Skip to main content

Abstract

Colorectal cancer (CRC) is one of the most common causes of cancer morbidity in both male and female. The development of CRC is found 1.5 times higher in men compared to women, and the development is 4–8 years earlier in men than women, suggesting the protective role of estrogen in the CRC. Sex difference of CRC has two aspects between sexual dimorphism (biological differences in hormones and genes) and gender differences (non-biological differences in societal attitudes and behavior). Recently there has been a growing body of evidence indicating sexual dimorphism in the biology of gene and protein expression, and in endocrine cellular signaling. Women have a higher risk of developing right-sided (proximal) colon cancer than men, which is associated with more aggressive form of neoplasia compared to left-sided (distal) colon cancer. Despite differences in tumor location between men and women, most of scientific researchers do not consider sex specificity for study design and interpretation. Also, CRC screening guidelines do not distinguish women from men, and socio-cultural barriers within women sometimes delay screening and diagnosis. Few studies have reported sex-specific estimates of dietary risk factors which are crucial to establish cancer prevention guidelines. Furthermore, chemotherapy for CRC can cause toxicity to the reproductive system, and sex-specific recurrence and survival rates are reported. Therefore, understanding sex/gender-related biological and socio-cultural differences in CRC risk will help in providing gender-specific strategies for screening, treatment, and prevention protocols to reduce the mortality and improve the quality of life. In this review, physiological or pathophysiological characteristics arising from differences in hormonal or other biological parameters such as genetic inheritance and epidemiology of underlying biological causes were reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haziman AA, Ravinderan S, Thangavelu T, Thomas T. A novel role for estrogen-induced signaling in the colorectal cancer gender bias. Ir J Med Sci. 2019;188:389–95.

    Article  CAS  PubMed  Google Scholar 

  2. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66:683–91.

    Article  PubMed  Google Scholar 

  3. Hong S, Won YJ, Park YR, Jung KW, Kong HJ, Lee ES, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2017. Cancer Res Treat. 2020;52:335–50.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Abancens M, Bustos V, Harvey H, McBryan J, Harvey BJ. Sexual dimorphism in colon cancer. Front Oncol. 2020;10:607909.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kim SE, Paik HY, Yoon H, Lee JE, Kim N, Sung MK. Sex- and gender-specific disparities in colorectal cancer risk. World J Gastroenterol. 2015;21:5167–75.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ferlay JSI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, et al. GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11[Internet]. Lyon: International Agency for Research on Cancer; 2013.

    Google Scholar 

  7. Pal SK, Hurria A. Impact of age, sex, and comorbidity on cancer therapy and disease progression. J Clin Oncol. 2010;28:4086–93.

    Article  PubMed  Google Scholar 

  8. Ahlquist T, Lind GE, Costa VL, Meling GI, Vatn M, Hoff GS, et al. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Mol Cancer. 2008;7:94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. International Agency for Research on Cancer (IARC). The Global Cancer Observatory 2019. https://gco.iarc.fr/today/data/factsheets/cancers/10_8_9-Colorectum-fact-sheet.pdf. Accessed 22 October 2020.

  10. Ci5plus, International Agency for Research on Cancer. Cancer incidents in five continents time trends. https://ci5.iarc.fr/CI5plus/Pages/online.aspx. Accessed 22 July 2021.

  11. Brenner H, Hoffmeister M, Arndt V, Haug U. Gender differences in colorectal cancer: implications for age at initiation of screening. Br J Cancer. 2007;96:828–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. National Cancer Institute: Surveillance E, and Results: SEER stat fact sheets-all sites. https://seer.cancer.gov/explorer/application.html?site=20&data_type=1&graph_type=1&compareBy=sex&chk_sex_3=3&chk_sex_2=2&race=1&age_range=1&hdn_stage=101&rate_type=2&advopt_precision=1&advopt_display=2. Accessed 22 October 2020.

  13. Korea Central Cancer Registry, National Cancer Center. Annual report of cancer statistics in Korea in 2017, Ministry of Health and Welfare, 2019.

    Google Scholar 

  14. O’Mahony F, Thomas W, Harvey BJ. Novel female sex-dependent actions of oestrogen in the intestine. J Physiol. 2009;587:5039–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Son HJ, Sohn SH, Kim N, Lee HN, Lee SM, Nam RH, et al. Effect of estradiol in an azoxymethane/dextran sulfate sodium-treated mouse model of colorectal cancer: Implication for sex difference in colorectal cancer development. Cancer Res Treat. 2019;51:632–48.

    Article  CAS  PubMed  Google Scholar 

  16. Rennert G, Rennert HS, Pinchev M, Lavie O, Gruber SB. Use of hormone replacement therapy and the risk of colorectal cancer. J Clin Oncol. 2019;27:4542–7.

    Article  CAS  Google Scholar 

  17. Song JH, Kim N, Nam RH, Choi SI, Yu JE, Nho H, et al. Testosterone strongly enhances azoxymethane/dextran sulfate sodium-induced colorectal cancer development in C57BL/6 mice. Am J Cancer Res. 2021;11:3145–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmuck R, Gerken M, Teegen EM, Krebs I, Klinkhammer-Schalke M, Aigner F, et al. Gender comparison of clinical, histopathological, therapeutic and outcome factors in 185,967 colon cancer patients. Langenbeck’s Arch Surg. 2020;405:71–80.

    Google Scholar 

  19. Yang Y, Wang G, He J, Ren S, Wu F, Zhang J, et al. Gender differences in colorectal cancer survival: a meta-analysis. Int J Cancer. 2017;141:1942–9.

    Article  CAS  PubMed  Google Scholar 

  20. Sant M, Allemani C, Santaquilani M, Knijn A, Marchesi F, Capocaccia R, et al. EUROCARE-4. Survival of cancer patients diagnosed in 1995-1999. Results and commentary. Eur J Cancer. 2009;45:931–91.

    Article  PubMed  Google Scholar 

  21. De Angelis R, Sant M, Coleman MP, Francisci S, Baili P, Pierannunzio D, et al. Cancer survival in Europe 1999-2007 by country and age: results of EUROCARE–5-a population-based study. Lancet Oncol. 2014;15:23–34.

