Skip to main content

Cereal Physiology, Flowering, and Grain Yield Under Salinity and Drought Stress

  • Chapter
  • First Online:
Omics Approach to Manage Abiotic Stress in Cereals
  • 477 Accesses

Abstract

Cereal crops are the vital source of food and nutrients for human health and nearly cultivated in all parts of the world. Demand for cereal yield has been increasing extensively nowadays due to their high nutritional value and production of first-generation biofuel from cereal starches. However, cereal crops are frequently exposed to several abiotic stresses such as drought, salinity, extreme temperature, heavy metal stress, etc. which dramatically impact their physiological and developmental processes and grain yield. Among these abiotic stresses, drought and salinity stress are one of the major environmental constraints which pose significant threat to cereal crops with subsequent economic impacts. Loss in cereal productivity was primarily determined by the severity and duration of the stress. Declined net photosynthetic activity, damage to the chloroplast and stomatal closure, alterations in various plant developmental processes like flowering, and oxidative stress due to the over-accumulation of reactive oxygen species (ROS) are the major reasons for poor grain set and development in cereals under drought and salinity stress. Although these stresses impede cereal performance at all developmental phases, cereals are highly sensitive during their flowering and grain-filling phases which consequently cause severe yield losses. Therefore, there is an immense demand of efficient approaches to mitigate these stresses to ensure food security and nutrition. Various transgenic and molecular breeding strategies are in practice to improve cereal tolerance against drought and salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    Article  CAS  PubMed  Google Scholar 

  • Amirjani MR (2011) Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int J Bot 7(1):73–81

    Article  CAS  Google Scholar 

  • Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032

    Google Scholar 

  • Anjum SA, Ashraf U, Zohaib A, Tanveer M, Naeem M, Ali I et al (2017) Growth and development responses of crop plants under drought stress: a review. Zemdirbyste 104(3):267–276

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Aslam M, Zamir MSI, Afzal I, Yaseen M, Mubeen M, Shoaib A (2013) Drought stress, its effect on maize production and development of drought tolerance through potassium application. Cercetări Agronomiceîn Moldova 46(2):99–114

    Google Scholar 

  • Babaei K, Seyed Sharifi R, Pirzad A, Khalilzadeh R (2017) Effects of bio fertilizer and nano Zn-Fe oxide on physiological traits, antioxidant enzymes activity and yield of wheat (Triticum aestivum L.) under salinity stress. J Plant Interact 12(1):381–389

    Article  CAS  Google Scholar 

  • Bagci SA, Ekiz H, Yilmaz A, Cakmak I (2007) Effects of zinc deficiency and drought on grain yield of field‐grown wheat cultivars in Central Anatolia. J Agron Crop Sci 193(3):198–206

    Article  CAS  Google Scholar 

  • Barlow M, Nigam S, Berbery EH (2001) ENSO, Pacific decadal variability, and US summertime precipitation, drought, and stream flow. J Clim 14(9):2105–2128

    Article  Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31(1):11–38

    PubMed  Google Scholar 

  • Basu S, Roychoudhury A (2021) Transcript profiling of stress–responsive genes and metabolic changes during salinity in indica and japonica rice exhibit distinct varietal difference. Physiol Plant 173:1434. https://doi.org/10.1111/ppl.13440

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010) Comparative analysis of some biochemical responses of three indica rice varieties during polyethylene glycol-mediated water stress exhibits distinct varietal differences. Acta Physiol Plant 32(3):551–563

    Article  CAS  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56(11):1159–1168

    Article  Google Scholar 

  • Boyer JS, Westgate ME (2004) Grain yields with limited water. J Exp Bot 55(407):2385–2394

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2000) Tansley Review No. 111: possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146(2):185–205

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45(2):437–448

    Article  CAS  Google Scholar 

  • Chowdhury JA, Karim MA, Khaliq QA, Ahmed AU (2017) Effect of drought stress on bio-chemical change and cell membrane stability of soybean genotypes. Bangladesh J Agric Res 42(3):475–485

    Article  Google Scholar 

  • Chutipaijit S, Cha-um S, Sompornpailin K (2011) High contents of proline and anthocyanin increase protective response to salinity in Oryza sativa L. spp. ‘indica’. Aust J Crop Sci 5(10):1191–1198

