Skip to main content

Importance of Asclepias Syriaca (Milkweed) Fibers in Sustainable Fashion and Textile Industry and Its Potential End-Uses

  • Chapter
  • First Online:
Sustainable Approaches in Textiles and Fashion

Abstract

As a result of the increasing world population, rapidly changing consumption habits and fashion trends, the textile and fashion industry has become one of the industries with the highest annual global environmental burden. It is of great significance to overcome the possible negative effects of textile production on the environment and to contribute to the sustainable fashion and textile industry by ensuring the responsible production of textile products. For this reason, the selection and use of sustainable, renewable, and biodegradable textile materials for each product produced in the textile industry can be seen as the first step toward sustainable production. Milkweed (Asclepias syriaca) fibers constitute an important raw material potential in every field of textile as daily textile products, composite textiles, and technical and functional textiles in terms of the properties they exhibit at this point. In this chapter, it was aimed to examine in detail the topics such as the place, importance, and application areas of milkweed fibers in sustainable fashion and textile production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fletcher K (2013) Sustainable fashion and textiles: design journeys. Routledge, New York

    Book  Google Scholar 

  2. Muthu SS, Li Y, Hu JY, Mok PY (2012) Quantification of environmental impact and ecological sustainability for textile fibres. Ecol Ind 13(1):66–74

    Article  CAS  Google Scholar 

  3. Fattahi FS, Khoddami A, Avinc O (2020) Sustainable, renewable, and biodegradable poly (lactic acid) fibers and their latest developments in the last decade. Sustain Text Apparel Ind, 173

    Google Scholar 

  4. Avinc O, Kalayci E, Yildirim FF, Yavas A (2015) Biologically ınspired some textile protein fibers. In: International conference on life science and biological engineering, Tokyo, Japan

    Google Scholar 

  5. Yıldırım F, Avinç O, Yavaş A (2014) Soya Fasülyesi Protein Lifleri Bölüm 2: Soya Liflerinin Özelliklerinin Ve Kullanım Alanları. Uludağ Univ J Facul Eng 20(1):1–21

    Google Scholar 

  6. Kalaycı E, Avinç O, Yavaş A (2019) Usage of horse hair as a textile fiber and evaluation of color properties. Ann Univ Oradea Fascicle Text Leatherwork 2019(1):57–62

    Google Scholar 

  7. Kalaycı CB, Gündoğan M, Kalaycı E, Avinç O (2019) Color strength estimation Oyif Coir fibers bleached with peracetic acid. Ann Univ Oradea Fascicle Text Leatherwork 2019(2):65–70

    Google Scholar 

  8. Hasani H, Avinc O, Khoddami A (2017) Effects of different production processing stages on mechanical and surface characteristics of polylactic acid and PET fibre fabrics. Indian J Fibre Text Res (IJFTR) 42(1):31–37

    CAS  Google Scholar 

  9. Avinc O, Eren HA, Uysal P (2012) Ozone applications for after-clearing of disperse-dyed poly (lactic acid) fibres. Color Technol 128(6):479–487

    Article  CAS  Google Scholar 

  10. Hasani H, Avinc O, Khoddami A (2013) Comparison of softened polylactic acid and polyethylene terephthalate fabrics using KES-FB. Fibres Text Eastern Euro 3(99):81–88

    Google Scholar 

  11. Avinc O, Eren HA, Uysal P, Wilding M (2012) The effects of ozone treatment on soybean fibers. Ozone Sci Eng 34(3):143–150

    Google Scholar 

  12. Avinc O, Day R, Carr C, Wilding M (2012) Effect of combined flame retardant, liquid repellent and softener finishes on poly (lactic acid)(PLA) fabric performance. Text Res J 82(10):975–984

    Article  CAS  Google Scholar 

  13. Avinc O, Bone J, Owens H, Phillips D, Wilding M (2006) Preferred alkaline reduction-clearing conditions for use with dyed Ingeo poly (lactic acid) fibres. Color Technol 122(3):157–161

    Article  CAS  Google Scholar 

  14. Avinc O, Phillips D, Wilding M (2009) Influence of different finishing conditions on the wet fastness of selected disperse dyes on polylactic acid fabrics. Color Technol 125(5):288–295

    Article  CAS  Google Scholar 

  15. Avinc O, Khoddami A (2010) Overview of poly (lactic acid)(PLA) fibre. Fibre Chem 42(1):68–78

    Article  CAS  Google Scholar 

  16. Avinc O (2011) Clearing of dyed poly (lactic acid) fabrics under acidic and alkaline conditions. Text Res J 81(10):1049–1074

