Skip to main content

Role of Range Grasses in Conservation and Restoration of Biodiversity

  • Chapter
  • First Online:
Agro-biodiversity and Agri-ecosystem Management

Abstract

Range grasses grow in diverse environmental conditions from extreme dry and hot conditions to cold and upland hilly areas. Range grasses have unique adaptability mechanism which makes suitable in diverse range. Because of wide availability, it is widely used in various forms by humans as well as animals as a source of food and feed. These grasses are major source of energy generated on earth and serve as multi-nutrient source. These range grasses play significant role in building economy as well as sustaining ecosystem. Due to excess degradation in the environment, huge imbalance has occurred in the ecosystem. The range grasses play an important role in conservation and restoration of biodiversity by phytoremediation, carbon sequestration, abiotic stress resistance, soil conservation, nutritional security for livestock with high fodder value, and medicinal and aromatic property. This chapter deals with various aspects of range grasses which show its importance in restoration for use in the coming future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agriculture and Food (2019). https://www.agric.wa.gov.au/pasture-management/setaria?

  • Ahmad B (2010) Effects of salinity on yield and component characters in canola (Brassica napus L.) cultivars. Not Sci Biol 2:81–83

    Article  Google Scholar 

  • Allan E, Van Ruijven J, Crawley MJ (2010) Foliar fungal pathogens and grassland biodiversity. Ecology 91:2572–2582. https://doi.org/10.1890/09-0859.1

    Article  PubMed  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot (Lond) 89:925–940

    Article  Google Scholar 

  • Bates ST, Berg-Lyons D, Caporaso JG et al (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5(5):908–917

    Article  CAS  PubMed  Google Scholar 

  • Benabderrahim MA, Elfalleh W (2021) Forage potential of non-native Guinea grass in north African agroecosystems: genetic, agronomic, and adaptive traits. Agronomy 11(6):1071

    Article  Google Scholar 

  • Beveridce RJ, Dekker RF, Richards GN, Tows M (1972) Identification of myo-isositol, galactikol, and rbffixose in spear grass (hetero pogoncontortus). Aust J Chem 25:677–678

    Article  Google Scholar 

  • Blair J, Nippert J, Briggs J (2014) Grassland ecology. In: Monson R (ed) Ecology and the environment. Springer, New York, pp 389–423

    Google Scholar 

  • Blake JD, Richards GN (1970) Polysaccharides of tropical pasture herbage-I, studies on the distribution of the major polysaccharide components of spear grass (hetero pogoncontortus) during growth. Aust J Chem 23:2353–2360

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and Environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Briske DD (ed) (2017) Rangeland systems, springer series on processes, management and Challenges. Springer, Cham

    Google Scholar 

  • Carbajal D, Casaco A, Arruzazabala L, Gonzalez R, Tolon Z (1989) Pharmacological study of Cymbopogon citratus leaves. J Ethnopharmacol 25:103–107

    Article  CAS  PubMed  Google Scholar 

  • Christenhusz MJ, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261(3):201–217

    Article  Google Scholar 

  • Conant RT, Cerri CEP, Osborne BB, Paustian K (2017) Grassland management impacts on soil carbon stocks: A new synthesis. Ecol Appl 27(2):662–668

    Article  PubMed  Google Scholar 

  • Cook B, Pengelly B, Brown S, Donnelly J, Eagle D, Franco A, Hanson J, Mullen B, Partridge I, Peters M, Schultze-Kraft R (2005) Tropical forages: an interactive selection tool. CSIRO, DPI & F (Qld), CIAT and ILRI., Brisbane. http://www.tropicalforages.info/

    Google Scholar 

  • De Stefano A, Jacobson MG (2018) Soil carbon sequestration in agroforestry systems: A meta-analysis. Agrofor Syst 92(2):285–299. https://doi.org/10.1007/s10457-017-0147-9

    Article  Google Scholar 

  • Decaëns T, Jiménez JJ, Gioia C et al (2006) The values of soil animals for conservation biology. Eur J Soil Biol 42:S23–S38

    Article  Google Scholar 

  • Dengler J, Janisová M, Török P, Wellstein C (2014) Biodiversity of Palaearctic grasslands: a synthesis. Agric Ecosyst Environ 182:1–14. https://doi.org/10.1016/j.agee.2013.12.015