    CAS  Google Scholar 

  • Craufurd PQ, Peacock JM (1993) Effect of heat and drought stress on sorghum (Sorghum bicolor). II. Grain yield. Exp Agric 29(1):77–86

    Article  Google Scholar 

  • Damptey HB, Coombe BG, Aspinall D (1978) Apical dominance, water deficit and axillary inflorescence growth in Zea mays: the role of abscisic acid. Ann Bot 42(6):1447–1458

    Article  CAS  Google Scholar 

  • Daoud AM, Hemada MM, Saber N, El-Araby AA, Moussa L (2018) Effect of silicon on the tolerance of wheat (Triticum aestivum L.) to salt stress at different growth stages: case study for the management of irrigation water. Plants 7(2):29

    Article  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Deepika, Dhingra HR (2014) Effect of salinity stress on morpho-physiological, biochemical and yield characters of cluster bean [Cyamopsis tetragonoloba (L.) Taub.]. Indian J Plant Physiol 19(4):393–398

    Article  Google Scholar 

  • Dhingra HR, Varghese TM (1985) Effect of salt stress on viability, germination and endogenous levels of some metabolites and ions in maize (Zea mays L.) pollen. Ann Bot 55(3):415–420

    Article  CAS  Google Scholar 

  • Dolatabadian A, Sanavy SAMM, Ghanati F (2011) Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Notulae Scientia Biologicae 3(1):41–45

    Article  Google Scholar 

  • Dolferus R, Ji X, Richards RA (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181(4):331–341

    Article  CAS  PubMed  Google Scholar 

  • Dornbos DL, Mullen RE (1992) Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. J Am Oil Chem Soc 69(3):228–231

    Article  CAS  Google Scholar 

  • Ekiz H, Bagci SA, Kiral AS, Eker SELİM, Gültekin I, Alkan AYFER, Cakmak I (1998) Effects of zinc fertilization and irrigation on grain yield and zinc concentration of various cereals grown in zinc‐deficient calcareous soils. J Plant Nutr 21(10):2245–2256

    Article  CAS  Google Scholar 

  • Esfandiari E, Gohari G (2017) Response of ROS-scavenging systems to salinity stress in two different wheat (Triticum aestivum L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 45(1):287–291

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SM (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29(1):185–212

    Article  Google Scholar 

  • Frederick PC, Ogden JC (2001) Pulsed breeding of long-legged wading birds and the importance of infrequent severe drought conditions in the Florida Everglades. Wetlands 21(4):484–491

    Article  Google Scholar 

  • Fu J, Huang B (2001) Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ Exp Bot 45(2):105–114

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19(10):623–630

    Article  CAS  PubMed  Google Scholar 

  • Grattan SR, Grieve CM (1998) Salinity–mineral nutrient relations in horticultural crops. Sci Hortic 78(1–4):127–157

    Article  Google Scholar 

  • Gurumurthy S, Sarkar B, Vanaja M, Lakshmi J, Yadav S, Maheswari M (2019) Morpho-physiological and biochemical changes in black gram (Vigna mungo L. Hepper) genotypes under drought stress at flowering stage. Acta Physiol Plant 41:42

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M, Islam MN, Ahamed KU, Nahar K (2009) Performance of four irrigated rice varieties under different levels of salinity stress. Int J Integr Biol 6(2):85–90

    Google Scholar 

  • Hosseini MS, Samsampour D, Ebrahimi M, Abadía J, Khanahmadi M (2018) Effect of drought stress on growth parameters, osmolyte contents, antioxidant enzymes and glycyrrhizin synthesis in licorice (Glycyrrhiza glabra L.) grown in the field. Phytochemistry 156:124–134

    Article  CAS  PubMed  Google Scholar 

  • Hussain I, Ashraf MA, Anwar F, Rasheed R, Niaz M, Wahid A (2014) Biochemical characterization of maize (Zea mays L.) for salt tolerance. Plant Biosyst 148(5):1016–1026

