol. 2013;164:449–53.

    Article  CAS  PubMed  Google Scholar 

  82. Thammasorn T, Somchai P, Laosutthipong C, Jitrakorn S, Wongtripop S, Thitamadee S, Withyachumnarnkul B, Saksmerprome V. Therapeutic effect of Artemia enriched with Escherichia coli expressing double-stranded RNA in the black tiger shrimp Penaeus monodon. Antivir Res. 2013;100:202–6.

    Article  CAS  PubMed  Google Scholar 

  83. Escobedo-Bonilla CM, Vega-Pena S, Mejia-Ruiz CH. Efficacy of double-stranded RNA against white spot syndrome virus (WSSV) non-structural (orf89, wsv191) and structural (vp28, vp26) genes in the Pacific white shrimp Litopenaeus vannamei. J King Saud Univ Sci. 2015;27:182–8.

    Article  Google Scholar 

  84. Sanitt P, Apiratikul N, Niyomtham N, Yingyongnarongkul BE, Assavalapsakul W, Panyim S, Udomkit A. Cholesterol-based cationic liposome increases dsRNA protection of yellow head virus infection in Penaeus vannamei. J Biotechnol. 2016;228:95–102.

    Article  CAS  PubMed  Google Scholar 

  85. Puneeth TG, Akhila DS, Dechamma MM, Shreeharsha JM, Shivakumar SK, Venugopal MN. Comparative efficacy of dsRNA VP24, VP26, RR1 and WSV477 gene against WSSV infection in Penaeus monodon. Int J Curr Microbiol Appl Sci. 2017;6(2):665–74.

    Article  CAS  Google Scholar 

  86. Charoonnart P, Worakajit N, Zedler JAZ, Meetam M, Robinson C, Saksmerprome V. Generation of microalga Chlamydomonas reinhardtii expressing shrimp antiviral dsRNA without supplementation of antibiotics. Sci Rep. 2019;9:3164. https://doi.org/10.1038/s41598-019-39539-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Westenberg M, Heinhuis B, Zuidema D, Vlak JM. siRNA injection induces sequence-independent protection in Penaeus monodon against white spot syndrome virus. Virus Res. 2005;114:133–9.

    Article  CAS  PubMed  Google Scholar 

  88. Zhu F, Zhang X. Protection of shrimp against White Spot Syndrome Virus (WSSV) with β-1,3-D-glucan-encapsulated vp28-siRNA particles. Mar Biotechnol. 2012;14:63–8.

    Article  CAS  Google Scholar 

  89. Krishnan P, Babu PG, Saravanan S, Rajendran KV, Chaudhari A. DNA constructs expressing long-hairpin RNA (lhRNA) protect Penaeus monodon against White Spot Syndrome Virus. Vaccine. 2009;27:3849–55.

    Article  CAS  PubMed  Google Scholar 

  90. Das R, Karthireddy S, Gireesh-Babu P, Reddy AK, Krishna G, Chaudhari A. Protection of Penaeus monodon from infection of white spot syndrome virus by DNA construct expressing long hairpin-RNA against ICP11 gene. Indian J Virol. 2010;21(2):95–102.

    Article  PubMed  Google Scholar 

  91. Lu Y, Sun PS. Viral resistance in shrimp that express an antisense Taura syndrome virus coat protein gene. Antivir Res. 2005;67:141–6.

    Article  CAS  PubMed  Google Scholar 

  92. Ahanger S, Sandaka S, Ananad D, Mani MK, Kondadhasula R, Reddy CS, Marappan M, Valappil RK, Majumdar KC, Mishra RK. Protection of shrimp Penaeus monodon from WSSV infection using antisense constructs. Mar Biotechnol. 2014;16:63–73.

    Article  CAS  Google Scholar 

  93. Akhila DS, Madhu MK, Rai P, Condon K, Owens L, Karunasagar I. Antisense RNA mediated protection from white spot syndrome virus (WSSV) infection in Pacific white shrimp Litopenaeus vannamei. Aquaculture. 2015;435:306–9.

    Article  CAS  Google Scholar 

  94. Robalino J, Browdy CL, Prior S, Metz A, Parnell P, Gross P, Warr G. Induction of antiviral immunity by double-stranded RNA in a marine invertebrate. J Virol. 2004;78:10442–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Maralit BA, Komatsu M, Hipolito SG, Hirono I, Kondo H. Microarray analysis of immunity against WSSV in response to injection of non-specific long dsRNA in Kuruma shrimp, Marsupenaeus japonicus. Mar Biotechnol. 2015;17:493–501.