    Article  Google Scholar 

  • Duke JA (1983) Handbook of energy crops. Purdue University, Center for New Crops & Plants Products

    Google Scholar 

  • Duke JA, Wain KK (1981) Medicinal plants of the world. Computer index with more than 85,000 entries, 3rd edn. Longman Group Ltd., London

    Google Scholar 

  • Freibauer A, Rounsevell MDA, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122(1):1–23. https://doi.org/10.1016/j.geoderma.2004.01.021

    Article  CAS  Google Scholar 

  • Gebashe F, Aremu A, Finnie J, Van Staden J (2019) Grasses in south African traditional medicine: A review of their biological activities and phytochemical content. S Afr J Bot 122:301–329

    Article  CAS  Google Scholar 

  • Ghosh PK, Mahanta SK (2014) Carbon sequestration in grassland systems. Range Managand Agrof 35(2):173–181

    Google Scholar 

  • Goergen E, Daehler CC (2001) Reproductive ecology of a native Hawaiian grass (Heteropogoncontortus; Poaceae) versus its invasive alien competitor (Pennisetum setaceum; Poaceae). Int J Plant Sci 162(2):317–326

    Article  Google Scholar 

  • Grass Phylogeny Working Group II (2012) New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol 193:304–312

    Article  Google Scholar 

  • Gray JM, Bishop TFA (2016) Change in soil organic carbon stocks under 12 climate change projections over New South Wales. Australia Soil Sci Soc America J 80(5):1296–1307

    Article  CAS  Google Scholar 

  • Haile SG, Nair PKR, Nair VD (2008) Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Env Qual 37(5):1789–1797. https://doi.org/10.2134/jeq2007.0509

    Article  CAS  Google Scholar 

  • Halli HM, Rathore SS, Manjunatha N, Wasnik VK (2018) Advances in agronomic Management for Ensuring Fodder Security in semi arid zones of India- A Review. Int J Curr Micro App Sci 7(2):1912–1921

    Article  CAS  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of diversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Hema R, Kumaravel S, Gomathi S, Sivasubramaniam C (2010) Gas chromatography-mass spectroscopic analysis of Lawsonia inermis leaves. New York Sci J 3:141–143

    Google Scholar 

  • Hofmann DJ, Butler JH, Tans PP (2009) A new look at atmospheric carbon dioxide. Atmos Environ 43:2084–2086

    Article  CAS  Google Scholar 

  • Ishii Y, Kotomi H, Dong-Jin K, Sachiko I, Aya N (2015) Cadmium phytoremediation potential of napier grass cultivated in Kyushu. Japan App Environ Soil Sci 1:1–6

    Google Scholar 

  • Kähkönen MP, Hopia AI, Vuorela HJ, Rauha J-P, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  PubMed  CAS  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos Trans R Soc B Biol Sci 363:685–701

    Article  CAS  Google Scholar 

  • Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Eco Manag 246(2):208–221. https://doi.org/10.1016/j.foreco.2007.03.072

    Article  Google Scholar 

  • Kosmala A, Bocian A, Rapacz M, Jurczyk B, Zwierzykowski Z (2009) Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct level of frost tolerance. J Exp Bot 60:3595–3609

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Seth R, Natarajan S, Dwivedi GK, Shivay YS (2008) Seed yield response of marvel grass (Dichanthium annulatum) to cutting management and nitrogen fertilization in Central India. Agron Res 6:499–509

    Google Scholar 

  • Kumar S, Agarwal R, Dixit K, Roy AK, Rai SK (2012) Forage crops and their management. In: Technology Bulletin. Indian Grassland and Fodder Research Institute Jhansi, Jhansi, p 22

    Google Scholar 

  • Lal R (2018) Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob Chang Biol 24(8):3285–3301. https://doi.org/10.1111/gcb.14054

    Article  PubMed  Google Scholar 

  • Lal R, Smith P, Jungkunst HF, Mitsch WJ, Lehmann J, Nair PKR, McBratney AB, de Moraes Sá JC, Schneider J, Zinn YL, Skorupa ALA, Zhang H-L, Minasny B, Srinivasrao C, Ravindranath NH (2018) The carbon sequestration potential of terrestrial ecosystems. J Soil and Water Cons 73(6):145A–152A. https://doi.org/10.2489/jswc.73.6.145A

