Skip to main content

Serine Palmitoyltransferase Subunit 3 and Metabolic Diseases

  • Chapter
  • First Online:
Sphingolipid Metabolism and Metabolic Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1372))

Abstract

Sphingolipids (SL) are a class of chemically diverse lipids that have important structural and physiological functions in eukaryotic cells. SL entail a long chain base (LCB) as the common structural element, which is typically formed by the condensation of l-serine and long chain acyl-CoA. This condensation is the first and the rate-limiting step in the de novo SL synthesis and catalyzed by the enzyme serine palmitoyltransferase (SPT). Although palmitoyl-CoA is the preferred substrate, SPT can also metabolize other acyl-CoAs, thereby forming a variety of LCBs, which differ in structures and functions. The mammalian SPT enzyme is composed of three core subunits: SPTLC1, SPTLC2, and SPTLC3. Whereas SPTLC1 and SPTLC2 are ubiquitously expressed, SPTLC3 expression is restricted to a few specific tissues. The SPTLC1 subunit is essential and can associate with either SPTLC2 or SPTLC3 to form an active enzyme. Depending on the stoichiometry of the SPTLC2 and SPTLC3 subunits, the spectrum of SPT products varies. While SPTLC1 and SPTLC2 primarily form C18 and C20 LCBs, the combination of SPTLC1 and SPTLC3 produces a broader spectrum of LCBs. Genetic and population based studies have shown that SPTLC3 expression and function are associated with an altered plasma SL profile and an increased risk for cardio-metabolic diseases. Animal and in vitro studies showed that SPTLC3 might be involved in hepatic and cardiac pathology and could be a therapeutic target for these conditions.

Here we present an overview of the current data on the role of SPTLC3 in normal and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harrison, P. J., Dunn, T. M., & Campopiano, D. J. (2018). Sphingolipid biosynthesis in man and microbes. Natural Product Reports, 35(9), 921–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carreira, A. C., et al. (2019). Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Progress in Lipid Research, 75, 100988.

    Article  CAS  PubMed  Google Scholar 

  3. Pruett, S. T., et al. (2008). Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols. Journal of Lipid Research, 49(8), 1621–1639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fyrst, H., Herr, D. R., Harris, G. L., & Saba, J. D. (2004). Characterization of free endogenous C14 and C16 sphingoid bases from Drosophila melanogaster. Journal of Lipid Research, 45(1), 54–62.

    Article  CAS  PubMed  Google Scholar 

  5. Hannich, J. T., Mellal, D., Feng, S., Zumbuehl, A., & Riezman, H. (2017). Structure and conserved function of iso-branched sphingoid bases from the nematode Caenorhabditis elegans. Chemical Science, 8(5), 3676–3686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lone, M. A., Santos, T., Alecu, I., Silva, L. C., & Hornemann, T. (2019). 1-Deoxysphingolipids. Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids, 1864(4), 512–521.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Y., et al. (2021). Structural insights into the regulation of human serine palmitoyltransferase complexes. Nature Structural & Molecular Biology, 28(3), 240–248.

    Article  CAS  Google Scholar 

  8. Li, S., Xie, T., Liu, P., Wang, L., & Gong, X. (2021). Structural insights into the assembly and substrate selectivity of human SPT–ORMDL3 complex. Nature Structural & Molecular Biology, 28(3), 249–257.

    Article  CAS  Google Scholar 

  9. Lone, M. A., et al. (2020). Subunit composition of the mammalian serine-palmitoyltransferase defines the spectrum of straight and methyl-branched long-chain bases. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15591–15598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davis, D., Kannan, M., & Wattenberg, B. (2018). Orm/ORMDL proteins: Gate guardians and master regulators. Advances in Biological Regulation, 70, 3–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han, G., et al. (2009). Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proceedings of the National Academy of Sciences of the United States of America, 106(20), 8186–8191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao, L., et al. (2015). Elevation of 20-carbon long chain bases due to a mutation in serine palmitoyltransferase small subunit b results in neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 112(42), 12962–12967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hornemann, T., Richard, S., Rutti, M. F., Wei, Y., & von Eckardstein, A. (2006). Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. The Journal of Biological Chemistry, 281(49), 37275–37281.

