Skip to main content

Sulfur-Containing Pyrazoles, Pyrazolines and Indazoles

  • Chapter
  • First Online:
N-Heterocycles

Abstract

The review summarizes the literature and our own results over the past ten years (2011–2021) on the synthesis of heterocyclic compounds having the pyrazole, pyrazoline, or indazole nucleus, which are the basic elements for the design of drug-like compounds with multiple biological activities. Over the years, there has been a clear upward trend in the publication activity of the scientific community, which is expressed in the development of new synthetic methodologies, catalysis, and structural diversity to expand application of this privileged class of compounds. This chapter presents our effort aimed at systematizing the latest advances in the directed synthesis and biological activity of sulfur-containing 1,2-azoles, in which the sulfur atom is bonded directly to the ring or through the spacers. The current trends in organic synthesis and medicinal chemistry are shown in convergence with the principles and metrics of green chemistry such as “metal-free” and “solvent-free” reactions, green solvent, homo- and heterogeneous catalyst, multicomponent reactions (MCR), one-pot process, atomic efficiency, molecular docking, primary screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Aal HAK (2020) Target-oriented synthesis of functionalized pyrazolo-fused medium-sized N,S-heterocycles via Friedel–crafts ring closure approach. Chem Heterocycl Compd 56:1353–1362

    Google Scholar 

  • Akhmadiev NS, Akhmetova VR, Boiko TF, Ibragimov AG (2018) Nickel-catalyzed multicomponent heterocyclization of 2,4-pentanedione to sulfanylmethyl-1H-pyrazoles. Chem Heterocycl Compd 54:344–350

    Article  CAS  Google Scholar 

  • Akhmadiev NS, Mescheryakova ES, Khairullina VR, AkhmetovaVR IAG (2020) Green synthesis of new green synthesis of new sulfanyl derivatives of ampyrone and prediction of their anti-inflammatory activity. Chem Heterocycl Compd 56:473–481

    Article  CAS  Google Scholar 

  • Akhmadiev NS, Mescheryakova ES, Khairullina VR, Akhmetova VR, Khalilov LM, Ibragimov AG (2021) Synthesis, crystal structure and docking studies as potential anti-inflammatory agents of novel antipyrine sulfanyl derivatives. J Mol Struct 1228:129734–129734

    Article  CAS  Google Scholar 

  • Akhmetova VR, Akhmadiev NS, Meshcheryakova ES, Khalilov LM, Ibragimov AG (2014) Multicomponent synthesis and biological activity of (sulfanylalkyl)-substituted azaheterocycles. Chem Heterocycl Compd 50:742–751

    Article  CAS  Google Scholar 

  • Akhmetova VR, Akhmadiev NS, Abdullin MF, Dzhemileva LU, D’yakonov VA (2020) Synthesis of new N, N′-Pd(Pt) complexes based on sulfanyl pyrazoles, and investigation of their in vitro anticancer activity. RSC Adv 10:15116–15123

    Google Scholar 

  • Akhmetova VR, Akhmadiev NS, Zainullin RA, Khayrullina VR, Mescheryakova ES, Glushkova NA (2020) Synthesis, in vitro and in silico studies of inhibitory activity towards α-amylase of bis-azole scaffolds linked by an alkylsulfanyl chain. Can J Chem 98:725–735

    Article  CAS  Google Scholar 

  • Ali D, Panday AK, Choudhury LH (2020) Hydrogen peroxide-mediated rapid room temperature metal-free C(sp2)-H thiocyanation of amino pyrazoles, amino uracils, and enamines. J Org Chem 85:3610–3620

    Article  CAS  Google Scholar 

  • Anpilogova GR, Baeva LA, Nugumanov RM, Fatykhov AA, Murinov YuI (2018) Palladium(II) extraction from hydrochloric acid solutions with 4-[(hexylsulfanyl)methyl]-3,5-dimethyl-1H-pyrazole. Russ J Inorg Chem 63:1100–1106

    Article  CAS  Google Scholar 

  • Anpilogova GR, Baeva LA, Nugumanov RM, Fatykhov AA, Murinov YuI (2020) Palladium(II) extraction by 4-[(hexylsulfanyl)methyl]-3,5-dimethyl-1-phenyl-1H-pyrazole from hydrochloric acid solutions. Russ J Inorg Chem 65:106–112