    Article  Google Scholar 

  • Lambert D (2006) The field guide to geology. Infobase archived from the original on 2018-01-10. ISBN 9781438130057

    Google Scholar 

  • Linder HP, Lehmann CER, Archibald S, Osborne CP, Richardson DM (2018) Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol Rev 93:1125–1144

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Osborne CP (2015) Water relations traits of C4 grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability. J Exp Bot 66:761–777

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Liu L, Xu X, Zhao Y, Niu J, Zhang Q (2021) Carbon footprint and carbon emission intensity of grassland wind farms in Inner Mongolia. J Cleaner Production 313:127878. https://doi.org/10.1016/j.jclepro.2021.127878

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R (2018) Carbon sequestration in grassland soils. In: Lorenz K, Lal R (eds) Carbon sequestration in agricultural ecosystems. Springer International Publishing, Cham, pp 175–209. https://doi.org/10.1007/978-3-319-92318-5_4

    Chapter  Google Scholar 

  • Lynch JM (1987) Microbial interactions in the rhizosphere. Soil Microorg 30:33–41

    Google Scholar 

  • Manzoor J, Sharma M, Wani KA (2018) Heavy metals in vegetables and their impact on the nutrient quality of vegetables: A review.J. Plant Nutr 41:1744–1763

    Article  CAS  Google Scholar 

  • Marks RA, Farrant JM, Nicholas MLD, VanBuren R (2021) Unexplored dimensions of variability in vegetative desiccation tolerance. Am J Bot 108:346–358

    Article  PubMed  Google Scholar 

  • Martin JP, Focht DD (1977) Biological properties of soils. Soils for management of organic wastes and waste waters:113–169

    Google Scholar 

  • Mian MA, Zhang Y, Wang ZY, Zhang JY, Cheng X, Chen L, Chekhovskiy K, Dai X, Mao C, Cheung F, Zhao X, He J, Scott AD, Town CD, May GD (2008) Analysis of tall fescue ESTs representing different abiotic stresses, tissue types and developmental stages. BMC Plant Biol 4:8–27

    Google Scholar 

  • Murphy P, Jacob C, Alyssa K, Merrill SZ, David G, Beverly B, Roote C, Das P (2020) Phytoremediation potential of switchgrass (Panicum virgatum), two United States native varieties, to remove bisphenol-A (BPA) from aqueous media. Sci Rep 10(1):1–10

    CAS  Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172(1):10–23. https://doi.org/10.1002/jpln.200800030

    Article  CAS  Google Scholar 

  • Nisar MF, Farrukh J, Muhammad W, Sajil I, Yasmin T, Syed MH, Julia LZ (2014) Ethno-medicinal uses of plants from district Bahawalpur, Pakistan. Curr Res J Biol Sci 6(5):183–190

    Article  Google Scholar 

  • Nunes TDG, Zhang D, Raissig MT (2020) Form, development and function of grass stomata. Plant J 101:780–799

    Article  CAS  PubMed  Google Scholar 

  • Osborne CP, Salomaa A, Kluyver TA, Visser V, Kellogg EA, Morrone O, Vorontsova MS, Clayton WD, Simpson DA (2014) A global database of C4 photosynthesis in grasses. New Phytol 204:441–446

    Article  CAS  PubMed  Google Scholar 

  • Palombo EA (2006) Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: modes of action and effects on intestinal function. Phytother Res 20:717–724

    Article  CAS  PubMed  Google Scholar 

  • Panta S, Flowers T, Lane P, Doyle R, Haros G, Shabala S (2014) Halophyte agriculture: success stories. Environ Exp Bot 107:71–83

    Article  Google Scholar 

  • Phusantisampan T, Weeradej M, Patompong S, John P, Rattanawat C (2016) Phytostabilization potential of two ecotypes of Vetiveria zizanioides in cadmium-contaminated soils: greenhouse and field experiments. Environ Sci Pollut Res 23(19):20027–20038

    Article  CAS  Google Scholar 

  • Prasad V, Strömberg CAE, Leaché AD, Samant B, Patnaik R, Tang L, Sahni A (2011) Late cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae. Nat comm 2(1):1–9

    Article  CAS  Google Scholar 

  • Quattrocchi U (2006) CRC world dictionary of grasses: common names, scientific names, eponyms, synonyms, and etymology. CRC Press, Taylor and Francis Group, Boca Raton