    Article  Google Scholar 

  • Hussain S, Rao MJ, Anjum MA, Ejaz S, Zakir I, Ali MA et al (2019) Oxidative stress and antioxidant defense in plants under drought conditions. Plant abiotic stress tolerance. Springer, New York, NY, pp 207–219

    Google Scholar 

  • Ibrahim W, Ahmed IM, Chen X, Cao F, Zhu S, Wu F (2015) Genotypic differences in photosynthetic performance, antioxidant capacity, ultrastructure and nutrients in response to combined stress of salinity and Cd in cotton. Biometals 28(6):1063–1078

    Article  CAS  PubMed  Google Scholar 

  • Izadi MH, Rabbani J, Emam Y, Pessarakli M, Tahmasebi A (2014) Effects of salinity stress on physiological performance of various wheat and barley cultivars. J Plant Nutr 37(4):520–531

    Article  CAS  Google Scholar 

  • Jain A, Pennacchiotti M (2010) Open entity extraction from web search query logs. In: Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pp 510–518

    Google Scholar 

  • James RA, Rivelli AR, Munns R, von Caemmerer S (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29(12):1393–1403

    Article  CAS  PubMed  Google Scholar 

  • Jan M, Anwar-ul-Haq M, Shah AN, Yousaf M, Iqbal J, Li X et al (2019) Modulation in growth, gas exchange, and antioxidant activities of salt-stressed rice (Oryza sativa L.) genotypes by zinc fertilization. Arab J Geosci 12(24):1–7

    Article  CAS  Google Scholar 

  • Joseph EA, Mohanan KV (2013) A study on the effect of salinity stress on the growth and yield of some native rice cultivars of Kerala state of India. Agric For Fish 2:141–150

    Google Scholar 

  • Kadam NN, Xiao G, Melgar RJ, Bahuguna RN, Quinones C, Tamilselvan A et al (2014) Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. Adv Agron 127:111–156

    Article  Google Scholar 

  • Kamara AY, Menkir A, Badu-Apraku B, Ibikunle O (2003) The influence of drought stress on growth, yield and yield components of selected maize genotypes. J Agric Sci 141(1):43–50

    Article  Google Scholar 

  • Karim MR, Rahman MA (2015) Drought risk management for increased cereal production in Asian least developed countries. Weather Clim Extrem 7:24–35

    Article  Google Scholar 

  • Karimi HR, Maleki Kuhbanani A (2015) The evaluation of inter-specific hybrid of P. atlantica × P. vera cv.‘BadamiZarand’ as a pistachio rootstock to salinity stress. J Nuts 6(02):113–122

    CAS  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Purushothaman R, Upadhyaya HD, Gaur PM, Gowda CLL et al (2015) Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crop Res 170:47–54

    Article  Google Scholar 

  • Kato Y, Kamoshita A, Yamagishi J (2008) Preflowering abortion reduces spikelet number in upland rice (Oryza sativa L.) under water stress. Crop Sci 48(6):2389–2395

    Article  Google Scholar 

  • Kaya MD, Okçu G, Atak M, Cıkılı Y, Kolsarıcı Ö (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24(4):291–295

    Article  CAS  Google Scholar 

  • Keleş Y, Öncel I (2002) Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci 163(4):783–790

    Article  Google Scholar 

  • Ketring DL (1991) Physiology of oil seeds: IX. Effects of water deficit on peanut seed quality. Crop Sci 31(2):459–463

    Article  CAS  Google Scholar 

  • Khan MB, Hussain M, Raza A, Farooq S, Jabran K (2015) Seed priming with CaCl2 and ridge planting for improved drought resistance in maize. Turk J Agric For 39(2):193–203

    Article  CAS  Google Scholar 

  • Khatun S, Flowers TJ (1995) The estimation of pollen viability in rice. J Exp Bot 46(1):151–154

    Article  CAS  Google Scholar 

  • King A (1994) Guiding knowledge construction in the classroom: effects of teaching children how to question and how to explain. Am Educ Res J 31(2):338–368

    Article  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25(2):275–294

    Article  CAS  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529(7584):84–87

    Article  CAS  PubMed  Google Scholar 

  • Lipiec J, Doussan C, Nosalewicz A, Kondracka K (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophys 27(4):463–477