    Article  PubMed  Google Scholar 

  22. White A, Ironmonger L, Steele RJC, Ormiston-Smith N, Crawford C, Seims A. A review of sex-related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK. BMC Cancer. 2018;18:906.

    Article  PubMed  PubMed Central  Google Scholar 

  23. International Agency for Research on Cancer (IARC). Global Cancer Observatory: Cancer Tomorrow. Estimated number of incident cases from 2018 to 2040, colon, both sexes, all ages 2019. https://gco.iarc.fr/tomorrow/graphicisotype?type=0&type_sex=0&mode=population&sex=0&populations=900&cancers=8&age_group=value&apc_male=0&apc_female=0&single_unit=100000&print=0. Accessed 28 July 2021.

  24. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  25. Koo JH, Jalaludin B, Wong SK, Kneebone A, Connor SJ, Leong RW. Improved survival in young women with colorectal cancer. Am J Gastroenterol. 2008;103:1488–95.

    Article  PubMed  Google Scholar 

  26. Majek O, Gondos A, Jansen L, Emrich K, Holleczek B, Katalinic A, et al. Sex differences in colorectal cancer survival: population-based analysis of 164,996 colorectal cancer patients in Germany. PLoS One. 2013;8:e68077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hendifar A, Yang D, Lenz F, Lurje G, Pohl A, Lenz C, et al. Gender disparities in metastatic colorectal cancer survival. Clin Cancer Res. 2009;15:6391–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lee MS, Menter DG, Kopetz S. Right versus left colon cancer biology: integrating the consensus molecular subtypes. J Natl Compr Cancer Netw. 2017;15:411–9.

    Article  Google Scholar 

  29. Nakagawa-Senda H, Hori M, Matsuda T, Ito H. Prognostic impact of tumor location in colon cancer: the Monitoring of Cancer Incidence in Japan (MCIJ) project. BMC Cancer. 2019;19:431.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Petrelli F, Tomasello G, Borgonovo K, Ghidini M, Turati L, Dallera P, et al. Prognostic survival associated with left-sided vs right-sided colon cancer: a systematic review and meta-analysis. JAMA Oncol. 2016;4227:2374–445.

    Google Scholar 

  31. Ward R, Meagher A, Tomlinson I, O’Connor T, Norrie M, Wu R, et al. Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut. 2001;486:821–9.

    Article  Google Scholar 

  32. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jacobs ET, Thompson PA, Martínez ME. Diet, gender, and colorectal neoplasia. J Clin Gastroenterol. 2007;41:731–46.

    Article  PubMed  Google Scholar 

  34. Missiaglia E, Jacobs B, D’Ario G, Di Narzo AF, Soneson C, Budinska E, et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. Ann Oncol. 2014;25:1995–2001.

    Article  CAS  PubMed  Google Scholar 

  35. Iacopetta B. Are there two sides to colorectal cancer? Int J Cancer. 2002;101:403–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lynch HT, Watson P, Lanspa SJ, Marcus J, Smyrk T, Fitzgibbons RJ, et al. Natural history of colorectal cancer in hereditary nonpolyposis colorectal cancer (Lynch syndromes I and II). Dis Colon Rectum. 1988;31:439–44.

    Article  CAS  PubMed  Google Scholar 

  37. Shen H, Yang J, Huang Q, Jiang MJ, Tan YN, Fu JF, et al. Different treatment strategies and molecular features between right-sided and left-sided colon cancers. World J Gastroenterol. 2015;21:6470–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gasser E, Braunwarth E, Riedmann M, Cardini B, Fadinger N, Presl J, et al. Primary tumour location affects survival after resection of colorectal liver metastases: a two-institutional cohort study with international validation, systematic meta-analysis and a clinical risk score. PLoS One. 2019;14:e0217411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaku E, Oda Y, Murakami Y, Goto H, Tanaka T, Hasuda K, et al. Proportion of flat- and depressed-type and laterally spreading tumor among advanced colorectal neoplasia. Clin Gastroenterol Hepatol. 2011;9:503–8.

    Article  PubMed  Google Scholar 

  40. Liedtke S, Schmidt ME, Becker S, Kaaks R, Zaineddin AK, Buck K, et al. Physical activity and endogenous sex hormones in postmenopausal women: to what extent are observed associations confounded or modified by BMI? Cancer Causes Control. 2011;22:81–9.

    Article  PubMed  Google Scholar 

  41. Lukanova A, Lundin E, Zeleniuch-Jacquotte A, Muti P, Mure A, Rinaldi S, et al. Body mass index, circulating levels of sex-steroid hormones, IGF-I and IGF-binding protein-3: a cross-sectional study in healthy women. Eur J Endocrinol. 2004;150:161–71.

    Article  CAS  PubMed  Google Scholar 

  42. Carmina E, Stanczyk FZ, Lobo RA. Laboratory assessment. In: Barbieri R, Strauss J, editors. Yen and Jaffe’s reproductive endocrinology. 7th ed. Virginia: Elsevier; 2014. p. 822–50.

    Chapter  Google Scholar 

  43. Sasso CV, Santiano FE, Campo Verde Arboccó F, Zyla LE, Semino SN, Guerrero-Gimenez ME, et al. Estradiol and progesterone regulate proliferation and apoptosis in colon cancer. Endocr. Connect. 2019;8:217–29.

    CAS  Google Scholar 

  44. Meijer BJ, Wielenga MCB, Hoyer PB, Amos-Landgraf JM, Hakvoort TBM, Muncan V, et al. Colorectal tumor prevention by the progestin medroxyprogesterone acetate is critically dependent on postmenopausal status. Oncotarget. 2018;9:30561–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nie X, Xie R, Tuo B. Effects of estrogen on the gastrointestinal tract. Dig Dis Sci. 2018;63:583–96.

    Article  CAS  PubMed  Google Scholar 

  46. Wilkenfeld SR, Lin C, Frigo DE. Communication between genomic and non-genomic signaling events coordinate steroid hormone actions. Steroids. 2018;133:2–7.

    Article  CAS  PubMed  Google Scholar 

  47. Harvey BJ. Guest editorial: 11th international meeting on rapid responses to steroid hormones RRSH2018. Steroids. 2020;154:108552.