    Article  CAS  Google Scholar 

  • Ansari A, Ali A, Asifa M, Shamsuzzaman (2017) Review: biologically active pyrazole derivatives. New J Chem 41:16–41

    Google Scholar 

  • Arnol’d VL, Jozefus KHML, Gerrit AB, Arnol’d PDK (2015) Synthesis of substituted pyrazoline carboxamidine derivatives. RU 2(C2):550–694

    Google Scholar 

  • Aziz H, Zahoor AF, Ahmad S (2020) Pyrazole bearing molecules as bioactive scaffolds: a review. J Chil Chem Soc 65:4746–4753

    Article  CAS  Google Scholar 

  • Baeva LA, Nugumanov RM, Fatykhov AA, Lyapina NK (2018) Synthesis of 4-[alkylsulfanyl(sulfonyl)methyl]isoxazoles and -1H-pyrazoles from 3-[(alkylsulfanyl)methyl]-pentane-2,4-diones. Russ J Org Chem 54:444–451

    Article  CAS  Google Scholar 

  • Baeva LA, Nugumanov RM, Biktasheva LF, Nugumanov TR, Fatykhov AA (2019) Synthesis of ethyl 2-[alkyl(benzyl)sulfanylmethyl]-3-oxobutanoates and 3H-pyrazol-3-ones based thereon. Russ J Org Chem 55:442–447

    Article  CAS  Google Scholar 

  • Baeva LA, Nugumanov RM, Gataullin RR, Fatykhov AA (2020) Reaction of 3-[(alkylsulfanyl)methyl]pentane-2,4-diones with nicotinic hydrazide. Chem Heterocycl Compd 56:548–554

    Article  CAS  Google Scholar 

  • Baiju TV, Namboothiri INN (2017) Synthesis of functionalized pyrazoles via 1,3-dipolar cycloaddition of α-diazo-β-ketophosphonates, sufones and esters with electron-deficient alkenes. Chem Rec 17:939–955

    Article  CAS  PubMed  Google Scholar 

  • Bansal R, Singh R (2020) Steroidal pyrazolines as a promising scaffold in drug discovery. Future Med Chem 12:949–959

    Article  CAS  PubMed  Google Scholar 

  • Beletskaya IP, Kustov LM (2010) Catalysis as an important tool of green chemistry. Russ Chem Rev 79:441–461

    Article  CAS  Google Scholar 

  • Boehm H-J, Boehringer M, Bur D, Gmuender H, Huber W, Klaus W, Kostrewa D, Kuehne H, Luebbers T, Meunier-Keller N, Mueller F (2000) Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J Med Chem 43:2664–2674

    Article  CAS  PubMed  Google Scholar 

  • Bol’but AV, Kemskii SV, Vovk MV (2014) 5-amino-N-(2,2-dialkoxyethyl)pyrazole-4-carboxamides in the synthesis of 7-sulfanyl-5,6,7,8-tetrahydro-1H-pyrazolo[3,4-e][1,4]diazepin-4-ones. Russ J Org Chem 50:685–690

    Google Scholar 

  • Cai G, Liu S, Zhang J, Ren Y, Wang H, Miao Z (2016) Highly diastereoselective synthesis of spiro[tetrahydrothiophene-3,3′-pyrazol] with an all-carbon quaternary stereocenter via [3+2] cascade Michael/Michael cyclization catalyzed by DABCO. Synth Commun 46:793–798

    Article  CAS  Google Scholar 

  • Chachignon H, Maeno M, Kondo H, Shibata N, Cahard D (2016) Novel use of CF3SO2Cl for the metal-free electrophilic trifluoromethylthiolation. Org Lett 18:2467–2470

    Article  CAS  PubMed  Google Scholar 

  • Chang M-Y, Chen Y-H, Wang H-S (2018) Cu(OAc)2 mediated synthesis of 3-sulfonyl chromen-4-ones. J Org Chem 83:2361–2368