    Article  Google Scholar 

  • Mahalakshmi V, Bidinger FR (1985) Water stress and time of floral initiation in pearl millet. J Agric Sci 105(2):437–445

    Article  Google Scholar 

  • Maiti RK, Satya P (2014) Research advances in major cereal crops for adaptation to abiotic stresses. GM Crops Food 5(4):259–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller GAD, Tognetti VB, Vandepoele K et al (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi-Nejad G, Singh RK, Arzani A, Rezaei A, Sabouri H, Gregorio GB (2010) Evaluation of salinity tolerance in rice genotypes. Int J Plant Prod 4:199

    CAS  Google Scholar 

  • Munns R, Termaat A (1986) Whole-plant responses to salinity. Funct Plant Biol 13(1):143–160

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murty PSS, Murty KS (1982) Spikelet sterility in relation to nitrogen and carbohydrate contents in rice. Indian J Plant Physiol 25:40–48

    Google Scholar 

  • Nahar K, Hasanuzzaman M (2009) Germination, growth, nodulation and yield performance of three mungbean varieties under different levels of salinity stress. Green Farm 2(12):825–829

    Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44(3):806–811

    Google Scholar 

  • Nonami H (1993) Growth regulation in plant factories and greenhouses from a physiological viewpoint. In: The computerized greenhouse: automatic control application in plant production. Academic Press, London, pp 303–331

    Chapter  Google Scholar 

  • Ozfidan-Konakci C, Yildiztugay E, Kucukoduk M (2015) Upregulation of antioxidant enzymes by exogenous gallic acid contributes to the amelioration in Oryza sativa roots exposed to salt and osmotic stress. Environ Sci Pollut Res 22(2):1487–1498

    Article  CAS  Google Scholar 

  • Pandey RK, Maranville JW, Chetima MM (2001) Tropical wheat response to irrigation and nitrogen in a Sahelian environment. II. Biomass accumulation, nitrogen uptake and water extraction. Eur J Agron 15(2):107–118

    Article  Google Scholar 

  • Pant NC, Agarrwal R, Agrawal S (2014) Mannitol-induced drought stress on calli of Trigonella foenum-graecum L. Var. RMt-303. Indian J Exp Biol 52:1128

    PubMed  Google Scholar 

  • Patanè C, Saita A, Sortino O (2013) Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet sorghum. J Agron Crop Sci 199(1):30–37

    Article  Google Scholar 

  • Paul S, Roychoudhury A (2019) Comparative analysis of the expression of candidate genes governing salt tolerance and yield attributes in two contrasting rice genotypes, encountering salt stress during grain development. J Plant Growth Regul 38:539–556

    Article  CAS  Google Scholar 

  • Qadir M, Schubert S (2002) Degradation processes and nutrient constraints in sodic soils. Land Degrad Dev 13(4):275–294

    Article  Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ et al (2014) Economics of salt‐induced land degradation and restoration. Nat Resour Forum 38(4):282–295

    Article  Google Scholar 

  • Queiroz MS, Oliveira CE, Steiner F, Zuffo AM, Zoz T, Vendruscolo EP et al (2019) Drought stresses on seed germination and early growth of maize and sorghum. J Agric Sci 11(2):310–318

    Google Scholar 

  • Rabara R, Msanne J, Basu S, Ferrer M, Roychoudhury A (2021) Coping with inclement weather conditions due to high temperature and water deficit in rice: an insight from genetic and biochemical perspectives. Physiol Plant 172(2):487–504

    Article  CAS  PubMed  Google Scholar 

  • Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact 13(1):73–82

    Article  CAS  Google Scholar 

  • Rouhier N, Couturier J, Jacquot JP (2006) Genome-wide analysis of plant glutaredoxin systems. J Exp Bot 57(8):1685–1696

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Basu S, Sarkar SN, Sengupta DN (2008) Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep 27(8):1395–1410

    Article  CAS  PubMed  Google Scholar 

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian J Exp Biol 48:593

    CAS  PubMed  Google Scholar 

  • Saini HS, Aspinall D (1981) Effect of water deficit on sporogenesis in wheat (Triticum aestivum L.). Ann Bot 48(5):623–633