    Article  CAS  Google Scholar 

  17. Avinc O (2011) Maximizing the wash fastness of dyed poly (lactic acid) fabrics by adjusting the amount of air during conventional reduction clearing. Text Res J 81(11):1158–1170

    Article  CAS  Google Scholar 

  18. Avinc O, Khoddami A, Hasani H (2011) A mathematical model to compare the handle of PLA and PET knitted fabrics after different finishing steps. Fibers Polym 12(3):405

    Article  CAS  Google Scholar 

  19. Khoddami A, Avinc O, Ghahremanzadeh F (2011) Improvement in poly (lactic acid) fabric performance via hydrophilic coating. Prog Org Coat 72(3):299–304

    Article  CAS  Google Scholar 

  20. Avinc O, Owens H, Bone J, Wilding M, Phillips D, Farrington D (2011) A colorimetric quantification of softened polylactic acid and polyester filament knitted fabrics to ‘Water-spotting.’ Fibers Polym 12(7):893

    Article  CAS  Google Scholar 

  21. Fattahi F, Khodami A, Avinc O (2020) Nano-structure roughening on poly (Lactic Acid) PLA substrates: scanning electron microscopy (SEM) surface morphology characterization. J Nanostruct 10(2):206–216

    CAS  Google Scholar 

  22. Avinc O, Yavas A (2017) Soybean: for textile applications and its printing. In: Soybean—The basis of yield, biomass and productivity

    Google Scholar 

  23. Palamutcu S, Soydan AS, Avinc O, Günaydin GK, Yavas A, Kıvılcım MN, Demirtaş M (2019) Physical properties of different Turkish organic cotton fiber types depending on the cultivation area. Organic cotton. Springer, pp 25–39

    Chapter  Google Scholar 

  24. Gedik G, Avinc O (2018) Bleaching of hemp (Cannabis sativa L.) fibers with peracetic acid for textiles industry purposes. Fibers Polym 19(1):82–93

    Google Scholar 

  25. Arık B, Avinc O, Yavas A (2018) Crease resistance improvement of hemp biofiber fabric via sol–gel and crosslinking methods. Cellulose 25(8):4841–4858

    Article  CAS  Google Scholar 

  26. Günaydin GK, Avinc O, Palamutcu S, Yavas A, Soydan AS (2019) Naturally colored organic cotton and naturally colored cotton fiber production. Organic cotton. Springer, pp 81–99

    Chapter  Google Scholar 

  27. Soydan AS, Yavas A, Günaydin GK, Palamutcu S, Avinc O, Kıvılcım MN, Demirtaş M (2019) Colorimetric and hydrophilicity properties of white and naturally colored organic cotton fibers before and after pretreatment processes. Organic Cotton. Springer, pp 1–23

    Google Scholar 

  28. Unal F, Avinc O, Yavas A (2020) Sustainable textile designs made from renewable biodegradable sustainable natural abaca fibers. Sustainability in the textile and apparel industries. Springer, Cham, pp 1–30

    Google Scholar 

  29. Unal F, Yavas A, Avinc O (2020) Contributions to sustainable textile design with natural raffia palm fibers. Sustainability in the textile and apparel ındustries, pp 67–86

    Google Scholar 

  30. Gedik G, Avinc O (2020) Hemp fiber as a sustainable raw material source for textile industry: can we use its potential for more eco-friendly production? In: Sustainability in the textile and apparel ındustries, pp 87–109

    Google Scholar 

  31. Gedik G, Avinç O, Yavaş A (2010) Kenevir lifinin özellikleri ve tekstil endüstrisinde kullanımıyla sağladığı avantajlar. Tekstil Teknolojileri Elektronik Dergisi 4(3):39–48

    Google Scholar 

  32. Kalaycı E, Avinc O, Yavaş A (2019) The effects of different alkali treatments with different temperatures on the colorimetric properties of lignocellulosic raffia fibers. Int J Adv Sci Eng Technol 7(1):15–19

    Google Scholar 

  33. Maia LC, Alves AC, Leão CP (2012) Sustainable work environment with lean production in textile and garment ındustry. In: Proceedings of ınternational conference on ındustrial engineering and operations management (ICIEOM2012)

    Google Scholar 

  34. Kalayci E, Avinc O, Yavas A, Coskun S (2019) Responsible textile design and manufacturing: environmentally conscious material selection. In: Alqahtani AY et al (eds) Responsible manufacturing: ıssues pertaining to sustainability. Taylor & Francis