    Book  Google Scholar 

  • Ribeiro S, Fernandes JP, Espírito-Santo MD (2014) Diversity and floristic patterns of mediterranean grasslands: the relative influence of environmental and land management factors. Biodivers Conserv 23(12):2903–2921. https://doi.org/10.1007/s10531-014-0754-y

    Article  Google Scholar 

  • Rockström J, Williams J, Daily G, Noble A, Matthews N, Gordon L, Wetterstrand H, DeClerck F, Shah M, Steduto P et al (2017) Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46:4–17

    Article  PubMed  Google Scholar 

  • Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS, Gignoux J, Higgins SI, Le Roux X, Ludwig F et al (2005) Determinants of woody cover in African savannas. Nature 438:846–849

    Article  CAS  PubMed  Google Scholar 

  • Santin M, Dos Santos A, Nakamura C, Filho B, Ferreira I, Ueda-Nakamura T (2009) In vitro activity of the essential oil Cympobogon citratus and its major component (citral) on Leishmania amazonensis. Parasitol Res 105(6):1489–1496. https://doi.org/10.1007/s00436-009-1578-7

    Article  PubMed  Google Scholar 

  • Scheffer M, Hirota M, Holmgren M, Van Nes EH, Chapin FS III (2012) Thresholds for boreal biome transitions. Proc Natl Acad Sci U S A 109:21384–21389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert M, Grønvold L, Sandve SR, Hvidsten TR, Fjellheim S (2019) Evolution of cold acclimation and its role in niche transition in the temperate grass subfamily Pooideae. Plant Physiol 180:404–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shantz HL (1954) The place of grasslands in the Earth's cover. Ecology 35(2):143–145

    Article  Google Scholar 

  • Sharma R, Rajora MP, Dadheech R, Bhatt RK, Kalia RK (2016) Genetic diversity in sewan grass (Lasiurus sindicus Henr.) in the hot arid ecosystem of thar desert of Rajasthan, India. J Env Bio 38(3):419

    Article  Google Scholar 

  • Singh B, Gill RIS (2014) Carbon sequestration and nutrient removal by some tree species in an agrisilviculture system in Punjab, India. Range Manag and Agrof 35(1):107–114

    Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8(11):779–790

    Article  CAS  PubMed  Google Scholar 

  • Stepp JR, Moerman DE (2001) The importance of weeds in ethnopharmacology. J Ethnopharmacol 75:19–23

    Article  CAS  PubMed  Google Scholar 

  • Sylwia G, Korzeniowska J (2016) Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium. Environ Prot Nat Resour 27(1):8–14

    Google Scholar 

  • Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014) Climate variability and vulnerability to climate change: A review. GlobChang Biol 20:3313–3328

    Google Scholar 

  • Thornton PK, Gerber PJ (2010) Climate change and the growth of the livestock sector in developing countries. Mitig Adapt Strategies Global Change 15:169–184

    Article  Google Scholar 

  • Tomar RS, Vinod SMS, Tomar KB, Naik SV, Saiprasad NK, Singh and S. Chand. (2012) Development of mapping populations for drought tolerance in wheat. Indian J Genet 72(2):195–207

    CAS  Google Scholar 

  • Trivedi BK (2002) Grasses and legumes for tropical pastures. Indian Grassland and Fodder Research Institute, Jhansi, pp 1–35

    Google Scholar 

  • Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature 528(7580):69–76

    Article  CAS  PubMed  Google Scholar 

  • Xiong D, Shi P, Zhang X, Zou CB (2016) Effects of grazing exclusion on carbon sequestration and plant diversity in grasslands of China-A meta-analysis. Ecol Eng 94:647–655. https://doi.org/10.1016/j.ecoleng.2016.06.124

    Article  Google Scholar 

  • Yang Y, Tilman D, Furey G, Lehman C (2019) Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nature Com 10(1):718. https://doi.org/10.1038/s41467-019-08636-w

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P. et al. (2022). Role of Range Grasses in Conservation and Restoration of Biodiversity. In: Kumar, P., Tomar, R.S., Bhat, J.A., Dobriyal, M., Rani, M. (eds) Agro-biodiversity and Agri-ecosystem Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-0928-3_4

Download citation

Publish with us

Policies and ethics