    Article  CAS  PubMed  Google Scholar 

  14. Ikushiro, H., Hayashi, H., & Kagamiyama, H. (2001). A water-soluble homodimeric serine palmitoyltransferase from Sphingomonas paucimobilis EY2395T strain. Purification, characterization, cloning, and overproduction. The Journal of Biological Chemistry, 276(21), 18249–18256.

    Article  CAS  PubMed  Google Scholar 

  15. Teng, C., et al. (2008). Serine palmitoyltransferase, a key enzyme for de novo synthesis of sphingolipids, is essential for male gametophyte development in Arabidopsis. Plant Physiology, 146(3), 1322–1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dietrich, C. R., et al. (2008). Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. The Plant Journal, 54(2), 284–298.

    Article  CAS  PubMed  Google Scholar 

  17. Harmon, J. M., et al. (2013). Topological and functional characterization of the ssSPTs, small activating subunits of serine palmitoyltransferase. The Journal of Biological Chemistry, 288(14), 10144–10153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kimberlin, A. N., et al. (2013). Arabidopsis 56-amino acid serine palmitoyltransferase-interacting proteins stimulate sphingolipid synthesis, are essential, and affect mycotoxin sensitivity. Plant Cell, 25(11), 4627–4639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, S. Y., et al. (2012). Cardiomyocyte specific deficiency of serine palmitoyltransferase subunit 2 reduces ceramide but leads to cardiac dysfunction. The Journal of Biological Chemistry, 287(22), 18429–18439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lynch, C. J., & Adams, S. H. (2014). Branched-chain amino acids in metabolic signalling and insulin resistance. Nature Reviews. Endocrinology, 10(12), 723–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wallace, M., et al. (2018). Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nature Chemical Biology, 14(11), 1021–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Al Sazzad, M. A., Yasuda, T., Murata, M., & Slotte, J. P. (2017). The long-chain sphingoid base of ceramides determines their propensity for lateral segregation. Biophysical Journal, 112(5), 976–983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Troupiotis-Tsailaki, A., et al. (2017). Ligand chain length drives activation of lipid G protein-coupled receptors. Scientific Reports, 7(1), 2020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Vutukuri, R., et al. (2020). S1P d20:1, an endogenous modulator of S1P d18:1/S1P2-dependent signaling. The FASEB Journal, 34(3), 3932–3942.

    Article  CAS  PubMed  Google Scholar 

  25. Hicks, A. A., et al. (2009). Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genetics, 5(10), e1000672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Illig, T., et al. (2010). A genome-wide perspective of genetic variation in human metabolism. Nature Genetics, 42(2), 137–141.

    Article  CAS  PubMed  Google Scholar 

  27. Demirkan, A., et al. (2012). Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations. PLoS Genetics, 8(2), e1002490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Willer, C. J., et al. (2013). Discovery and refinement of loci associated with lipid levels. Nature Genetics, 45(11), 1274–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tabassum, R., et al. (2019). Genetic architecture of human plasma lipidome and its link to cardiovascular disease. Nature Communications, 10(1), 4329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cresci, S., et al. (2020). Genetic architecture of circulating very-long-chain (C24:0 and C22:0) ceramide concentrations. Journal of Lipid and Atherosclerosis, 9(1), 172–183.

    Article  PubMed  PubMed Central  Google Scholar 

  31. McGurk, K. A., et al. (2021). Heritability and family-based GWAS analyses of the N-acyl ethanolamine and ceramide plasma lipidome. Human Molecular Genetics, 30(6), 500–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Choi, R. H., Tatum, S. M., Symons, J. D., Summers, S. A., & Holland, W. L. (2021). Ceramides and other sphingolipids as drivers of cardiovascular disease. Nature Reviews. Cardiology, 18(10), 701–711.