    Article  CAS  PubMed  Google Scholar 

  • Costa RF, Turones LC, Cavalcante KVN, Rosa Júnior IA, Xavier CH, Rosseto LP, Napolitano HB, Castro PFdS, Neto MLF, Galvão GM, Menegatti R, Pedrino GR, Costa EA, Martins JLR and Fajemiroye JO (2021) Heterocyclic compounds: pharmacology of pyrazole analogs from rational structural considerations. Front Pharmacol 12:666725

    Google Scholar 

  • Dalla Via L, Marini AM, Salerno S, La Motta C, Condello M, Arancia G, Agostinelli E, Toninello A (2009) Synthesis and biological activity of 1,4-dihydrobenzothiopyrano[4,3-C]pyrazole derivatives, novel pro-apoptotic mitochondrial targeted agents. Bioorg Med Chem 17:326–336

    Article  CAS  PubMed  Google Scholar 

  • Daoqing D, Wenjing C, Demao C, Lixia L, Guanghui L, Zuli W, Qi D, Shu L (2019) Direct synthesis of sulfonated or sulfenylated pyrazolones mediated by KIO3 and their anti-microbial activity. Chin J Org Chem 39:3190–3198

    Article  CAS  Google Scholar 

  • Faisal M, Saeed A, Hussain S, Dar P, Larik FA (2019) Recent developments in synthetic chemistry and biological activities of pyrazole derivatives. J Chem Sci 131:70–100

    Article  CAS  Google Scholar 

  • Farag AA, El Shehry MF, Abbas SY, Abd-Alrahman SN, Atrees AA, Al-basheer HZ, Ammar YA (2015) Synthesis of pyrazoles containing benzofuran and trifluoromethyl moieties as possible anti-inflammatory and analgesic agents. Z Naturforsch B 70:519–526

    Article  CAS  Google Scholar 

  • Flynn AJ, Ford A, Rao Khandavilli UB, Lawrence SE, Maguire AR (2019) Regioselective thermal [3+2]-dipolar cycloadditions of α-diazoacetates with α-sulfenyl/sulfinyl/sulfonyl-β-chloroacrylamide derivatives to form densely functionalised pyrazoles. Eur J Org Chem 2019:5368–5384

    Article  CAS  Google Scholar 

  • Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A (2011) From 2000 to mid-2010: a fruitful decade for the synthesis of pyrazoles. Chem Rev 111:6984–7034

    Article  CAS  PubMed  Google Scholar 

  • Gardiner J, Martinez-Botella I, Tsanaktsidisa J, Moad G (2016) Dithiocarbamate RAFT agents with broad applicability—the 3,5-dimethyl-1H-pyrazole-1-carbodithioates. Polym Chem 7:481–492

    Article  CAS  Google Scholar 

  • Gomes PMO, Ouro PMS, Silva AMS, Silva VLM (2020) Styrylpyrazoles: properties, synthesis and transformations. Molecules 25:5886

    Article  CAS  PubMed Central  Google Scholar 

  • Hao S-H, Li L-X, Dong D-Q, Wang Z-L (2017) Direct construction of sulfenylated pyrazoles catalyzed by I2 at room temperature. Chin J Catal 38:1664–1667

    Article  CAS  Google Scholar 

  • Hartwig de Oliveira D, Sabedra Sousa FS, Birmann PT, Pesarico AP, Alves D, Jacob RG, Savegnago L (2020) Evaluation of antioxidant activity and toxicity of sulfur- or selenium-containing 4-(Arylchalcogenyl)-1H-pyrazoles. Can J Physiol Pharmacol 98:441–448

    Article  CAS  PubMed  Google Scholar 

  • Haydar SN, Yun H, Andrae PM, Mattes J, Zhang J, Kramer A, Smith DL, Huselton C, Graf R, Aschmies S, Schechter LE, Comery TA, Robichaud AJ (2010) 5-cyclic amine-3-arylsulfonylindazoles as novel 5-HT6 receptor antagonists. J Med Chem 53:2521–2527

    Article  CAS  PubMed  Google Scholar 

  • Jilloju PC, Vedula RR (2018) A facile one-pot three-component synthesis of benzylideneamino-3,5-dimethyl-1H-pyrazoles. Synth Commun 48:1739–1746