    Article  CAS  PubMed  Google Scholar 

  48. Son HJ, Kim N, Song CH, Lee SM, Lee HN, Surh YJ. 17β-Estradiol reduces inflammation and modulates antioxidant enzymes in colonic epithelial cells. Korean J Intern Med. 2020;35:310–9.

    Article  CAS  PubMed  Google Scholar 

  49. Chi X, Yao W, Xia H, Jin Y, Li X, Cai J, et al. Elevation of HO-1 expression mitigates intestinal ischemia-reperfusion injury and restores tight junction function in a rat liver transplantation model. Oxidative Med Cell Longev. 2015;2015:986075.

    Article  Google Scholar 

  50. Chen CS, Tseng YT, Hsu YY, Lo YC. Nrf2-Keap1 antioxidant defense and cell survival signaling are upregulated by 17beta-estradiol in homocysteine-treated dopaminergic SH-SY5Y cells. Neuroendocrinology. 2013;97:232–41.

    Article  PubMed  CAS  Google Scholar 

  51. Tao S, Justiniano R, Zhang DD, Wondrak GT. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV. Redox Biol. 2013;1:532–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee SM, Kim N, Son HJ, Park JH, Nam RH, Ham MH, et al. The effect of sex on the azoxymethane/dextran sulfate sodium-treated mice model of colon cancer. J Cancer Prev. 2016;21:271–8.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wu J, Williams D, Walter GA, Thompson WE, Sidell N. Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells. Exp Cell Res. 2014;328:351–60.

    Article  CAS  PubMed  Google Scholar 

  54. Cho MK, Kim WD, Ki SH, Hwang JI, Choi S, Lee CH, et al. Role of Galpha12 and Galpha13 as novel switches for the activity of Nrf2, a key antioxidative transcription factor. Mol Cell Biol. 2007;27:6195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li T, Xiao X, Zhang J, Zhu Y, Hu Y, Zang J, et al. Age and sex differences in vascular responsiveness in healthy and trauma patients: contribution of estrogen receptor-mediated Rho kinase and PKC pathways. Am J Physiol Heart Circ Physiol. 2014;306:H1105–15.

    Article  CAS  PubMed  Google Scholar 

  56. Wang Y, Zhu L, Kuokkanen S, Pollard JW. Activation of protein synthesis in mouse uterine epithelial cells by estradiol 17beta is mediated by a PKC-ERK1/2-mTOR signaling pathway. Proc Natl Acad Sci U S A. 2015;112:E1382–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. O’Mahony F, Alzamora R, Chung HL, Thomas W, Harvey BJ. Genomic priming of the antisecretory response to estrogen in rat distal colon throughout the estrous cycle. Mol Endocrinol. 2009;23:1885–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S, et al. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol. 2008;76:1485–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2-an update. Free Radic Biol Med. 2014;66:36–44.

    Article  CAS  PubMed  Google Scholar 

  60. Zhao C, Gillette DD, Li X, Zhang Z, Wen H. Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation. J Biol Chem. 2014;289:17020–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death. Immunol Rev. 2011;243:206–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saleiro D, Murillo G, Benya RV, Bissonnette M, Hart J, Mehta RG. Estrogen receptor-beta protects against colitis-associated neoplasia in mice. Int J Cancer. 2012;131:2553–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Suzuki R, Kohno H, Sugie S, Tanaka T. Sequential observations on the occurrence of preneoplastic and neoplastic lesions in mouse colon treated with azoxymethane and dextran sodium sulfate. Cancer Sci. 2004;95:721–7.

    Article  CAS  PubMed  Google Scholar 

  64. DiDonato JA, Mercurio F, Karin M. NF-kappaB and the link between inflammation and cancer. Immunol Rev. 2012;246:379–400.

    Article  PubMed  CAS  Google Scholar 

  65. Kalaitzidis D, Gilmore TD. Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab. 2005;16:46–52.

    Article  CAS  PubMed  Google Scholar 

  66. Bratton MR, Antoon JW, Duong BN, Frigo DE, Tilghman S, Collins-Burow BM, et al. Galphao potentiates estrogen receptor alpha activity via the ERK signaling pathway. J Endocrinol. 2012;214:45–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Satoh H, Moriguchi T, Saigusa D, Baird L, Yu L, Rokutan H, et al. NRF2 intensifies host defense systems to prevent lung carcinogenesis, but after tumor initiation accelerates malignant cell growth. Cancer Res. 2016;76:3088–96.

    Article  CAS  PubMed  Google Scholar 

  68. Fabbi M, Carbotti G, Ferrini S. Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J Leukoc Biol. 2015;97:665–75.

    Article  CAS  PubMed  Google Scholar 

  69. Ki SH, Choi MJ, Lee CH, Kim SG. Galpha12 specifically regulates COX-2 induction by sphingosine 1-phosphate. Role for JNK-dependent ubiquitination and degradation of IkappaBalpha. J Biol Chem. 2007;282:1938–47.

    Article  CAS  PubMed  Google Scholar 

  70. Song CH, Kim N, Lee SM, Nam RH, Choi SI, Kang SR, et al. Effects of 17β-estradiol on colorectal cancer development after azoxymethane/dextran sulfate sodium treatment of ovariectomized mice. Biochem Pharmacol. 2019;164:139–51.

    Article  CAS  PubMed  Google Scholar 

  71. Dou M, Zhu K, Fan Z, Zhang Y, Chen X, Zhou X, et al. Reproductive hormones and their receptors may affect lung cancer. Cell Physiol Biochem. 2017;44:1425–34.

    Article  CAS  PubMed  Google Scholar 

  72. Wang B, Yang J, Li S, Lv M, Chen Z, Li E, et al. Tumor location as a novel high risk parameter for stage II colorectal cancers. PLoS One. 2017;12:e0179910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 2001;107:7–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang Z, Rigas B. NF-kappaB, inflammation and pancreatic carcinogenesis: NF-kappaB as a chemoprevention target (review). Int J Oncol. 2006;29:185–92.

    CAS  PubMed  Google Scholar 

  75. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001;107:135–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Levin ER, Hammes SR. Nuclear receptors outside the nucleus: extranuclear signalling by steroid receptors. Nat Rev Mol Cell Biol. 2016;17:783–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gaudet HM, Cheng SB, Christensen EM, Filardo EJ. The G-protein coupled estrogen receptor, GPER: the inside and inside-out story. Mol Cell Endocrinol. 2015;418(Pt 3):207–19.