    Google Scholar 

  35. Kumartasli S, Avinc O (2020) Important step in sustainability: polyethylene terephthalate recycling and the recent developments. In: Sustainability in the textile and apparel ındustries, p 1

    Google Scholar 

  36. Kumartasli S, Avinc O (2020) Recycling of marine litter and ocean plastics: a vital sustainable solution for ıncreasing ecology and health problem. In: Sustainability in the textile and apparel ındustries, p 117

    Google Scholar 

  37. Kumartasli S, Avinc O (2021) Recycled thermoplastics: textile fiber production, scientific and recent commercial developments. Recent developments in plastic recycling. Springer, pp 169–192

    Chapter  Google Scholar 

  38. Eren HA, Yiğit I, Eren S, Avinc O (2020) Sustainable textile processing with zero water utilization using super critical carbon dioxide technology. In: Sustainability in the textile and apparel ındustries, p 179

    Google Scholar 

  39. Eren S, Avinc O, Saka Z, Eren HA (2018) Waterless bleaching of knitted cotton fabric using supercritical carbon dioxide fluid technology. Cellulose 25(10):6247–6267

    Article  CAS  Google Scholar 

  40. Odabaşoğlu HY, Avinç OO, Yavaş A (2013) Susuz Boyama. Tekstil ve Mühendis 20(90):62–79

    Article  Google Scholar 

  41. Yıldırım FF, Yavas A, Avinc O (2020) Bacteria working to create sustainable textile materials and textile colorants leading to sustainable textile design. Sustainability in the textile and apparel industries. Springer, Cham, pp 109–126

    Chapter  Google Scholar 

  42. Eren HA, Yiğit I, Eren S, Avinc O (2020) Ozone: an alternative oxidant for textile applications. In: Sustainability in the textile and apparel ındustries, p 81

    Google Scholar 

  43. Avinc O, Celik A, Gedik G, Yavas A (2013) Natural dye extraction from waste barks of Turkish red pine (Pinus brutia Ten.) timber and eco-friendly natural dyeing of various textile fibers. Fibers Polym 14(5):866–873

    Google Scholar 

  44. Gedik G, Yavaş A, Avinç OO, Şimşek Ö (2013) Cationized natural dyeing of cotton fabrics with corn poppy (Papaver rhoeas) and investigation of antibacterial activity

    Google Scholar 

  45. Eren HA, Avinc O, Uysal P, Wilding M (2011) The effects of ozone treatment on polylactic acid (PLA) fibres. Text Res J 81(11):1091–1099

    Article  CAS  Google Scholar 

  46. YavaÅŸ A, Avinc O, Gedik G (2017) Ultrasound and microwave aided natural dyeing of nettle biofibre (Urtica dioica L.) with madder (Rubia tinctorum L.). Fibres Text Eastern Euro

    Google Scholar 

  47. Yıldırım FF, Avinc O, Yavas A, Sevgisunar G (2020) Sustainable antifungal and antibacterial textiles using natural resources. Sustainability in the textile and apparel industries. Springer, Cham, pp 111–179

    Chapter  Google Scholar 

  48. Yıldırım FF, Yavas A, Avinc O (2020) Printing with sustainable natural dyes and pigments. In: Sustainability in the textile and apparel industries–production process sustainability, pp 1–35

    Google Scholar 

  49. Avinc O, EriÅŸmiÅŸ B, Eren HA, Eren S (2016) Treatment of cotton with a laccase enzyme and ultrasound. De Redactie, p 55

    Google Scholar 

  50. Gedik G, Avinc O, Yavas A, Khoddami A (2014) A novel eco-friendly colorant and dyeing method for poly (ethylene terephthalate) substrate. Fibers Polym 15(2):261–272

    Article  CAS  Google Scholar 

  51. Yildirim F, Sevgisunar H, Yavaş A, Avinç O, Çelik A (2014) UV Korumada Ekolojik Çözümler. Tekstil ve Mühendis 21(96):36–51

    Google Scholar 

  52. Gedik G, Avinc O, Yavaş A (2011) Bromus Tectorum Bitkisinin Tekstilde Doğal Boyarmadde Kaynağı Olarak Kullanımı. Tekstil Teknolojileri Elektronik Dergisi 5(1):40–47

    Google Scholar 

  53. Karakan Günaydin G, Palamutcu S, Soydan AS, Yavas A, Avinc O, Demirtaş M (2020) Evaluation of fiber, yarn, and woven fabric properties of naturally colored and white Turkish organic cotton. J Text Inst 111(10):1436–1453

    Google Scholar 

  54. Arık B, Yavaş A, Avinc O (2017) Antibacterial and wrinkle resistance improvement of nettle biofibre using Chitosan and BTCA. Fibres Text Eastern Euro