    Article  CAS  Google Scholar 

  • Johnston T, Van Tyne D, Chen RF, Fawzi NL, Kwon B, Kelso MJ, Gilmore MS, Mylonakis E (2018) Propyl-5-hydroxy-3-methyl-1-phenyl-1H-pyrazole-4-carbodithioate (HMPC): a new bacteriostatic agent against methicillin-resistant Staphylococcus aureus. Sci Rep 8:7062–7074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamani RD, Purohit VB, Thummar RP, Sapariya NH, Vaghasiya BK, Patel KH, Pashavan CT, Shah MK, Raval DK (2017) One-pot catalyst-free direct sulfenylation of 1-aryl pyrazolones with aryl thiols at room temperature. ChemistrySelect 2:967–9673

    Article  CAS  Google Scholar 

  • Kashyap S, Singh R, Singh UP (2020) Inorganic and organic anion sensing by Azole family members. Coord Chem Rev 417:213369

    Google Scholar 

  • Katla R, Katla R, G da Silva CD, dos Santos BF, Branquinho TA, Ferro CTB, Domingues NLC (2019) [Zn(L-Pro)2] as a simple and efficient catalyst: a convenient route for the synthesis of Thia-Michael derivatives via green chemical approach. ChemistrySelect 4:13304–13306

    Google Scholar 

  • Katritzky AR, Lam JN (1989) 1-chloromethyl-3,5-dimethylpyrazole hydrochloride. A useful synthetic intermediate. Can J Chem 67:1144–1147

    Article  CAS  Google Scholar 

  • Kim HY, Jadhav VB, Jeong DY, Park WK, Song J-H, Lee S, Cho H (2015) Discovery of 4-(Phenyl)thio-1H-pyrazole derivatives as agonists of GPR109A, a high affinity niacin receptor. Arch Pharm Res 38:1019–1032

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Keum G, Chung H, Nam G (2016) Synthesis and T-type calcium channel-blocking effects of aryl(1,5-disubstituted-pyrazol-3-yl)methyl sulfonamides for neuropathic pain treatment. Eur J Med Chem 123:665–672

    Article  CAS  PubMed  Google Scholar 

  • Knorr L (1883) Einwirkung von Acetessigester auf Phenylhydrazin. Ber Dtsch Chem Ges 16:2597–2599

    Article  Google Scholar 

  • Lavanya G, Reddy LM, Padmavathi V, Padmaja A (2014) Synthesis and antimicrobial activity of (1,4-phenylene)bis(arylsulfonylpyrazoles and Isoxazoles). Eur J Med Chem 73:187–194

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wei L, Wan J-P, Wen C (2017) Water-acetic acid mediated chemoselective synthesis of pyrazolines via multimolecular domino reactions of enaminones and sulfonyl hydrazines. Tetrahedron 73:2323–2328

    Article  CAS  Google Scholar 

  • Lipin KV, Ershov OV, Fedoseev SV, Mikhailov AA (2020) Synthesis of 3-R-sulfanyl-5-amino-1-phenyl-1H-pyrazole-4-carbonitriles. Russ J Org Chem 56:177–180

    Article  CAS  Google Scholar 

  • Liu X, Cui H, Yang D, Dai S, Zhang T, Sun J, Wei W, Wang H (2016) Metal-free direct construction of sulfenylated pyrazoles via the NaOH promoted sulfenylation of pyrazolones with aryl thiols. RSC Adv 6:51830–51833

    Article  CAS  Google Scholar 

  • Liu Q, Huang T, Zhao X, Wu J, Cao S (2017) Bismuth(III)-promoted trifluoromethylthiolation of pyrazolin-5-ones with trifluoromethanesulfenamide. ACS Omega 2:7755–7759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H-J, Li Y-H, Zhao Q-F, Zhang T, Xie R-L, Mei X-D, Ning J (2010) Synthesis and herbicidal activity of novel N-(2,2,2)-trifluoroethylpyrazole derivatives. J Agric Food Chem 58:4356–4360

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Dong H, Wang D, Ackermann L (2017) Late-stage diversification of non-steroidal anti-inflammatory drugs by transition metal-catalyzed C–H alkenylations, thiolations and selenylations. Adv Synth Catal 359:966–973