    Article  CAS  Google Scholar 

  96. Ongvarrasopone C, Chanasakulniyom M, Sritunyalucksana K, Panyim S. Suppression of pmRab7 by dsRNA inhibits WSSV or YHV infection in shrimp. Mar Biotechnol. 2008;10:374–81.

    Article  CAS  Google Scholar 

  97. Ongvarrasopone C, Chomchay E, Panyim S. Antiviral effect of PmRab7 knock-down on inhibition of Laem-Singh virus replication in black tiger shrimp. Antivir Res. 2010;88:116–8.

    Article  CAS  PubMed  Google Scholar 

  98. Ongvarrasopone C, Saejia P, Chanasakulniyom M, Panyim S. Inhibition of Taura syndrome virus replication in Litopenaeus vannamei through silencing the LvRab7 gene using double-stranded RNA. Arch Virol. 2011;156:1117–23.

    Article  CAS  PubMed  Google Scholar 

  99. Wu Y, Lü L, Yang LS, Weng SP, Chan SM, He JG. Inhibition of white spot syndrome virus in Litopenaeus vannamei shrimp by sequence-specific siRNA. Aquaculture. 2007;271(1–4):21–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu J, Han F, Zhang X. Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antivir Res. 2007;73:126–31.

    Article  CAS  PubMed  Google Scholar 

  101. Yodmuang S, Tirasophon W, Roshorm Y, Chinnirunvong W, Panyim S. YHV-protease dsRNA inhibits YHV replication in Penaeus monodon and prevents mortality. Biochem Biophys Res Commun. 2006;341:351–6.

    Article  CAS  PubMed  Google Scholar 

  102. Kim CS, Kosuke Z, Nam YK, Kim SK, Kim KH. Protection of shrimp (Penaeus chinensis) against white spot syndrome virus (WSSV) challenge by double-stranded RNA. Fish Shellfish Immunol. 2007;23:242–6.

    Article  CAS  PubMed  Google Scholar 

  103. Sarathi M, Simon MC, Ahmed VPI, Kumar SR, Hameed ASS. Silencing VP28 gene of white spot syndrome virus of shrimp by bacterially expressed dsRNA. Mar Biotechnol. 2007;10:198–206.

    Article  CAS  Google Scholar 

  104. Thammasorn T, Sangsuriya P, Meemetta W, Senapin S, Jitrakorn S, Rattanarojpong T, Saksmerprome V. Large-scale production and antiviral efficacy of multi-target double-stranded RNA for the prevention of white spot syndrome virus (WSSV) in shrimp. BMC Biotechnol. 2015;15:110. https://doi.org/10.1186/s12896-015-0226-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Apiratikul N, Yingyongnarongkul BE, Assavalapsakul W. Highly efficient double-stranded RNA transfection of penaeid shrimp using cationic liposomes. Aquac Res. 2013;45:106–12.

    Article  CAS  Google Scholar 

  106. Sanitt P, Attasart P, Panyim S. Protection of yellow head virus infection in shrimp by feeding of bacteria expressing dsRNAs. J Biotechnol. 2014;179:26–31.

    Article  CAS  PubMed  Google Scholar 

  107. Jariyapong P, Chotwiwatthanakun C, Somrit M, Jitrapakdee S, Xing L, Cheng HR, Weerachatyanukul W. Encapsulation and delivery of plasmid DNA by virus-like nanoparticles engineered from Macrobrachium rosenbergii nodavirus. Virus Res. 2014;179:140–6.

    Article  CAS  PubMed  Google Scholar 

  108. Kumar A, Laramore S, Alexander P, Allnutt FCT, Sayre RT. Double stranded RNA simultaneously targeting four white spot syndrome virus (WSSV) genes provides protection against WSSV in Litopenaeus Vannamei. Int J Mar Sci Technol. 2015;22(2):5–10.

    Google Scholar 

  109. Chimwai C, Tongboonsong P, Namramoon O, Panyim S, Attasart P. A formulated double-stranded RNA diet for reducing Penaeus monodon densovirus infection in black tiger shrimp. J Invertebr Pathol. 2016;134:23–6.

    Article  CAS  PubMed  Google Scholar 

  110. Alenton RRR, Kondo H, Hirono I, Maningas MBB. Gene silencing of VP9 gene impairs WSSV infectivity on Macrobrachium rosenbergii. Virus Res. 2016;214:65–70.