    Article  CAS  PubMed  Google Scholar 

  78. Levin ER. Membrane estrogen receptors signal to determine transcription factor function. Steroids. 2018;132:1–4.

    Article  CAS  PubMed  Google Scholar 

  79. Caiazza F, Ryan EJ, Doherty G, Winter DC, Sheahan K. Estrogen receptors and their implications in colorectal carcinogenesis. Front Oncol. 2015;5:19.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Maingi JW, Tang S, Liu S, Ngenya W, Bao E. Targeting estrogen receptors in colorectal cancer. Mol Biol Rep. 2020;47:4087–91.

    Article  CAS  PubMed  Google Scholar 

  81. Principi M, Barone M, Pricciet M, Tullio ND, Losurdo G, Ierardiet E, et al. Ulcerative colitis: from inflammation to cancer. Do estrogen receptors have a role? World J Gastroenterol. 2014;20:11496–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fiorelli G, Picariello L, Martineti V, Tonelli F, Brandi ML. Functional estrogen receptor beta in colon cancer cells. Biochem Biophys Res Commun. 1999;261:521–7.

    Article  CAS  PubMed  Google Scholar 

  83. Wong NA, Malcomson RD, Jodrell DI, Groome NP, Harrison DJ, Saunders PT. ERbeta isoform expression in colorectal carcinoma: an in vivo and in vitro study of clinicopathological and molecular correlates. J Pathol. 2005;207:53–60.

    Article  CAS  PubMed  Google Scholar 

  84. Wada-Hiraike O, Imamov O, Hiraike H, Hultenby K, Schwend T, Omoto Y, et al. Role of estrogen receptor beta in colonic epithelium. Proc Natl Acad Sci U S A. 2006;103:2959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Martineti V, Picariello L, Tognarini I, Carbonell Sala S, Gozzini A, Azzari C, et al. ERbeta is a potent inhibitor of cell proliferation in the HCT8 human colon cancer cell line through regulation of cell cycle components. Endocr Relat Cancer. 2005;12:455–69.

    Article  CAS  PubMed  Google Scholar 

  86. Qiu Y, Waters CE, Lewis AE, Langman MJ, Eggo MC. Oestrogen-induced apoptosis in colonocytes expressing oestrogen receptor beta. J Endocrinol. 2002;174:369–77.

    Article  CAS  PubMed  Google Scholar 

  87. Hases L, Indukuri R, Birgersson M, Nguyen-Vu T, Lozano R, Saxena A, et al. Intestinal estrogen receptor beta suppresses colon inflammation and tumorigenesis in both sexes. Cancer Lett. 2020;492:54–62.

    Article  CAS  PubMed  Google Scholar 

  88. Braniste V, Leveque M, Buisson-Brenac C, Bueno L, Fioramonti J, Houdeau E. Oestradiol decreases colonic permeability through oestrogen receptor betamediated up-regulation of occludin and junctional adhesion molecule-A in epithelial cells. J Physiol. 2009;587(Pt 13):3317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Song CH, Kim N, Sohn SH, Lee SM, Nam RH, Na HY, et al. Effects of 17β-estradiol on colonic permeability and inflammation in an azoxymethane/dextran sulfate sodium-induced colitis mouse model. Gut Liver. 2018;12:682–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Konstantinopoulos PA, Kominea A, Vandoros G, Sykiotis GP, Andricopoulos P, Varakis I, et al. Oestrogen receptor beta (ERbeta) is abundantly expressed in normal colonic mucosa, but declines in colon adenocarcinoma paralleling the tumour’s dedifferentiation. Eur J Cancer. 2003;39:1251–8.

    Article  CAS  PubMed  Google Scholar 

  91. Foley EF, Jazaeri AA, Shupnik MA, Jazaeri O, Rice LW. Selective loss of estrogen receptor beta in malignant human colon. Cancer Res. 2000;60:245–8.

    CAS  PubMed  Google Scholar 

  92. Rudolph A, Toth C, Hoffmeister M, Roth W, Herpel E, Jansen L, et al. Expression of oestrogen receptor beta and prognosis of colorectal cancer. Br J Cancer. 2012;107:831–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Barzi A, Lenz AM, Labonte MJ, Lenz HJ. Molecular pathways: estrogen pathway in colorectal cancer. Clin Cancer Res. 2013;19:5842–8.

    Article  CAS  PubMed  Google Scholar 

  94. Jacenik D, Beswick EJ, Krajewska WM, Prossnitz ER. G protein-coupled estrogen receptor in colon function, immune regulation and carcinogenesis. World J Gastroenterol. 2019;25:4092–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jacenik D, Krajewska WM. Significance of G protein-coupled estrogen receptor in the pathophysiology of irritable bowel syndrome, inflammatory bowel diseases and colorectal cancer. Front Endocrinol (Lausanne). 2020;11:390.

    Article  Google Scholar 

  96. Jacenik D, Zielińska M, Mokrowiecka A, Michlewska S, Małecka-Panas E, Kordek R, et al. G protein-coupled estrogen receptor mediates antiinflammatory action in Crohn’s disease. Sci Rep. 2019;9:6749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Xu S, Wang X, Zhao J, Yang S, Dong L, Qin B. GPER-mediated, oestrogen dependent visceral hypersensitivity in stressed rats is associated with mast cell tryptase and histamine expression. Fundam Clin Pharmacol. 2020;34:433–43.

    Article  CAS  PubMed  Google Scholar 

  98. Manjegowda M, Limaye AM. DNA methylation dependent suppression of GPER1 in colorectal cancer. Med Res Arch. 2019;6:4.

    Google Scholar 

  99. Guérin A, Mody R, Fok B, Lasch KL, Zhou Z, Wu EQ, et al. Risk of developing colorectal cancer and benign colorectal neoplasm in patients with chronic constipation. Aliment Pharmacol Ther. 2014;40:83–92.

    Article  PubMed  Google Scholar 

  100. Jacenik D, Cygankiewicz AI, Mokrowiecka A, Małecka-Panas E, Fichna J, Krajewska WM. Sex- and age-related estrogen signaling alteration in inflammatory bowel diseases: modulatory role of estrogen receptors. Int J Mol Sci. 2019;20:3175.