    Article  CAS  Google Scholar 

  • Maksimov V, Zaynullin R, Akhmadiev N, Segura-Ceniceros EP, Martınez Hernandez JL, Bikbulatova E, Akhmetova V, Kunakova R, Ramos R, Ilyina A (2016) Inhibitory effect of 4,4′-[ethane-1,2-diylbis(sulfandiylmethanediyl)]bis(3,5-dimethyl-1H-pyrazole) and Its derivatives on alpha-amylase activity. Med Chem Res 25:1384–1389

    Article  CAS  Google Scholar 

  • Mao X, Ni J, Xu B, Ding C (2020) K2S2O8-promoted direct thiocyanation of pyrazolin-5-ones with ammonium thiocyanate at room temperature. Org Chem Front 7:350–354

    Article  CAS  Google Scholar 

  • Mashkovsky MD (2012) Medicines. New Wave, Moscow, p 165. (in Russian)

    Google Scholar 

  • Matiadis D, Sagnou M (2020) Pyrazoline hybrids as promising anticancer agents: an up-to-date overview. Int J Mol Sci 21:5507

    Article  CAS  PubMed Central  Google Scholar 

  • Mukherjeem P, Das AR (2017) One-flask synthesis of pyrazolone thioethers involving catalyzed and uncatalyzed thioetherification pathways of pyrazolones. Org Biomol Chem 15:7267–7271

    Article  Google Scholar 

  • Mustafa A, Asker W, Harhash AH, Foda KM, Jahine HH, Kassab NA (1944) Reactions with 1(2H)-phthalazinones, 4,5-dihydro-3(2H)-pyridazinones and 3-pyrazolin-5-ones. Tetrahedron 20:531–544

    Article  Google Scholar 

  • Mykhailiuk PK (2021) Fluorinated pyrazoles: from synthesis to applications. Chem Rev 121:1670–1715

    Article  CAS  PubMed  Google Scholar 

  • Pacell S (2002) Sulfur in human nutrition and applications in medicine. Altern Med Rev 7:22–44

    Google Scholar 

  • Padmaja A, Rajasekhar C, Durgamma S, Venkatesh BC, Padmavathi V (2014) Synthesis and antioxidant activity of pyrazolyl-oxazolines/thiazolines and isoxazolyl-oxazolines/thiazolines. Med Chem Res 23:1084–1098

    Article  CAS  Google Scholar 

  • Panigrahi A, Muniraj N, Prabhu KR (2021) N-Triflination of pyrazolones: a new method for N–S bond formation. Org Biomol Chem 19:5534–5538

    Article  CAS  PubMed  Google Scholar 

  • Pechmann H (1898) Pyrazol aus Acetylen und Diazomethan. Ber Dtsch Chem Ges 31:2950–2951

    Article  Google Scholar 

  • Pérez-Villanueva J, Yépez-Mulia L, González-Sánchez I, Palacios-Espinosa JF, Soria-Arteche O, Sainz-Espuñes T del R, Cerbón MA, Rodríguez-Villar K, Rodríguez-Vicente AK, Cortés-Gines M, Custodio-Galván Z, Estrada-Castro DB (2017) Synthesis and biological evaluation of 2H-indazole derivatives: towards antimicrobial and anti-inflammatory dual agents. Molecules 22:1864

    Google Scholar 

  • Poppelsdorf F, Holt SJ (1954) Reactions of thiols and thioethers. Part I. An analogue of the mannich reaction involving thiols, formaldehyde, and active methylene or methylidyne compounds. J Chem Soc:1124–1130

    Google Scholar 

  • Pub Med (2021) Medical and biological abstracts service, https://pubmed.ncbi.nlm.nih.gov. Accessed June 2021

  • Purohit VB, Karad SC, Patel KH, Raval DK (2016) Palladium N-heterocyclic carbene catalyzed regioselective thiolation of 1-aryl-3-methyl-1H-pyrazol-5(4H)-ones using aryl thiols. Tetrahedron 72:1114–1119

    Article  CAS  Google Scholar 

  • Ragavan RV, Vijayakumar V, Kumari NS (2009) Synthesis of some novel bioactive 4-oxy/thio substituted-1H-pyrazol-5(4H)-ones via efficient cross-Claisen condensation. Eur J Med Chem 44:3852–3857