    Article  CAS  PubMed  Google Scholar 

  111. Rattanarojpong T, Khankaew S, Khunrae P, Vanichviriyakit R, Poomputsa K. Recombinant baculovirus mediates dsRNA specific to rr2 delivery and its protective efficacy against WSSV infection. J Biotechnol. 2016;229:44–52.

    Article  CAS  PubMed  Google Scholar 

  112. Nilsen P, Karlsen M, Sritunyalucksana K, Thitamadee S. White spot syndrome virus VP28 specific double-stranded RNA provides protection through a highly focused siRNA population. Sci Rep. 2017;7(1):1028. https://doi.org/10.1038/s41598-017-01181-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Alvarez-Sanchez AR, Romo-Quinones C, Rosas-Quijano R, Reyes AG, Barraza A, Magallon-Barajas F, Angulo C, Mejia-Ruiz CH. Production of specific dsRNA against white spot syndrome virus in the yeast Yarrowia lipolytica. Aquac Res. 2018;49(1):480–91.

    Article  CAS  Google Scholar 

  114. Binayanti AH, Parenrengi A, Malina AC. Use of dsRNA WSSV VP19 with different dose for infection control white spot syndrome virus (WSSV) in Vaname shrimp Litopenaeus vannamei. Int J Sci Res. 2019;9(8):197–203.

    Google Scholar 

  115. Mejía-Ruíz CH, Vega-Peña S, Alvarez-Ruiz P, Escobedo-Bonilla CM. Double-stranded RNA against white spot syndrome virus (WSSV) vp28 or vp26 reduced susceptibility of Litopenaeus vannamei to WSSV, and survivors exhibited decreased susceptibility in subsequent re-infections. J Invertebr Pathol. 2011;107(1):65–8.

    Article  PubMed  CAS  Google Scholar 

  116. Tirasophon W, Yodmuang S, Chinnirunvong W, Plong-Thongkum N, Panyim S. Therapeutic inhibition of yellow head virus multiplication in infected shrimps by YHV-protease dsRNA. Antivir Res. 2007;74:150–5.

    Article  CAS  PubMed  Google Scholar 

  117. Attasart P, Kaewkhaw R, Chimwai C, Kongphom U, Panyim S. Clearance of Penaeus monodon densovirus in naturally pre-infected shrimp by combined ns1 and vp dsRNAs. Virus Res. 2011;159:79–82.

    Article  CAS  PubMed  Google Scholar 

  118. Ho T, Yasri P, Panyim S, Udomkit A. Double-stranded RNA confers both preventive and therapeutic effects against Penaeus stylirostris densovirus (PstDNV) in Litopenaeus vannamei. Virus Res. 2011;155:131–6.

    Article  CAS  PubMed  Google Scholar 

  119. Sarathi M, Simon MC, Venkatesan C, Hameed ASS. Oral administration of bacterially expressed VP28 dsRNA to protect Penaeus monodon from white spot syndrome virus. Mar Biotechnol. 2008;10:242–9.

    Article  CAS  Google Scholar 

  120. Karunasagar I, Pai R, Malathi GR, Karunasagar I. Mass mortalities of Penaeus monodon larvae due to antibiotic resistant Vibrio harveyi infection. Aquaculture. 1994;128:203–39.

    Article  Google Scholar 

  121. Vandenberghe J, Verdonck L, Robles-Arozarena R, Rivera G, Bolland A, Balladares M, Gomez-Gil B, Calderon J, Sorgeloos P, Swings J. Vibrios associated with Litopenaeus vannamei larvae, postlarvae, broodstock, and hatchery probionts. Appl Environ Microbiol. 1999;65:2592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jayasree L, Janakiram P, Madhavi R. Characterization of Vibrio spp. associated with diseased shrimp from culture ponds of Andhra Pradesh (India). J World Aquacult Soc. 2006;37(4):523–32.

    Article  Google Scholar 

  123. Tran L, Nunan L, Redman RM, Mohney LL, Pantoja CR, Fitzsimmons K. Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Org. 2013;105:45–55.

    Article  Google Scholar 

  124. Brock JA, Lightner DV. Diseases of Crustacea. In: Kinne O, editor. Diseases of marine animals, vol. 3. Hamburg: Biologische Anstalt Helgoland; 1990. p. 245–424.

    Google Scholar 

  125. Ishimaru K, Akagawa-Matsushita M, Muroga K. Vibrio penaeicida sp. nov., a pathogen of kuruma prawns (Penaeus japonicus). Int J Syst Evol Microbiol. 1995;45:134–8.