    Google Scholar 

  55. Unal F, Avinc O, Yavas A, Eren HA, Eren S (2020) Contribution of UV technology to sustainable textile production and design. Sustainability in the textile and apparel industries. Springer, Cham, pp 163–187

    Chapter  Google Scholar 

  56. Unal F, Yavas A, Avinc O (2020) Sustainability in textile design with laser technology. Sustainability in the textile and apparel industries. Springer, Cham, pp 263–287

    Chapter  Google Scholar 

  57. Rahmatinejad J, Khoddami A, Mazrouei-Sebdani Z, Avinc O (2016) Polyester hydrophobicity enhancement via UV-Ozone irradiation, chemical pre-treatment and fluorocarbon finishing combination. Prog Org Coat 101:51–58

    Article  CAS  Google Scholar 

  58. Rahmatinejad J, Khoddami A, Avinc O (2015) Innovative hybrid fluorocarbon coating on UV/ozone surface modified wool substrate. Fibers Polym 16(11):2416–2425

    Article  CAS  Google Scholar 

  59. Davulcu A, Eren HA, Avinc O, Erişmiş B (2014) Ultrasound assisted biobleaching of cotton. Cellulose 21(4):2973–2981

    Article  CAS  Google Scholar 

  60. Eren HA, Avinc O, Erişmiş B, Eren S (2014) Ultrasound-assisted ozone bleaching of cotton. Cellulose 21(6):4643–4658

    Article  CAS  Google Scholar 

  61. Tungtriratanakul S, Setthayanond J, Avinç OO, Suwanruji P, Sae-Bae P (2016) Investigation of UV protection, self-cleaning and dyeing properties of nano TiO2-treated poly (lactic acid) fabric

    Google Scholar 

  62. Kurban M, Yavas A, Avinc O, EREN HA (2016) Nettle biofibre bleaching with ozonation. DE REDACTIE, p 45

    Google Scholar 

  63. Waite M (2009) Sustainable Textiles: the role of bamboo and a comparion of bamboo textile properties-part 1. J Text Apparel Technol Manage 6(2)

    Google Scholar 

  64. Shangnan Shui AP (2013) World apparel fibre consumption survey. International Cotton Advisory Committee, Washington

    Google Scholar 

  65. Sharma A (2013) Eco-friendly textiles: a boost to sustainability. Asian J Home Sci 8(2):768–771

    Google Scholar 

  66. Petry F (2008) Environmental protection and sustainability in the textile industry. Text Finish 7–8:86–88

    Google Scholar 

  67. Hayes LL (2001) Synthetic textile innovations: polyester fiber-to-fiber recycling for the advancement of sustainability. AATCC Rev 11(4):37–41

    Google Scholar 

  68. Karthik T, Murugan R (2013) Milkweed fibers-properties and potential applications. Melliand China 7:012

    Google Scholar 

  69. Kalaycı E, Avinç OO, Bozkurt A, Yavaş A (2016) Tarımsal atıklardan elde edilen sürdürülebilir tekstil lifleri: Ananas yaprağı lifleri. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20(2):203–221

    Article  Google Scholar 

  70. Kozlowski R, Wladyka–Przybylak M (2001) Natural polymers, wood and lignocellulosic materials. In: Horrocks AR, Price D (eds) Fire retardant materials. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  71. Satyanarayana K, Guimarães J, Wypych F (2007)Studies on lignocellulosic fibers of Brazil. Part I: source, production, morphology, properties and applications. Compos Part A Appl Sci Manuf 38(7):1694–1709

    Google Scholar 

  72. Konak S (2014) Bamya bitkisinden suda çürütme yöntem ile lif elde edilmesi ve elde edilen lifin çeşitli fiziksel kimyasal ve mekanik özelliklerinin ölçümü, in Tekstil Mühendisliği Bölümü. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü: Denizli, Türkiye.