    Article  CAS  PubMed Central  Google Scholar 

  101. Condliffe SB, Doolan CM, Harvey BJ. 17b-Oestradiol acutely regulates Cl–secretion in rat distal colonic epithelium. J Physiol. 2001;530(Pt 1):47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meng R, Qin Q, Xiong Y, Wang Y, Zheng J, Zhao Y, et al. NHERF1, a novel GPER associated protein, increases stability and activation of GPER in ER positive breast cancer. Oncotarget. 2016;7:54983–97.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jung J. Role of G protein-coupled estrogen receptor in cancer progression. Toxicol Res. 2019;35:209–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6:1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Skrzypczak M, Goryca K, Rubel T, Paziewska A, Mikula M, Jarosz D, et al. Modeling oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical reliability. PLoS One. 2010;5:e13091.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Slattery ML, Sweeney C, Murtaugh M, Ma KN, Wolff RK, Potter JD, et al. Associations between ERalpha, ERbeta, and AR genotypes and colon and rectal cancer. Cancer Epidemiol Biomark Prev. 2005;14:2936–42.

    Article  CAS  Google Scholar 

  107. Catalano MG, Pfeffer U, Raineri M, Ferro P, Curto A, Capuzzi P, et al. Altered expression of androgen-receptor isoforms in human colon-cancer tissues. Int J Cancer. 2000;86:325–30.

    Article  CAS  PubMed  Google Scholar 

  108. Roshan MHK, Tambo A, Pace NP. The role of testosterone in colorectal carcinoma: pathomechanisms and open questions. EPMA J. 2016;7:22.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Gu S, Papadopoulou N, Nasir O, Föller M, Alevizopoulos K, Lang F, et al. Activation of membrane androgen receptors in colon cancer inhibits the prosurvival signals Akt/Bad in vitro and in vivo and blocks migration via vinculin/actin signaling. Mol Med. 2011;17:48–58.

    Article  CAS  PubMed  Google Scholar 

  110. Amos-Landgraf JM, Heijmans J, Wielenga MC, Dunkin E, Krentz KJ, Clipson L, et al. Sex disparity in colonic adenomagenesis involves promotion by male hormones, not protection by female hormones. Proc Natl Acad Sci U S A. 2014;111:16514–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mori N, Sawada N, Iwasaki M, Yamaji T, Goto A, Shimazu T, et al. Circulating sex hormone levels and colorectal cancer risk in Japanese postmenopausal women: the JPHC nested case-control study. Int J Cancer. 2019;145:1238–44.

    Article  CAS  PubMed  Google Scholar 

  112. Khaw KT, Dowsett M, Folkerd E, Bingham S, Wareham N, Luben R, et al. Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men: European prospective investigation into cancer in Norfolk (EPIC-Norfolk) prospective population study. Circulation. 2007;116:2694–701.

    Article  CAS  PubMed  Google Scholar 

  113. Hyde Z, Flicker L, McCaul KA, Almeida OP, Hankey GJ, Chubb SA, et al. Associations between testosterone levels and incident prostate, lung, and colorectal cancer. A population-based study. Cancer Epidemiol Biomark Prev. 2012;21:1319–29.

    Article  CAS  Google Scholar 

  114. Xia T, Sun H, Huang H, Bi H, Pu R, Zhang L, et al. Androgen receptor gene methylation related to colorectal cancer risk. Endocr Connect. 2019;8:979–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Alberg AJ, Gordon GB, Hoffman SC, Comstock GW, Helzlsouer KJ. Serum dehydroepiandrosterone and dehydroepiandrosterone sulfate and the subsequent risk of developing colon cancer. Cancer Epidemiol Biomark Prev. 2000;9:517–21.

    CAS  Google Scholar 

  116. Yang W, Giovannucci EL, Hankinson SE, Chan AT, Ma Y, Wu K, et al. Endogenous sex hormones and colorectal cancer survival among men and women. Int J Cancer. 2020;147:920–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gillessen S, Templeton A, Marra G, Kuo YF, Valtorta E, Shahinian VB. Risk of colorectal cancer in men on long-term androgen deprivation therapy for prostate cancer. J Natl Cancer Inst. 2010;102:1760–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Huang R, Wang G, Song Y, Wang F, Zhu B, Tang Q, et al. Polymorphic CAG repeat and protein expression of androgen receptor gene in colorectal cancer. Mol Cancer Ther. 2015;14:1066–74.

    Article  CAS  PubMed  Google Scholar 

  119. Rudolph A, Shi H, Försti A, Hoffmeister M, Sainz J, Jansen L, et al. Repeat polymorphisms in ESR2 and AR and colorectal cancer risk and prognosis: results from a German population-based case-control study. BMC Cancer. 2014;14:817.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Orsted DD, Nordestgaard BG, Bojesen SE. Plasma testosterone in the general population, cancer prognosis and cancer risk: a prospective cohort study. Ann Oncol. 2014;25:712–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14:e1002533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Dulal S, Keku TO. Gut microbiome and colorectal adenomas. Cancer J (Sudbury, Mass). 2014;20:225.

    Article  CAS  Google Scholar 

  123. Brennan CA, Garrett WS. Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol. 2016;70:395–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Geng J, Fan H, Tang X, Zhai H, Zhang Z. Diversified pattern of the human colorectal cancer microbiome. Gut Pathog. 2013;5:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yoon K, Kim N. The effect of microbiota on colon carcinogenesis. J Cancer Prev. 2018;23:117–25.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Org E, Mehrabian M, Parks BW, Shipkova P, Liu X, Drake TA, et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes. 2016;7:313–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Song CH, Kim N, Nam RH, Choi SI, Lee HN, Surh YJ. 17β-Estradiol supplementation changes gut microbiota diversity in intact and colorectal cancer-induced ICR male mice. Sci Rep. 2020;10:12283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pedram A, Razandi M, Lewis M, Hammes S, Levin ER. Membrane-localized estrogen receptor α is required for normal organ development and function. Dev Cell. 2014;29:482–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ibrahim A, Hugerth LW, Hases L, Saxena A, Seifert M, Thomas Q, et al. Colitis-induced colorectal cancer and intestinal epithelial estrogen receptor beta impact gut microbiota diversity. Int J Cancer. 2019;144:3086–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M, Newton K, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr. 2013;98:111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Brownawell AM, Caers W, Gibson GR, Kendall CW, Lewis KD, Ringel Y, et al. Prebiotics and the health benefits of fiber: current regulatory status, future research, and goals. J Nutr. 2012;142:962–74.