    Article  Google Scholar 

  • Sairam RK, Saxena DC (2000) Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J Agron Crop Sci 184(1):55–61

    Article  CAS  Google Scholar 

  • Samarah NH, Alqudah AM, Amayreh JA, McAndrews GM (2009) The effect of late‐terminal drought stress on yield components of four barley cultivars. J Agron Crop Sci 195(6):427–441

    Article  Google Scholar 

  • Seghatoleslami MJ, Kafi M, Majidi E (2008) Effect of drought stress at different growth stages on yield and water use efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pak J Bot 40(4):1427–1432

    Google Scholar 

  • Shao HB, Song WY, Chu LY (2008) Advances of calcium signals involved in plant anti-drought. C R Biol 331(8):587–596

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46(3):209–221

    Article  CAS  Google Scholar 

  • Singh RK, Mishra B, Singh KN (2004) Salt tolerant rice varieties and their role in reclamation programme in Uttar Pradesh. Indian Farm 2:6–10

    Google Scholar 

  • Singh P, Mahajan MM, Singh NK, Kumar D, Kumar K (2020) Physiological and molecular response under salinity stress in bread wheat (Triticum aestivum L.). J Plant Biochem Biotechnol 29(1):125–133

    Article  CAS  Google Scholar 

  • Smiciklas KD, Mullen RE, Carlson RE, Knapp AD (1992) Soybean seed quality response to drought stress and pod position. Agron J 84(2):166–170

    Article  Google Scholar 

  • Sourour A, Afef O, Mounir R, Mongi BY (2017) A review: morphological, physiological, biochemical and molecular plant responses to water deficit stress. Int J Eng Sci 6(1):1–4

    Article  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67(3):429–443

    Article  CAS  Google Scholar 

  • Vighi IL, Benitez LC, Amaral MN, Moraes GP, Auler PA, Rodrigues GS et al (2017) Functional characterization of the antioxidant enzymes in rice plants exposed to salinity stress. Biol Plant 61(3):540–550

    Article  CAS  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Webb R, Fuchigami L (2005) Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130(2):167–173

    Article  CAS  Google Scholar 

  • Winkel T, Renno JF, Payne WA (1997) Effect of the timing of water deficit on growth, phenology and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) grown in Sahelian conditions. J Exp Bot 48(5):1001–1009

    Article  CAS  Google Scholar 

  • Wopereis MCS, Kropff MJ, Maligaya AR, Tuong TP (1996) Drought-stress responses of two lowland rice cultivars to soil water status. Field Crop Res 46(1–3):21–39

    Article  Google Scholar 

  • Yassin M, El Sabagh A, Mekawy AMM, Islam MS, Hossain A, Barutcular C et al (2019) Comparative performance of two bread wheat (Triticum aestivum L.) genotypes under salinity stress. Appl Ecol Environ Res 17(2):5029–5041

    Article  Google Scholar 

  • Zeeshan M, Lu M, Sehar S, Holford P, Wu F (2020) Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy 10(1):127

    Article  CAS  Google Scholar 

  • Zhang M, Qin Z, Liu X (2005) Remote sensed spectral imagery to detect late blight in field tomatoes. Precis Agric 6(6):489–508

    Article  Google Scholar 

  • Zhang Q, Li J, Zhang W, Yan S, Wang R, Zhao J et al (2012) The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant J 72(5):805–816

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C et al (2018) Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int J Environ Res Public Health 15(5):839

    Article  PubMed Central  Google Scholar 

  • Zheng Y, Jia A, Ning T, Xu J, Li Z, Jiang G (2008) Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. J Plant Physiol 165(14):1455–1465

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhardwaj, S., Verma, T., Kapoor, B., Kapoor, D. (2022). Cereal Physiology, Flowering, and Grain Yield Under Salinity and Drought Stress. In: Roychoudhury, A., Aftab, T., Acharya, K. (eds) Omics Approach to Manage Abiotic Stress in Cereals. Springer, Singapore. https://doi.org/10.1007/978-981-19-0140-9_2

Download citation

Publish with us

Policies and ethics