    Google Scholar 

  73. Ashori A, Bahreini Z (2009) Evaluation of Calotropis gigantea as a promising raw material for fiber-reinforced composite. J Compos Mater 43(11):1297–1304

    Article  CAS  Google Scholar 

  74. Karthik T, Murugan R (2013) Characterization and analysis of ligno-cellulosic seed fiber from Pergularia daemia plant for textile applications. Fibers Polym 14(3):465–472

    Article  CAS  Google Scholar 

  75. Wikipedia, t.f.e. Asclepias. 2018 [cited 2018 October]; Available from: https://en.wikipedia.org/wiki/Asclepias

  76. Witt MD, Nelson LA (1992) Milkweed as a new cultivated row crop. J Prod Agric 5(1):167–171

    Article  Google Scholar 

  77. Hartzler RG, Buhler DD (2000) Occurrence of common milkweed (Asclepias syriaca) in cropland and adjacent areas. Crop Prot 19(5):363–366

    Article  Google Scholar 

  78. Yeargan KV, Allard CM (2005) Comparison of common milkweed and honeyvine milkweed (Asclepiadaceae) as host plants for monarch larvae (Lepidoptera: Nymphalidae). J Kansas Entomol Soc 78(3):247–251

    Article  Google Scholar 

  79. Hassanzadeh S, Hasani H (2017) A review on milkweed fiber properties as a high-potential raw material in textile applications. J Ind Text 46(6):1412–1436

    Article  CAS  Google Scholar 

  80. Kalayci E, Yildirim FF, Avinc OO, Yavas A (2015) Textile fibers used in products floating on the water. Textile science and economy VII. Zrenjanin, Serbia, pp 85–90

    Google Scholar 

  81. Von Bargen K, Jones D, Zeller R, Knudsen P (1994) Equipment for milkweed floss-fiber recovery. Ind Crops Prod 2(3):201–210

    Article  Google Scholar 

  82. Louis GL, Andrews BK (1987) Cotton/milkweed blends: a novel textile product. Text Res J 57(6):339–345

    Article  CAS  Google Scholar 

  83. Varshney A, Bhoi K (1987) Some possible industrial properties of Calotropis procera (Aak) floss fibre. Biological wastes

    Google Scholar 

  84. Turkoglu KB, Kalayci E, Avinc O, Yavas A (2019) Oleofilik Buoyans Özellikli Kapok Lifleri ve Yenilikçi Yaklaşımlar. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7(1):61–89

    Article  Google Scholar 

  85. Martin AC, Zim HS, Nelson AL (1961) American wildlife & plants: a guide to wildlife food habits: the use of trees, shrubs, weeds, and herbs by birds and mammals of the United States. 1961: Courier Corporation.

    Google Scholar 

  86. Muenscher WC (1939) Poisonous plants of the United States. Poisonous plants of the United States

    Google Scholar 

  87. Bahreini Z, Kiumarsi A (2008) A comparative study on the dyeability of stabraq (milkweed) fibers with reactive dyes. Prog Color Color Coat 1(1):19–26

    Google Scholar 

  88. Prasad P (2006) Physio-chemical properties of a nonconventional fiber: aak (calotropis procera). J Text Assoc 67(2):63–66

    CAS  Google Scholar 

  89. Gaertner EE (1979) The history and use of milkweed (Asclepias syriaca L.). Econ Botany 33(2):119–123

    Google Scholar 

  90. Parrotta JA (2001) Healing plants of peninsular India. CABI publishing

    Google Scholar 

  91. Karthik T, Murugan R (2016) Milkweed—a potential sustainable natural fibre crop. Sustainable fibres for fashion industry. Springer, pp 111–146

    Chapter  Google Scholar 

  92. Ulbricht H (1940) Die bastfasern von asclepias syriaca L. Forscbung 14(4):232–237

    Google Scholar 

  93. Berkman B (1949) Milkweed—a war strategic material and a potential industrial crop for sub-marginal lands in the United States. Econ Bot 3(3):223–239

    Article  CAS  Google Scholar 

  94. Witt MD, Knudsen HD (1993) Milkweed cultivation for floss production. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 428–431

    Google Scholar 

  95. Knudsen HD, Zeller RD (1993) The milkweed business. In: Janick J, Simon JE (eds) New crops. New York, Wiley

    Google Scholar 

  96. Nehring J (2014) The potential of Milkweed Floss as a natural fiber in the textile industry. J Undergraduate Res, 63–68

    Google Scholar 

  97. Moore RJ (1946) Investigations on rubber-bearing plants: IV. Cytogenetic studies in asclepias (Tourn.) L. Can J Res 24(3): 66–73

    Google Scholar 

  98. Stevens O (1945) Asclepias syriaca and A. speciosa, distribution and mass collections in North Dakota. Am Midland Nat, 368–374

    Google Scholar 

  99. Adams RP, Balandrin MF, Martineau JR (1984) The showy milkweed, Asclepias speciosa: a potential new semi-arid land crop for energy and chemicals. Biomass 4(2):81–104

    Article  CAS  Google Scholar 

  100. Borders B, Lee-Mäder E (2014) Milkweeds: a conservation practitioner’s guide. Portland, OR: xerces society for ınvertebrate conservation. Proc R Soc B 282(20141734):9