    Google Scholar 

  126. Itami T, Takahashi Y, Nakamura Y. Efficacy of vaccination against vibriosis in cultured Kuruma prawns Penaeus japonicus. J Aquat Anim Health. 1989;1:238–42.

    Article  Google Scholar 

  127. Teunissen OSP, Faber R, Booms GHR, Latscha T, Boon JH. Influence of vaccination on vibriosis resistance of the giant black tiger shrimp Penaeus monodon (Fabricius). Aquaculture. 1998;164:359–66.

    Article  Google Scholar 

  128. Alabi AO, Jones DA, Latchford JW. The efficacy of immersion as opposed to oral vaccination of Penaeus indicus larvae against Vibrio harveyi. Aquaculture. 1999;178:1–11.

    Article  Google Scholar 

  129. Roth O, Kurtz J. Phagocytosis mediates specificity in the immune defence of an invertebrate, the woodlouse Porcellio scaber (Crustacea: Isopoda). Dev Comp Immunol. 2009;33:1151–5.

    Article  CAS  PubMed  Google Scholar 

  130. Hettiarachchi M, Pathirage SG, Hettiarachchi DC. Isolation of the bacterium, Vibrio harveyi from cultured shrimp, Penaeus Monodon and production of vaccines against the bacterium. J Natl Sci Found. 2005;33:257–63.

    Google Scholar 

  131. Pereira JJ, Shanmugam SA, Sulthana M, Sundaraj V. Effect of vaccination on Vibriosis resistant of Fenneropenaeus indicus. Tamilnadu J Vet Anim Sci. 2009;5(6):246–50.

    Google Scholar 

  132. Lin YC, Chen JC, Zabidii W, Morni W, Putra DF, Huang CL, Li CC, Hsieh JF. Vaccination enhances early immune responses in white shrimp Litopenaeus vannamei after secondary exposure to Vibrio alginolyticus. PLoS One. 2013;8(7):e69722. https://doi.org/10.1371/journal.pone.0069722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Patil PK, Gopal C, Panigrahi A, Rajababu D, Pillai SM. Oral administration of formalin killed Vibrio anguillarum cells improves growth and protection against challenge with Vibrio harveyi in banana shrimp. Lett Appl Microbiol. 2013;58:213–8.

    Article  PubMed  CAS  Google Scholar 

  134. Ray AK, Gopal C, Solanki HG, Ravisankar T, Patil PK. Effect of orally administered vibrio bacterin on immunity, survival and growth in tiger shrimp (Penaeus monodon) grow-out culture ponds. Lett Appl Microbiol. 2017;65:475–81.

    Article  CAS  PubMed  Google Scholar 

  135. Vimal S, Majeed AS, Taju G, Nambi KSN, Raj NS, Madan N, Farook MA, Rajkumar T, Gopinath D, Sahul Hameed AS. Chitosan tripolyphosphate (CS/TPP) nanoparticles: preparation, characterization and application for gene delivery in shrimp. Acta Tropica. 2013;128(3):486–93.

    Article  CAS  PubMed  Google Scholar 

  136. Ufaz S, Balter A, Tzror C, Einbender S, Koshet O, Shainsky-Roitman J, Yaari Z, Schroeder A. Anti-viral RNAi nanoparticles protect shrimp against white spot disease. Mol Syst Des Eng 2018;1:38–48.

    Google Scholar 

  137. Lee YJ, Chen LL. WSSV envelope protein VP51B links structural protein complexes and may mediate virus infection. J Fish Dis. 2017;40(4):571–81.

    Article  CAS  PubMed  Google Scholar 

  138. Amarnath BC, Saravanan P, Otta SK. Determining the dosage and time of injection for WSSV VP28 double stranded RNA to Penaeus indicus in providing effective protection against WSSV. In: Jithendran KP, Saraswathy R, Balasubramanian CP, Kumaraguru Vasagam KP, Jayasankar V, Raghavan R, Alavandi SV, Vijayan KK, editors. BRAQCON 2019: World Brackishwater aquaculture conference. Journal of Coastal Research, Coconut Creek; 2019; Special Issue No. 86. p. 102–106. ISSN 0749-0208.

    Google Scholar 

  139. Flegel TW. Major viral diseases of the black tiger prawn (Penaeus monodon) in Thailand. World J Microbiol Biotechnol. 1997;13:433–42.

    Article  Google Scholar 

  140. Flegel TW, Pasarawapis T. Active viral accommodation: a new concept for crustacean response to viral pathogens. In: Flegel TW, editor. Advances in shrimp biotechnology. Bangkok: National Center for Genetic Engineering and Biotechnology; 1998.