    Article  CAS  PubMed  Google Scholar 

  33. Poss, A. M., et al. (2020). Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. The Journal of Clinical Investigation, 130(3), 1363–1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hilvo, M., et al. (2020). Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. European Heart Journal, 41(3), 371–380.

    CAS  PubMed  Google Scholar 

  35. Russo, S. B., Tidhar, R., Futerman, A. H., & Cowart, L. A. (2013). Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties. The Journal of Biological Chemistry, 288(19), 13397–13409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mirkov, S., Myers, J. L., Ramirez, J., & Liu, W. (2012). SNPs affecting serum metabolomic traits may regulate gene transcription and lipid accumulation in the liver. Metabolism, 61(11), 1523–1527.

    Article  CAS  PubMed  Google Scholar 

  37. Gulati, S., Liu, Y., Munkacsi, A. B., Wilcox, L., & Sturley, S. L. (2010). Sterols and sphingolipids: Dynamic duo or partners in crime? Progress in Lipid Research, 49(4), 353–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shah, C., et al. (2008). Protection from high fat diet-induced increase in ceramide in mice lacking plasminogen activator inhibitor 1. The Journal of Biological Chemistry, 283(20), 13538–13548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cinar, R., et al. (2014). Hepatic cannabinoid-1 receptors mediate diet-induced insulin resistance by increasing de novo synthesis of long-chain ceramides. Hepatology, 59(1), 143–153.

    Article  CAS  PubMed  Google Scholar 

  40. Yoshimine, Y., et al. (2015). Hepatic expression of the Sptlc3 subunit of serine palmitoyltransferase is associated with the development of hepatocellular carcinoma in a mouse model of nonalcoholic steatohepatitis. Oncology Reports, 33(4), 1657–1666.

    Article  CAS  PubMed  Google Scholar 

  41. Teng, W., et al. (2019). Sulforaphane prevents hepatic insulin resistance by blocking serine palmitoyltransferase 3-mediated ceramide biosynthesis. Nutrients, 11(5), 1185.

    Article  CAS  PubMed Central  Google Scholar 

  42. Dong, Y. Q., et al. (2017). Omega-3 PUFA ameliorates hyperhomocysteinemia-induced hepatic steatosis in mice by inhibiting hepatic ceramide synthesis. Acta Pharmacologica Sinica, 38(12), 1601–1610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chew, W. S., et al. (2019). Large-scale lipidomics identifies associations between plasma sphingolipids and T2DM incidence. JCI Insight, 5(13), e126925.

    Article  Google Scholar 

  44. Gantner, M. L., et al. (2019). Serine and lipid metabolism in macular disease and peripheral neuropathy. The New England Journal of Medicine, 381(15), 1422–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muthusamy, T., et al. (2020). Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature, 586(7831), 790–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mohassel, P., et al. (2021). Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis. Nature Medicine, 27(7), 1197–1204.

    Article  CAS  PubMed  Google Scholar 

  47. Gonzaga-Jauregui, C., et al. (2015). Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Reports, 12(7), 1169–1183.

    Article  CAS  PubMed  Google Scholar 

  48. Waterhouse, A., et al. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bienert, S., et al. (2017). The SWISS-MODEL repository-new features and functionality. Nucleic Acids Research, 45(D1), D313–D319.

    Article  CAS  PubMed  Google Scholar 

  50. Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis, 30(Suppl 1), S162–S173.

    Article  PubMed  Google Scholar 

  51. Studer, G., et al. (2020). QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics, 36(6), 1765–1771.

    Article  CAS  PubMed  Google Scholar 

  52. Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., & Schwede, T. (2017). Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific Reports, 7(1), 10480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Hornemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lone, M.A., Bourquin, F., Hornemann, T. (2022). Serine Palmitoyltransferase Subunit 3 and Metabolic Diseases. In: Jiang, XC. (eds) Sphingolipid Metabolism and Metabolic Disease. Advances in Experimental Medicine and Biology, vol 1372. Springer, Singapore. https://doi.org/10.1007/978-981-19-0394-6_4

Download citation

Publish with us

Policies and ethics