    Google Scholar 

  101. Phippen WB (2007) Production variables affecting follicle and biomass development in common milkweed. In: Janick J, Whipkey A (eds) Issues in new crops and new uses. ASHS Press Alexandria Virginia USA, pp 82–88

    Google Scholar 

  102. Roşu A, Danaila-Guidea S, Dobrinoiu R, Toma F, Roşu DT, Sava N, Manolache C (2011) Asclepias syriaca L.–an underexploited industrial crop for energy and chemical feedstock. Rom Biotechnol Lett 16(6)

    Google Scholar 

  103. Beckett RE, Stitt RS (1935) The desert milkweed (Asclepias subulata) as a possible source of rubber. United States Department of Agriculture, Economic Research Service

    Google Scholar 

  104. Cox Crews P, Rich W (1995) Influence of milkweed fiber length on textile product performance. Cloth Text Res J 13(4):213–219

    Google Scholar 

  105. Flynn P, Vidaver AK (1995) Xanthomonas campestris pv. asclepiadis, pv. nov., causative agent of bacterial blight of milkweed (Asclepias spp.). Plant disease (USA)

    Google Scholar 

  106. Luna T, Dumroese RK (2013) Monarchs (Danaus plexippus) and milkweeds (Asclepias species) the current situation and methods for propagating milkweeds. Native Plants J 14(1):5–16

    Article  Google Scholar 

  107. USDA (2018) Common Milkweed Asclepias syriaca L. 2003 [cited 2018 October]; Available from: https://plants.usda.gov/plantguide/pdf/cs_assy.pdf

  108. Crews PC, Sievert SA, Woeppel LT, McCullough EA (1991) Evaluation of milkweed floss as an insulative fill material. Text Res J 61(4):203–210

    Article  CAS  Google Scholar 

  109. Woodson RE (1954) The North American species of Asclepias L. Ann Mo Bot Gard 41(1):1–211

    Article  Google Scholar 

  110. CHEM J (1944) Milkweed helps solve fiber problem. J Chem Educ 21(2):54

    Google Scholar 

  111. Evetts L, Burnside O (1974) Root distribution and vegetative propagation of Asclepias syriaca L. Weed Res 14(5):283–288

    Article  Google Scholar 

  112. Reddy N, Yang Y (2009) Extraction and characterization of natural cellulose fibers from common milkweed stems. Polym Eng Sci 49(11):2212–2217

    Article  CAS  Google Scholar 

  113. Drean J-YF, Patry JJ, Lombard GF, Weltrowski M (1993) Mechanical characterization and behavior in spinning processing of milkweed fibers. Text Res J 63(8):443–450

    Article  CAS  Google Scholar 

  114. Jones D, Von Bargen K (1992) Some physical properties of milkweed pods. Trans ASAE 35(1):243–246

    Article  Google Scholar 

  115. Andrews BK, Kimmel LB, Bertoniere NR, Hebert J (1989) A comparison of the response of cotton and milkweed to selected swelling and crosslinking treatments. Text Res J 59(11):675–679

    Article  Google Scholar 

  116. Shaikhzadeh Najar S, Haghighat-Kish M (1998) Structure and properties of a natural celulosic hollow fiber. Int J Eng 11(2):101–108

    Google Scholar 

  117. Timell T, Snyder J (1955) Molecular properties of milkweed cellulose. Text Res J 25(10):870–874

    Article  CAS  Google Scholar 

  118. Knudsen HD (1990) Milkweed floss fiber for improving nonwoven products. In: TAPPI Nonwovens conference, TAPPI Press, Atlanta

    Google Scholar 

  119. Sakthivel J, Mukhopadhyay S, Palanisamy N (2005) Some studies on Mudar fibers. J Ind Text 35(1):63–76

    Article  CAS  Google Scholar 

  120. Karthik T, Murugan R (2013) Analysis of comfort properties of cotton/milkweed blended rotor yarn fabrics. Melliand Int 19(4)

    Google Scholar 

  121. Bakhtiari M, Hasani H, Zarrebini M, Hassanzadeh S (2015) Investigation of the thermal comfort properties of knitted fabric produced from Estabragh (Milkweed)/cotton-blended yarns. J Text Inst 106(1):47–56

    Article  CAS  Google Scholar 

  122. Karthik T (2014) Studies on the spinnability of milkweed fibre blends and its influence on ring compact and rotor yarn characteristics

    Google Scholar 

  123. Gu P, Hessley RK, Pan W-P (1992) Thermal characterization analysis of milkweed flos. J Anal Appl Pyrol 24(2):147–161