    Google Scholar 

  141. Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 2007;3(3):e26. https://doi.org/10.1371/journal.ppat.0030026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Little TJ, O’Connor B, Colegrave N, Watt K, Read AF. Maternal transfer of strain-specific immunity in an invertebrate. Curr Biol. 2003;3:489–92.

    Article  Google Scholar 

  143. Rowley AF, Pope EC. Vaccines and crustacean aquaculture—a mechanistic exploration. Aquaculture. 2012;334:1–11.

    Article  CAS  Google Scholar 

  144. Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell. 2000;101:671–84.

    Article  CAS  PubMed  Google Scholar 

  145. Chou PH, Chang HS, Chen IT, Lin HY, Chen YM, Yang HL, Wang KHC. The putative invertebrate adaptive immune protein Litopenaeus vannamei Dscam (LvDscam) is the first reported Dscam to lack a transmembrane domain and cytoplasmic tail. Dev Comp Immunol. 2009;33:1258–67.

    Article  CAS  PubMed  Google Scholar 

  146. Chou PH, Chang HS, Chen IT, Lee CW, Hung HY, Wang KHC. Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported. Fish Shellfish Immunol. 2011;30:1109–23.

    Article  PubMed  Google Scholar 

  147. Dong Y, Taylor HE, Dimopoulos G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol. 2006;4:e229. https://doi.org/10.1371/journal.pbio.0040229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jin XK, Li WW, Wu MH, Guo XN, Li S, Yu AQ, Zhu YT, He L, Wang Q. Immunoglobulin superfamily protein Dscam exhibited molecular diversity by alternative splicing in hemocytes of crustacean, Eriocheir sinensis. Fish Shellfish Immunol. 2013;35:900–9.

    Article  CAS  PubMed  Google Scholar 

  149. Hung HY, Ng TH, Lin JH, Chiang YA, Chuang YC, Wang HC. Properties of Litopenaeus vannamei Dscam (LvDscam) isoforms related to specific pathogen recognition. Fish Shellfish Immunol. 2013;35:1272–81.

    Article  CAS  PubMed  Google Scholar 

  150. Chiang YA, Hung HY, Lee CW, Huang YT, Wang HC. Shrimp Dscam and its cytoplasmic tail splicing activator serine/arginine (SR)-rich protein B52 were both induced after white spot syndrome virus challenge. Fish Shellfish Immunol. 2013;34:209–19.

    Article  CAS  PubMed  Google Scholar 

  151. Johnson KN, van Hulten MCW, Barnes AC. “Vaccination” of shrimp against viral pathogens: phenomenology and underlying mechanisms. Vaccine. 2008;26:4885–92.

    Article  CAS  PubMed  Google Scholar 

  152. Kulkarni A, Rombout JHWM, Singh ISB, Sudheer NS, Vlak JM, Caipang CMA, Brinchmann MF, Kiron V. Truncated VP28 as oral vaccine candidate against WSSV infection in shrimp: an uptake and processing study in the midgut of Penaeus monodon. Fish Shellfish Immunol. 2013;34:159–66.

    Article  CAS  PubMed  Google Scholar 

  153. Kulkarni AD, Kiron V, Rombout JHWM, Brinchmann MF, Fernandes JMO, Sudheer NS, Singh ISB. Protein profiling in the gut of Penaeus monodon gavaged with oral WSSV-vaccines and live white spot syndrome virus. Proteomics. 2014;14(13–14):1660–73.

    Article  CAS  PubMed  Google Scholar 

  154. Chen LH, Lin SW, Liu KF, Chang CI, Hseu JR, Tsai JM. Comparative proteomic analysis of Litopenaeus vannamei gills after vaccination with two WSSV structural proteins. Fish Shellfish Immunol. 2016;49:306–14.

    Article  CAS  PubMed  Google Scholar 

  155. Kulkarni A, Sreedharan K, Deepika A, Shyam KU, Otta SK, Karunasagar I, Rajendran KV. Immune responses and immunoprotection in crustaceans with special reference to shrimp. Rev Aquac. 2020;13(1):431–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendran K. V. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

K., S., Kulkarni, A., K. V., R. (2022). Prospects of Vaccination in Crustaceans with Special Reference to Shrimp. In: M., M., K.V., R. (eds) Fish immune system and vaccines. Springer, Singapore. https://doi.org/10.1007/978-981-19-1268-9_9

Download citation

Publish with us

Policies and ethics