    Article  CAS  PubMed  Google Scholar 

  133. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol. 2016;7:979.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Encarnação J, Abrantes AM, Pires AS, Botelho MF. Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment. Cancer Metastasis Rev. 2015;34:465–78.

    Article  PubMed  CAS  Google Scholar 

  135. Chen J, Vitetta L. Inflammation-modulating effect of butyrate in the prevention of colon cancer by dietary fiber. Clin Colorectal Cancer. 2018;17:e541–4.

    Article  PubMed  Google Scholar 

  136. Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell. 2012;48:612–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wu X, Wu Y, He L, Wu L, Wang X, Liu Z. Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J Cancer. 2018;9:2510–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Humphreys KJ, Conlon MA, Young GP, Topping DL, Hu Y, Winter JM, et al. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev Res (Phila). 2014;7:786–95.

    Article  CAS  Google Scholar 

  139. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.

    Article  CAS  PubMed  Google Scholar 

  140. Conlon MA, Bird AR, Clarke JM, Le Leu RK, Christophersen CT, Lockett TJ, et al. Lowering of large bowel butyrate levels in healthy populations is unlikely to be beneficial. J Nut. 2015;145:1030–1.

    Article  CAS  Google Scholar 

  141. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40:128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Velasquez-Manoff M. Gut microbiome: the peacekeepers. Nature. 2015;518:S3–11.

    Article  CAS  PubMed  Google Scholar 

  143. Tomkovich S, Yang Y, Winglee K, Gauthier J, Mühlbauer M, Sun X, et al. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res. 2017;77:2620–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Choi SI, Son JH, Kim N, Kim YS, Nam RH, Park JH, et al. Changes in cecal microbiota and short-chain fatty acid during lifespan of the rat. J Neurogastroenterol Motil. 2021;27:134–46.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Whitehead RH, Young GP, Bhathal PS. Effects of short chain fatty acids on a new human colon carcinoma cell line (LIM1215). Gut. 1986;27:1457–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Freeman HJ. Effects of differing concentrations of sodium butyrate on 1,2-dimethylhydrazine-induced rat intestinal neoplasia. Gastroenterology. 1986;91:596–602.

    Article  CAS  PubMed  Google Scholar 

  147. Deschner EE, Ruperto JF, Lupton JR, Newmark HL. Dietary butyrate (tributyrin) does not enhance AOM-induced colon tumorigenesis. Cancer Lett. 1990;52:79–82.

    Article  CAS  PubMed  Google Scholar 

  148. Archer SY, Meng S, Shei A, Hodin RA. p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci U S A. 1998;95:6791–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. O’Keefe SJ, Ou J, Aufreiter S, O’Connor D, Sharma S, Sepulveda J, et al. Products of the colonic microbiota mediate the effects of diet on colon cancer risk. J Nutr. 2009;139:2044–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13:517–26.

    Google Scholar 

  151. Belcheva A, Irrazabal T, Robertson SJ, Streutker C, Maughan H, Rubino S, et al. Gut microbial metabolism drives transformation of Msh2-deficient colon epithelial cells. Cell. 2014;158:288–99.

    Article  CAS  PubMed  Google Scholar 

  152. Wu N, Yang X, Zhang R, Li J, Xiao X, Hu Y, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol. 2013;66:462–70.

    Article  CAS  PubMed  Google Scholar 

  153. Zeng H, Lazarova DL, Bordonaro M. Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World J Gastrointest Oncol. 2014;6:41–51.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Ferrario C, Taverniti V, Milani C, Fiore W, Laureati M, De Noni I, et al. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J Nutr. 2014;144:1787–96.

    Article  CAS  PubMed  Google Scholar 

  155. Kim DH, Jin YH. Intestinal bacterial beta-glucuronidase activity of patients with colon cancer. Arch Pharm Res. 2001;24:564–7.

    Article  CAS  PubMed  Google Scholar 

  156. Rowland IR. The role of the gastrointestinal microbiota in colorectal cancer. Curr Pharm Des. 2009;15:1524–7.

    Article  CAS  PubMed  Google Scholar 

  157. Liong MT. Roles of probiotics and prebiotics in colon cancer prevention: postulated mechanisms and in-vivo evidence. Int J Mol Sci. 2008;9:854–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kulkarni N, Reddy BS. Inhibitory effect of Bifidobacterium longum cultures on the azoxymethane-induced aberrant crypt foci formation and fecal bacterial beta-glucuronidase. Proc Soc Exp Biol Med. 1994;207:278–83.

    Article  CAS  PubMed  Google Scholar 

  159. Rowland I, Granli T, Bøckman OC, Key PE, Massey RC. Endogenous N-nitrosation in man assessed by measurement of apparent total N-nitroso compounds in faeces. Carcinogenesis. 1991;12:1395–401.

    Article  CAS  PubMed  Google Scholar 

  160. Rowland RHIR. Metabolic activities of the gut microflora in relation to cancer. Microb Ecol Health Dis. 2000;12:179–85.

    Google Scholar 

  161. Kobayashi J. Effect of diet and gut environment on the gastrointestinal formation of N-nitroso compounds: a review. Nitric Oxide. 2018;73:66–73.

    Article  CAS  PubMed  Google Scholar 

  162. Ijssennagger N, Derrien M, van Doorn GM, Rijnierse A, van den Bogert B, Müller M, et al. Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk. PLoS One. 2012;7:e49868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gamage SMK, Dissabandara L, Lam AK, Gopalan V. The role of heme iron molecules derived from red and processed meat in the pathogenesis of colorectal carcinoma. Crit Rev Oncol Hematol. 2018;126:121–8.

    Article  CAS  PubMed  Google Scholar 

  164. Ijssennagger N, Belzer C, Hooiveld GJ, Dekker J, van Mil SW, Müller M, et al. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci U S A. 2015;112:10038–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Constante M, Fragoso G, Calvé A, Samba-Mondonga M, Santos MM. Dietary heme induces gut dysbiosis, aggravates colitis, and potentiates the development of adenomas in mice. Front Microbiol. 2017;8:1809.