    Article  CAS  Google Scholar 

  124. Shakyawar D, Dagur R, Gupta N (1999) Studies on milkweed fibres

    Google Scholar 

  125. Karthik T, Murugan R (2013) Influence of spinning parameters on milkweed/cotton DREF-3 yarn properties. J Text Inst 104(9):938–949

    Article  CAS  Google Scholar 

  126. Gharehaghaji AA, Davoodi SH (2008) Mechanical damage to estabragh fibers in the production of thermobonded layers. J Appl Polym Sci 109(5):3062–3069

    Article  CAS  Google Scholar 

  127. Bahl M, Arora C, Rao PJV (2013) Surface modification of milkweed fibres to manufacture yarns. Text Potpouri, 33–35

    Google Scholar 

  128. Hassanzadeh S, Hasani H, Zarrebini M (2014) Analysis and prediction of the noise reduction coefficient of lightly-needled Estabragh/polypropylene nonwovens using simplex lattice design. J Text Inst 105(3):256–263

    Article  CAS  Google Scholar 

  129. Jeeshna M, Manorama S, Paulsamy S (2009) Antimicrobial property of the medicinal shrub Glycosmis pentaphylla. J Basic Appl Biol 3(1&2):25–27

    Google Scholar 

  130. Srinivas CA, Babu GD (2013) Mechanical and machining characteristics of calotropis gigentea fruit fiber reinforced plastics. Int J Eng Res Tech 2:1524–1530

    Google Scholar 

  131. Zarehshi A, Ghane M (2021) Study of the water vapor permeability of multiple layer fabrics containing the milkweed fibers as the middle layer. J Text Inst, 1–7

    Google Scholar 

  132. Rajesh Kumar C, Raja D, Kumar SKS, Prakash C (2020) Study on moisture behavior properties of milkweed and milkweed/cotton blended sanitary napkins. J Nat Fibers, 1–12

    Google Scholar 

  133. Rengasamy RS, Das D, Praba Karan C (2011) Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. J Hazard Mater 186(1):526–532

    Google Scholar 

  134. Karan CP, Rengasamy R, Das D (2011) Oil spill cleanup by structured fibre assembly. Indian J Fibre Text Res 36:190–200

    Google Scholar 

  135. Choi HM, Cloud RM (1992) Natural sorbents in oil spill cleanup. Environ Sci Technol 26(4):772–776

    Article  CAS  Google Scholar 

  136. Choi HM, Moreau JP (1993) Oil sorption behavior of various sorbents studied by sorption capacity measurement and environmental scanning electron microscopy. Microsc Res Tech 25(5–6):447–455

    Article  CAS  Google Scholar 

  137. Hindi SS (2013) Characteristics of some natural fibrous assemblies for efficient oil spill cleanup. Int J Sci Eng Invest 2(16):10

    Google Scholar 

  138. Subramoniapillai V, Thilagavathi G (2021) Oil spill cleanup by natural fibers: a review. Res J Text Apparel

    Google Scholar 

  139. Panahi S, Moghaddam MK, Moezzi M (2020) Assessment of milkweed floss as a natural hollow oleophilic fibrous sorbent for oil spill cleanup. J Environ Manage 268:110688

    Google Scholar 

  140. Hassanzadeh S, Zarrebini M, Hasani H (2014) An investigation into acoustic properties of lightly needled Estabragh nonwovens using the Taguchi method. J Eng Fibers Fabr 9(3):155892501400900300

    Google Scholar 

  141. Hasani H, Zarrebini M, Zare M, Hassanzadeh S (2014) Evaluating the acoustic properties of Estabragh (milkweed)/hollow-polyester nonwovens for automotive applications. Text Sci Eng 4:1–6

    Google Scholar 

  142. Bahari N, Hasani H, Zarrebini M, Hassanzadeh S (2016) Investigating the effects of material and process variables on the mechanical properties of low-density thermally bonded nonwovens produced from Estabragh (milkweed) natural fibers. J Ind Text 46(3):719–736

    Article  CAS  Google Scholar 

  143. Oudhia P (2002) Allelopathic potential of useful weed Calotropis gigantea R. Br: A review. in Abstracts. Third World Congress on Allelopathy: Challenges for the New Millennium, National Institute for Agro-Environmental Sciences (NIAES), Tsukuba, Japan

    Google Scholar 

  144. Eftekhari E, Hasani H, Fashandi H (2019) Removal of heavy metal ions (Pb2+ and Ni2+) from aqueous solution using nonwovens produced from lignocellulosic milkweed fibers. J Indus Text, 1528083719888931

