Skip to main content

Advertisement

Log in

Green synthesis of new sulfanyl derivatives of ampyrone and prediction of their anti-inflammatory activity

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

A selective method was developed for the synthesis of acyclic sulfanyl derivatives of ampyrone by thiomethylation reaction of 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one with formaldehyde and thiols in aqueous medium under various conditions (room temperature, 80°C, ultrasonication or microwave irradiation). A series of the synthesized sulfanyl derivatives of ampyrone were characterized with regard to their anti-inflammatory activity by molecular docking method using the AutoDock 4.2 and AutoDock Vina software. The steric complementarity with the active sites of cyclooxygenase isoforms (COX-1 and COX-2) was explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. (a) Akhmetova, V. R.; Akhmadiev, N. S.; Ibragimov, A. G. Russ. Chem. Bull., Int. Ed.2016, 65, 1653. [Izv. Akad. Nauk, Ser. Khim.2016, 1653.] (b) Deligeorgiev, T.; Gadjev, N.; Vasilev, A.; Kaloyanova, St.; Vaquero J. J.; Alvarez-Builla, J. Mini-Rev. Org. Chem.2010, 7, 44. b Hooper, M. M.; DeBoef, B. J. Chem. Educ.2009, 86, 1077. c Anastas, P.; Eghbali, N. Chem. Soc. Rev.2010, 39, 301.

  2. Ananikov, V. P.; Khemchyan, L. L.; Ivanova, Y. V.; Bukhtiyarov, V. I.; Sorokin, A. M.; Prosvirin, I. P.; Vatsadze, S. Z.; Medved’ko, A. V.; Nuriev, V. N.; Dilman, A. D.; Levin, V. V.; Koptyug, I. V.; Kovtunov, K. V.; Zhivonitko, V. V.; Likholobov, V. A.; Romanenko, A. V.; Simonov, P. A.; Nenajdenko, V. G.; Shmatova, O. I.; Muzalevskiy, V. M.; Nechaev, M. S.; Asachenko, A. F.; Morozov, O. S.; Dzhevakov, P. B.; Osipov, S. N.; Vorobyeva, D. V.; Topchiy, M. A.; Zotova, M. A.; Ponomarenko, S. A.; Borschev, O. V.; Luponosov, Yu. N.; Rempel, A. A., Valeeva, A. A.; Stakheev, A. Yu.; Turova, O. V.; Mashkovsky, I. S.; Sysolyatin, S. V.; Malykhin, V. V.; Bukhtiyarova, G. A.; Terent’ev, A. O.; Krylov, I. B. Russ. Chem. Rev. 2014, 83, 885. [Usp. Khim.2014, 83, 885.]

  3. Beletskaya, I. P.; Kustov, L. M. Russ. Chem. Rev.2010, 79, 441. [Usp. Khim.2010, 79, 493.]

  4. Sun, C.-L.; Shi, Z.-J. Chem. Rev.2014, 114, 9219.

    Article  CAS  Google Scholar 

  5. Vdovina, S. V.; Mamedov, V. A. Russ. Chem. Rev. 2008, 77, 1017. [Usp. Khim.2008, 77, 1091.]

  6. (a) Stadler, A.; Kappe, C. O. J. Chem. Soc., Perkin Trans. 22000, 1363. (b) Khrustalev, D. P. Russ. J. Gen. Chem.2009, 79, 164. [Zh. Obshch. Khim2009, 79, 166.]

  7. (a) Guo Y.; Zhong, S.; Wei L.; Wan, J.-P. Beilstein J. Org. Chem.2017, 13, 2017. (b) Akhmetova, V.; Akhmadiev, N. Cascade Amino-, Oxy-, and Thiomethylation of Dicarbonyl СН Acids [in Russian]; Lambert, 2017, p. 45.

  8. Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem.2016, 16, 1200.

    Article  CAS  Google Scholar 

  9. (a) Akhmadiev, N. S.; Akhmetova, V. R.; Boiko, T. F.; Ibragimov, A. G. Chem. Heterocycl. Compd.2018, 54, 344. [Khim. Geterotsikl. Soedin.2018, 54, 344.] (b) Akhmetova, V. R.; Akhmadiev, N. S.; Mescheryakova, E. S.; Khalilov L. M.; Ibragimov, A. G. Chem. Heterocycl. Compd.2014, 50, 742. [Khim. Geterotsikl. Soedin.2014, 806.]

  10. (a) Wei, W.; Keh, C. C. K.; Li, C.-J.; Varma, R. S. Clean Techn. Environ. Policy2005, 7, 62. (b) Khabibullina, G. R.; Fedotova, E. S.; Akhmetova, V. R.; Mesheryakova, E. S.; Khalilov, L. M.; Ibragimov, A. G. Mol. Diversity2016, 20, 557. (с) Khabibullina, G. R.; Akhmetova, V. R.; Abdullin, M. F.; Tyumkina, T. V.; Khalilov L. M.; Ibragimov, A. G.; Dzhemilev, U. M. Tetrahedron2014, 70, 3502. c Lysenko, N. M. Zh. Org.. Khim.1974, 10, 2049.