    Article  CAS  Google Scholar 

  • Saleh NM, El-Gazzar MG, Aly HM, Othman RA (2020) Novel anticancer fused pyrazole derivatives as EGFR and VEGFR-2 dual TK inhibitors. Front Chem 7:917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santos NE, Carreira ARF, Silva VLM, Braga SS (2020) Natural and biomimetic antitumor pyrazoles, a perspective. Molecules 25:1364

    Article  CAS  PubMed Central  Google Scholar 

  • Sapkal A, Kamble S (2020) Greener and environmentally benign methodology for the synthesis of pyrazole derivatives. ChemistrySelect 5:12971–13026

    Article  CAS  Google Scholar 

  • Schmidt A, Beutler A, Snovydovych B (2008) Recent advances in the chemistry of indazoles. Eur J Org Chem 2008:4073–4095

    Article  CAS  Google Scholar 

  • Sci-Finder (2021) Chemical abstracts service. https://scifinder.cas.org. Accessed June 2021

  • Scopus (2021) Bibliographic and abstract database service. https://www.scopus.com. Accessed June 2021

  • Secrieru A, O’Neill PM, Santos Cristiano ML (2020) Revisiting the structure and chemistry of 3(5)-substituted pyrazoles. Molecules 25:42

    Article  CAS  Google Scholar 

  • Shaaban MR, Mayhoub AS, Farag AM (2012) Recent advances in the therapeutic applications of pyrazolines. Expert Opin Therapeutic 22:253–291

    Article  CAS  Google Scholar 

  • Shi X, Ding M, Li C, Wang W, Guo H (2018) A green synthesis of highly functionalized 3-amino-2-phenylsulfonyl-1-alkyl/aryl-1H-pyrazolo[1,2-b]phthalazine-5,10-diones and their reduction and photophysical studies. J Heterocycl Chem 55:440–446

    Article  CAS  Google Scholar 

  • Siddaraju Y, Prabhu KR (2017) Iodine-catalyzed sulfenylation of pyrazolones using dimethyl sulfoxide as an oxidant. Org Biomol Chem 15:5191–5196

    Article  CAS  PubMed  Google Scholar 

  • Sikandar S, Zahoor AF (2021) Synthesis of pyrano[2,3-c]pyrazoles: a review. J Heterocycl Chem 58:685–705

    Article  CAS  Google Scholar 

  • Sokolyuk PA, Kondratov IS, Gavrylenko OV, Tolmachov AA (2015) Synthesis of diverse pyrazole-4-sulfonyl chlorides starting from 2-(benzylthio)malonaldehyde. Mol Divers 20:1–7

    Article  PubMed  CAS  Google Scholar 

  • Songsichan T, Katrun P, Khaikate O, Soorukram D, Pohmakotr M, Reutrakul V, Kuhakarn C (2018) Thiocyanation of pyrazoles using KSCN/K2S2O8 combination. SynOpen 2:6–16

    Article  CAS  Google Scholar 

  • Sun J, Qiu J-K, Zhu Y-L, Guo C, Hao W-J, Jiang B, Tu S-J (2015) Metal-free iodine-catalyzed synthesis of fully substituted pyrazoles and its sulphenylation. J Org Chem 80:8217–8822

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Qiu J-K, Jiang B, Hao W-J, Guo C, Tu S-J (2016) I2-catalyzed multicomponent reactions for accessing densely functionalized pyrazolo[1,5-a]pyrimidines and their disulphenylated derivatives. J Org Chem 81:3321–3328

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Yang D, Wei W, Sun X, Zhang W, Zhang H, Wang Y, Wang H (2017) Metal- and solvent-free, iodine-catalyzed cyclocondensation and C–H bond sulphenylation: a facile access to C-4 sulfenylated pyrazoles via a domino multicomponent reaction. Tetrahedron 73:2022–2029

    Article  CAS  Google Scholar 

  • Sun P, Yang D, Wei W, Jiang L, Wang Y, Dai T, Wang H (2017) DMSO-promoted regioselective synthesis of sulfenylated pyrazoles via a radical pathway. Org Chem Front 4:1367–1371