    Google Scholar 

  145. Ovlaque P, Bayart M, Elkoun S, Robert M (2021) Milkweed floss-reinforced thermoplastics: interfacial adhesion and related mechanical properties. Compos Interfaces, 1–21

    Google Scholar 

  146. Reddy N, Yang Y (2010) Non-traditional lightweight polypropylene composites reinforced with milkweed floss. Polym Int 59(7):884–890

    Article  CAS  Google Scholar 

  147. Merati A (2014) Reinforcing of cement composites by estabragh fibres. J Inst Eng (India): Ser E, 95(1):27–32

    Google Scholar 

  148. Peraza-Ku SA, Escobar-Morales B, Rodríguez-Fuentes N, Cervantes-Uc JM, Uribe-Calderon JA (2021) Ceiba pentandra cellulose crosslinked with citric acid for drug release systems. Carbohydr Res 504:108334

    Google Scholar 

  149. Bakan E, Avinc O (2021) Sustainable carpet and rug hand weaving in Uşak province of Turkey. Handloom sustainability and culture. Springer, pp 41–93

    Chapter  Google Scholar 

  150. Avinc O, Bakan E, Demirçalı A, Gedik G, Karcı F (2020) Dyeing of poly (lactic acid) fibres with synthesised novel heterocyclic disazo disperse dyes. Color Technol 136(4):356–369

    Article  CAS  Google Scholar 

  151. Setthayanond J, Sodsangchan C, Suwanruji P, Tooptompong P, Avinc O (2017) Influence of MCT-β-cyclodextrin treatment on strength, reactive dyeing and third-hand cigarette smoke odor release properties of cotton fabric. Cellulose 24(11):5233–5250

    Article  CAS  Google Scholar 

  152. Avinc O, Wilding M, Phillips D, Farrington D (2010) Investigation of the influence of different commercial softeners on the stability of poly (lactic acid) fabrics during storage. Polym Degrad Stab 95(2):214–224

    Article  CAS  Google Scholar 

  153. Khoddami A, Avinc O, Mallakpour S (2010) A novel durable hydrophobic surface coating of poly (lactic acid) fabric by pulsed plasma polymerization. Prog Org Coat 67(3):311–316

    Article  CAS  Google Scholar 

  154. Avinc O, Khoddami A (2010) Overview of poly (lactic acid)(PLA) fibre: Part II: Wet processing; pretreatment, dyeing, clearing, finishing, and washing properties of poly (lactic acid) fibres

    Google Scholar 

  155. Avinc O, Wilding M, Bone J, Phillips D, Farrington D (2010) Colorfastness properties of dyed, reduction cleared, and softened poly (lactic acid) Fabrics. AATCC Rev 10(5)

    Google Scholar 

  156. Avinc O, Wilding M, Bone J, Phillips D, Farrington D (2010) Evaluation of colour fastness and thermal migration in softened polylactic acid fabrics dyed with disperse dyes of differing hydrophobicity. Color Technol 126(6):353–364

    Article  CAS  Google Scholar 

  157. Avinc O, Wilding M, Gong H, Farrington D (2010) Effects of softeners and laundering on the handle of knitted PLA filament fabrics. Fibers Polym 11(6):924–931

    Article  CAS  Google Scholar 

  158. Günaydin GK, Yavas A, Avinc O, Soydan AS, Palamutcu S, Şimşek MK, Dündar H, Demirtaş M, Özkan N, Kıvılcım MN (2019) Organic cotton and cotton fiber production in Turkey, recent developments. Organic cotton. Springer, pp 101–125

    Chapter  Google Scholar 

  159. Soydan AS, Yavaş A, Avinç OO, Günaydın GK, Kivilcim MN, Demirtaş M, Palamutcu S (2019) The effects of hydrogen peroxide and sodium hypochlorite oxidizing treatments on the color properties of naturally colored green cotton. Euro J Eng Nat Sci 3(2):1–10

    Google Scholar 

  160. Kurban M, Yavaş A, Avinç O (2011) Isırgan Otu Lifi ve Özellikleri. Tekstil Teknolojileri Elektronik Dergisi 5(1):84–106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Avinc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalayci, E., Avinc, O., Turkoglu, K.B. (2022). Importance of Asclepias Syriaca (Milkweed) Fibers in Sustainable Fashion and Textile Industry and Its Potential End-Uses. In: Muthu, S.S. (eds) Sustainable Approaches in Textiles and Fashion. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-0878-1_1

Download citation

Publish with us

Policies and ethics