    Article  PubMed  PubMed Central  Google Scholar 

  166. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2013;505:559–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Barrasa JI, Olmo N, Lizarbe MA, Turnay J. Bile acids in the colon, from healthy to cytotoxic molecules. Toxicol In Vitro. 2013;27:964–77.

    Article  CAS  PubMed  Google Scholar 

  168. Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, et al. Sex and gender: modifiers of health, disease, and medicine. Lancet. 2020;396:565–82.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Conti L, Del Cornò M, Gessani S. Revisiting the impact of lifestyle on colorectal cancer risk in a gender perspective. Crit Rev Oncol Hematol. 2020;145:102834.

    Article  PubMed  Google Scholar 

  170. Wan L, He X, Ugai T, Haruki K, Lo C-H, Hang D, et al. Risk factors and incidence of colorectal cancer according to major molecular subtypes. JNCI Cancer Spectr. 2020;5:pkaa089.

    Google Scholar 

  171. Jakszyn P, Cayssials V, Buckland G, Perez-Cornago A, Weiderpass E, Boeing H, et al. Inflammatory potential of the diet and risk of colorectal cancer in the European prospective investigation into cancer and nutrition study. Int J Cancer. 2020;147:1027–39.

    Article  CAS  PubMed  Google Scholar 

  172. Borugian MJ, Sheps SB, Whittemore AS, Wu AH, Potter JD, Gallagher RP. Carbohydrates and colorectal cancer risk among Chinese in North America. Cancer Epidemiol Biomark Prev. 2002;11:187–93.

    Google Scholar 

  173. McMichael AJ, Potter JD. Diet and colon cancer: integration of the descriptive, analytic, and metabolic epidemiology. Natl Cancer Inst Monogr. 1985;69:223–8.

    CAS  PubMed  Google Scholar 

  174. West DW, Slattery ML, Robison LM, Schuman KL, Ford MH, Mahoney AW, et al. Dietary intake and colon cancer: sex- and anatomic site-specific associations. Am J Epidemiol. 1989;130:883–94.

    Article  CAS  PubMed  Google Scholar 

  175. Hu J, La Vecchia C, Negri E, Mery L. Nutrients and risk of colon cancer. Cancers (Basel). 2010;2:51–67.

    Article  CAS  Google Scholar 

  176. Hjartåker A, Aagnes B, Robsahm TE, Langseth H, Bray F, Larsen IK. Subsite-specific dietary risk factors for colorectal cancer: a review of cohort studies. J Oncol. 2013;2013:703854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Larsson SC, Rafter J, Holmberg L, Bergkvist L, Wolk A. Red meat consumption and risk of cancers of the proximal colon, distal colon and rectum: the Swedish Mammography Cohort. Int J Cancer. 2005;113:829–34.

    Article  CAS  PubMed  Google Scholar 

  178. Ferrucci LM, Sinha R, Huang WY, Berndt SI, Katki HA, Schoen RE, et al. Meat consumption and the risk of incident distal colon and rectal adenoma. Br J Cancer. 2012;106:608–16.

    Article  CAS  PubMed  Google Scholar 

  179. Stemmermann GN, Nomura A, Chyou PH. The influence of dairy and nondairy calcium on subsite large-bowel cancer risk. Dis Colon Rectum. 1990;33:190–4.

    Article  CAS  PubMed  Google Scholar 

  180. Wu K, Willett WC, Fuchs CS, Colditz GA, Giovannucci EL. Calcium intake and risk of colon cancer in women and men. J Natl Cancer Inst. 2002;94:437–46.

    Article  PubMed  Google Scholar 

  181. Oh K, Willett WC, Wu K, Fuchs CS, Giovannucci EL. Calcium and vitamin D intakes in relation to risk of distal colorectal adenoma in women. Am J Epidemiol. 2007;165:1178–86.

    Article  PubMed  Google Scholar 

  182. Touvier M, Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, et al. Meta-analyses of vitamin D intake, 25-hydroxyvitamin D status, vitamin D receptor polymorphisms, and colorectal cancer risk. Cancer Epidemiol Biomark Prev. 2011;20:1003–16.

    Article  CAS  Google Scholar 

  183. Yan L, Spitznagel EL, Bosland MC. Soy consumption and colorectal cancer risk in humans: a meta-analysis. Cancer Epidemiol Biomark Prev. 2010;19:148–58.

    Article  CAS  Google Scholar 

  184. Yang G, Shu XO, Li H, Chow WH, Cai H, Zhang X, et al. Prospective cohort study of soy food intake and colorectal cancer risk in women. Am J Clin Nutr. 2009;89:577–83.

    Article  CAS  PubMed  Google Scholar 

  185. Cotterchio M, Boucher BA, Manno M, Gallinger S, Okey A, Harper P. Dietary phytoestrogen intake is associated with reduced colorectal cancer risk. J Nutr. 2006;136:3046–53.

    Article  CAS  PubMed  Google Scholar 

  186. Budhathoki S, Joshi AM, Ohnaka K, Yin G, Toyomura K, Kono S, et al. Soy food and isoflavone intake and colorectal cancer risk: the Fukuoka Colorectal Cancer Study. Scand J Gastroenterol. 2011;46:165–72.

    Article  CAS  PubMed  Google Scholar 

  187. Xu X, Duncan AM, Wangen KE, Kurzer MS. Soy consumption alters endogenous estrogen metabolism in postmenopausal women. Cancer Epidemiol Biomark Prev. 2000;9:781–6.

    CAS  Google Scholar 

  188. Bises G, Bajna E, Manhardt T, Gerdenitsch W, Kallay E, Cross HS. Gender-specific modulation of markers for premalignancy by nutritional soy and calcium in the mouse colon. J Nutr. 2007;137:211S–5S.

    Article  CAS  PubMed  Google Scholar 

  189. Martinez ME. Primary prevention of colorectal cancer: lifestyle, nutrition, exercise. Recent Results Cancer Res. 2005;166:177–211.

    Article  CAS  PubMed  Google Scholar 

  190. Martinez ME, Giovannucci E, Spiegelman D, Hunter DJ, Willett WC, Colditz GA. Leisure-time physical activity, body size, and colon cancer in women. J Natl Cancer Inst. 1997;89:948–55.