    Article  CAS  Google Scholar 

  • Tanimoto K, Ohkado R, IidAerobic H (2019) Aerobic oxidative sulfenylation of pyrazolones and pyrazoles catalyzed by metal-free flavin-iodine catalysis. J Org Chem 84:14980–14986

    Article  CAS  PubMed  Google Scholar 

  • Thore SN, GuptaSV BKG (2016) Novel ethyl-5-amino-3-methylthio-1H-pyrazole-4-carboxylates: synthesis and pharmacological activity. J Saudi Chem Soc 20:259–264

    Article  CAS  Google Scholar 

  • Thupyai A, Pimpasria C, Yotphan S (2018) DABCO-catalyzed silver-promoted direct thiolation of pyrazolones with diaryl disulfides. Org Biomol Chem 16:424–432

    Article  CAS  PubMed  Google Scholar 

  • Tigreros A, Portilla J (2020) Recent progress in chemosensors based on pyrazole derivatives. RSC Adv 10:19693–19712

    Article  CAS  Google Scholar 

  • Venkateswarlu V, Kour J, Aravinda Kumar KA, Verma PK, Lakshma Reddy G, Hussain Y, Tabassum A, Balgotra S, Gupta S, Hudwekar AD, Vishwakarm RA, Sawant SD (2018) Direct N-heterocyclization of hydrazines to access styrylated pyrazoles: synthesis of 1,3,5-trisubstituted pyrazoles and dihydropyrazoles. RSC Adv 8:26523–26527

    Article  CAS  Google Scholar 

  • Verma R, Verma SK, Rakesh KP, Girish YR, Ashrafizadeh M, Sharath Kumar KS, Rangappa KS (2021) Pyrazole-based analogs as potential antibacterial agents against methicillin-resistance staphylococcus aureus (MRSA) and its SAR elucidation. Eur J Med Chem 212:113134

    Google Scholar 

  • Vydzhak RN, Panchishin SYA, Brovarets VS (2017) Alkylation of 4-(phenylthio)-1H-pyrazol-5-ols with methyl bromoacetate. Russ J Gen Chem 87:231–238

    Google Scholar 

  • Wang D, Guo S, Zhang R, Lin S, Yan Z (2016) TBAI–HBr system mediated generation of various thioethers with benzenesulfonyl chlorides in PEG400. RSC Adv 6:54377–54381

    Article  CAS  Google Scholar 

  • Web of Science (2021) Internet search platform. https://www.webofscience.com. Accessed June 2021

  • Wei W, Cui H, Yang D, Liu X, He C, Dai S, Wang H (2017) Metal-free molecular iodine-catalyzed direct sulfonylation of pyrazolones with sodium sulfinates leading to sulfonated pyrazoles at room temperature. Org Chem Front 4:26–30

    Article  CAS  Google Scholar 

  • Wei N, Liang J, Peng S, Sun Q, Dai Q, Dong M (2018) Design, synthesis, and biological evaluation of axitinib derivatives. Molecules 23:747

    Article  PubMed Central  CAS  Google Scholar 

  • Wei Y, Liu P, Liu Y, He J, Li X, Li S, Zhao J (2021) NIS-promoted three-component reaction of 3-oxo-3-arylpropanenitriles with arylsulfonyl hydrazides. Org Biomol Chem 19:3932–3939

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Liu Z, Wu X, Gan C, Su X, Liu H, Que H, Zhang Q, Xue Q, Yue L, Yu L, Ye T (2021) Synthesis and biological evaluation of indazole derivatives as anti-cancer agents. RSC Adv 11:15675–15687

    Article  CAS  Google Scholar 

  • Xie X, Xiang L, Peng C, Han B (2019) Catalytic asymmetric synthesis of spiropyrazolones and their application in medicinal chemistry. Chem Rec 19:2209–2235

    Article  CAS  Google Scholar 

  • Xu Z, Gao C, Ren Q-C, Song X-F, Feng L-S, Lv Z-S (2017) Recent advances of pyrazole-containing derivatives as anti-tubercular agents. Eur J Med Chem 139:429–440