  11. Drugs [In Russian]; Mashkovskii, M. D., Ed.: Novaya Volna: Moscow. 2012, p. 164

  12. Levy, M. Thorax2000, 55, S72.

    Article  Google Scholar 

  13. Pretsch, E.; Bühlmann, P.; Affolter, C. Structure Determination of Organic Compounds. Tables of Spectral Data [Russian translation]; Mir: Moscow, 2013, p. 119.

  14. Levy, G. C.; Lichter, R. L. Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy; Wiley-Interscience: New York, 1979.

  15. http://www.cheminfo.org/Chemistry/Cheminformatics/Property_explorer/index.html

  16. Lipinski, C. A.; Lombardo, F; Dominy, B. W.; Feeney, P. J. Adv. Drug Delivery Rev. 2001, 46, 3.

    Article  CAS  Google Scholar 

  17. Palm, K.; Stenberg, P.; Luthman, K.; Artursson, P. Pharm. Res.1997, 14, 568.

    Article  CAS  Google Scholar 

  18. www.way2drug.com

  19. Filimonov, D. A.; Lagunin, A. A.; Gloriozova, T. A.; Rudik, A. V.; Druzhilovskii, D. S.; Pogodin, P. V.; Poroikov, V. V. Chem. Heterocycl. Compd.2014, 50, 444. [Khim. Geterotsikl. Soedin.2014, 483.]

  20. Luzina, E.V. Klinicheskaya Meditsina2014, 92, 21.

    CAS  Google Scholar 

  21. (a) Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell D. S.; Olson A. J. J Comput. Chem.2009, 30, 2785. (b) Fuhrmann, J.; Rurainski, A.; Lenhof H.-P.; Neumann D. J. Comput. Chem.2010, 31, 1911. (c) Sharma, V.; Pattanaik, K. K.; Jayprakash, V.; Basu, A.; Mishra, N. Bioinformation2009, 4, 84. (d) Pagadala, N. S.; Syed, K.; Jack, T. Biophys. Rev.2017, 9, 91. (e) Gerchikov, A. Ya.; Vasilyev, M. N.; Khairullina, V. R.; Tsypysheva, I. P.; Zaytseva, O. E.; Zarudiy, F. S. Vestn. Bashkir. Un-ta , 2015, 20, 1181. (f) Aksakal, F.; Shvets, N.; Khairullina, V.; Dimoglo, A. Mini-Rev. Med. Chem.,2016, 16, 579. (g) Wang, R.; Lai, L.; Wang, S. J. Comput.-Aided Mol. Des.2002, 16, 11.

  22. (a) Trott, O.; Olson, A. J. J. Comput. Chem.2010, 31, 455. (b) Jaghoori, M. M.; Altena, A. J. V.; Bleijlevens, B.; Olabarriaga, S. D. 6th International Workshop on Science Gateways2014, 24. (c) Xu, W.; Lucke, A. J.; Fairlie, D. P. J. Mol. Graph. Model.2015, 57, 76. (d) Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Phys. Chem. Chem. Phys. 2016, 18, 12964. (e) Vieira, T. F.; Magalhaes, R. P.; Sousa, S. F. Front. Drug, Chem. Clin. Res.2019, 2. https://doi.org/10.15761/FDCCR.1000118. (f) Bartuzi, D.; Kaczor, A. A.; Targowska-Duda, K. M.; Matosiuk, D. Molecules2017, 22, 340.

  23. https://www.rcsb.org/

  24. https://chemaxon.com/

  25. Dias, R.; Filguera De Azevedo, W., Jr. Curr. Drug Targets2008, 9, 1040.

    Article  CAS  Google Scholar 

  26. CrysAlis PRO; Agilent Technologies Ltd.: Yarnton, 2014.

  27. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Adv.2015, A71, 3.

  28. Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem.2015, C71, 3.

Download references

This work received financial support from the Russian Science Foundation (project 19-73-00070).

The results were obtained with the financial support of the Ministry of Science and Higher Education of the Russian Federation (grant 2019-05-595-000-058) using the equipment of the Regional Collective Use Center “Agidel” (Ufa Federal Research Center, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vnira R. Akhmetova.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2020, 56(4), 473–481

Electronic supplementary material

ESM 1

(PDF 834 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmadiev, N.S., Mescheryakova, E.S., Khairullina, V.R. et al. Green synthesis of new sulfanyl derivatives of ampyrone and prediction of their anti-inflammatory activity. Chem Heterocycl Comp 56, 473–481 (2020). https://doi.org/10.1007/s10593-020-02683-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-020-02683-8

Keywords

Navigation