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Sun P, Wei W, Meng L, He L, Fang B, Jiang W, Wang H (2016) Metal-free iodine-catalyzed direct cross-dehydrogenative coupling (CDC) between pyrazoles and thiols. Org Chem Front 3:1457–1461

    Article  CAS  Google Scholar 

  • Yewale SB, Ganorkar SB, Baheti KG, Shelke RU (2012) Novel 3-substituted-1-aryl-5-phenyl-6-anilinopyrazolo[3,4-d]pyrimidin-4-ones: docking, synthesis and pharmacological evaluation as a potential anti-inflammatory agents. Bioorg Med Chem Lett 22:6616–6620

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Shang Y-Z, Cheng Y-F, Tian J, Niu Y, Gao W-C (2020) Synthesis of 4-chalcogenyl pyrazoles via electrophilic chalcogenation/cyclization of α, β-alkynic hydrazones. Org Biomol Chem 18:1806–1811

    Article  CAS  PubMed  Google Scholar 

  • Zaki RM, Kamal El-Dean AM, Radwana SM, Saber AF (2018) A convenient synthesis, reactions and biological activity of some new 6H-pyrazolo[4′,3′:4,5]thieno[3,2-d][1,2,3]triazine compounds as antibacterial, anti-fungal and anti-inflammatory agents. J Braz Chem Soc 29:2482–2495

    CAS  Google Scholar 

  • Zefeng Z, Xufen D, Chenyang L, Xiao W, Jiale T, Ying F, Jing X, Cong M, Zhuang N, Peinan F, Mingcheng Q, Xirui H, Shaoping W, Yongmin Z, Xiaohui Z (2019) Pyrazolone structural motif in medicinal chemistry: retrospect and prospect. Eur J Med Chem 186:111893

    Google Scholar 

  • Zhang S-G, Liang C-G, Zhang W-H (2018) Recent advances in indazole-containing derivatives: synthesis and biological perspectives. Molecules 23:2783

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Nie L-J, Luo L, Mao J-X, Liu J-X, Xu G-H, Chen D, Luo H-Q (2020) The selective condensation of pyrazolones to isatins in aqueous medium. Tetrahedron 76:130916

    Google Scholar 

  • Zhao X, Zhang L, Li T, Liu G, Wang H, Lu K (2014) p-toluenesulphonic acid-promoted, I2-catalysed sulphenylation of pyrazolones with aryl sulphonyl hydrazides. Chem Commun 50:13121

    Article  CAS  Google Scholar 

  • Zhao X, Lu X, Wei A, Jia X, Chen J, Lu K (2016) Potassium iodide promoted thiolation of pyrazolones and benzofurans using aryl sulfonyl chlorides as sulfenylation reagents. Tetrahedron Lett 57:5330–5333

    Article  CAS  Google Scholar 

  • Zhao X, Wei A, Yang B, Li T, Li Q, Qiu D, Lu K (2017) Transition-metal-free direct trifluoromethylthiolation and trifluoromethylsulfoxidation of electron-rich aromatics with CF3SO2Na in the presence of PCl3. J Org Chem 82:9175–9181

    Article  CAS  PubMed  Google Scholar 

  • Zhu SY, Lu W-T, Sun H-C, Zhan Z-P (2013) Lewis base catalyzed synthesis of multisubstituted 4-sulfonyl-1H-pyrazole involving a novel 1,3-sulfonyl shift. Org Lett 15:4146–4149

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was carried out under the research plans of the IPC RAS on the subject “Multicomponent catalytic reactions in the synthesis of cyclic and acyclic heteroatomic compounds”, State Registration no. FMRS-2022-0079 (2022–2024), as well as with financial support from the Stipend of the President of the Russian Federation to young scientists and graduate students (SP-1691.2022.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vnira R. Akhmetova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akhmetova, V.R., Akhmadiev, N.S., Ibragimov, A.G. (2022). Sulfur-Containing Pyrazoles, Pyrazolines and Indazoles. In: Ameta, K.L., Kant, R., Penoni, A., Maspero, A., Scapinello, L. (eds) N-Heterocycles. Springer, Singapore. https://doi.org/10.1007/978-981-19-0832-3_7

Download citation

Publish with us

Policies and ethics