    Article  CAS  PubMed  Google Scholar 

  191. Giovannucci E, Ascherio A, Rimm EB, Colditz GA, Stampfer MJ, Willett W. Physical activity, obesity, and risk of colon cancer and adenoma in men. Ann Intern Med. 1995;122:327–34.

    Article  CAS  PubMed  Google Scholar 

  192. Martinez ME, Heddens D, Earnest DL, Bogert CL, Roe D, Einspahr J, et al. Physical activity, body mass index, and PGE2 levels in rectal mucosa. J Natl Cancer Inst. 1999;91:950–3.

    Article  CAS  PubMed  Google Scholar 

  193. Hu FB, Manson JE, Liu S, Hunter D, Colditz GA, Michels KB, et al. Prospective study of adult onset diabetes mellitus (type 2) and risk of colorectal cancer in women. J Natl Cancer Inst. 1999;91:542–7.

    Article  CAS  PubMed  Google Scholar 

  194. Schoen RE, Tangen CM, Kuller LH, Burke GL, Cushman M, Tracy RP, et al. Increased blood glucose and insulin, body size, and incident colorectal cancer. J Natl Cancer Inst. 1999;91:1147–54.

    Article  CAS  PubMed  Google Scholar 

  195. Ho GYF, Wang T, Gunter MJ, Strickler HD, Cushman M, Kaplan RC, et al. Adipokines linking obesity with colorectal cancer risk in postmenopausaol women. Cancer Res. 2012;72:3029–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Terry PD, Miller AB, Rohan TE. Obesity and colorectal cancer risk in women. Gut. 2001;51:191–4.

    Article  Google Scholar 

  197. McTiernan A, Wu L, Chen C, Chlebowski R, Mossavar-Rahmani Y, Modugno F, et al. Relation of BMI and physical activity to sex hormones in postmenopausal women. Obes (Silver Spring). 2006;14:1662–77.

    Article  CAS  Google Scholar 

  198. Shin CM, Han K, Lee DH, Choi YJ, Kim N, Park YS, et al. Association among obesity, metabolic health, and the risk for colorectal cancer in the general population in Korea using the national health insurance service-national sample cohort. Dis Colon Rectum. 2017;60:1192–200.

    Article  PubMed  Google Scholar 

  199. Choi YJ, Lee DH, Han KD, Shin CM, Kim N. Abdominal obesity, glucose intolerance and decreased high-density lipoprotein cholesterol as components of the metabolic syndrome are associated with the development of colorectal cancer. Eur J Epidemiol. 2018;33:1077–85.

    Article  CAS  PubMed  Google Scholar 

  200. World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington, DC: AICR; 2007.

    Google Scholar 

  201. International Agency for Research on Cancer. Alcohol consumption and ethyl carbamate. In: IARC monographs on the evaluation of carcinogenic risks to humans Lyon: IARC Press, International Agency for Research on Cancer; 2010.

    Google Scholar 

  202. International Agency for Research on Cancer. Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. Lyon: IARC Press, International Agency for Research on Cancer; 1998.

    Google Scholar 

  203. Organization WH. IARC monographs on the evaluation of carcinogenic risks to humans: alcohol drinking. Lyon: IARC Press, International Agency for Research on Cancer; 1988.

    Google Scholar 

  204. Choi YJ, Lee DH, Han KD, Kim HS, Yoon H, Shin CM, et al. The relationship between drinking alcohol and esophageal, gastric or colorectal cancer: A nationwide population-based cohort study of South Korea. PLoS One. 2017;12:e0185778.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Mizoue T, Inoue M, Wakai K, et al. Alcohol drinking and colorectal cancer in Japanese: a pooled analysis of results from five cohort studies. Am J Epidemiol. 2008;167:1397–406.

    Article  PubMed  Google Scholar 

  206. Goedde HW, Agarwal DP, Fritze G, Meier-Tackmann D, Singh S, Beckmann G, et al. Distribution of ADH2 and ALDH2 genotypes in different populations. Hum Genet. 1992;88:344–6.

    Article  CAS  PubMed  Google Scholar 

  207. Yi SW, Sull JW, Linton JA, Nam CM, Ohrr H. Alcohol consumption and digestive cancer mortality in Koreans: the Kangwha cohort study. J Epidemiol. 2010;20:204–11.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Giovannucci E, Martinez ME. Tobacco, colorectal cancer, and adenomas: a review of the evidence. J Natl Cancer Inst. 1996;88:1717–30.

    Article  CAS  PubMed  Google Scholar 

  209. Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Ascherio A, Kearney J, et al. A prospective study of cigarette smoking and risk of colorectal adenoma and colorectal cancer in U.S. men. J Natl Cancer Inst. 1994;86:183–91.

    Article  CAS  PubMed  Google Scholar 

  210. Giovannucci E, Colditz GA, Stampfer MJ, Hunter D, Rosner BA, Willett WC, et al. A prospective study of cigarette smoking and risk of colorectal adenoma and colorectal cancer in U.S. women. J Natl Cancer Inst. 1994;86:192–9.

    Article  CAS  PubMed  Google Scholar 

  211. Nordlund LA, Carstensen JM, Pershagen G. Cancer incidence in female smokers: a 26-year follow-up. Int J Cancer. 1997;73:625–8.

    Article  CAS  PubMed  Google Scholar 

  212. Tavani A, Pregnolato A, La Vecchia C, Negri E, Talamini R, Franceschi S. Coffee and tea intake and risk of cancers of the colon and rectum: a study of 3,530 cases and 7,057 controls. Int J Cancer. 1997;73:193–7.

    Article  CAS  PubMed  Google Scholar 

  213. Baron JA, Gerhardsson de Verdier M, Ekbom A. Coffee, tea, tobacco, and cancer of the large bowel. Cancer Epidemiol Biomark Prev. 1994;3:565–70.

    CAS  Google Scholar 

  214. Nyrn O, Bergstrom R, Nystrom L, Engholm G, Ekbom A, Adami HO, et al. Smoking and colorectal cancer: a 20-year follow-up study of Swedish construction workers. J Natl Cancer Inst. 1996;88:1302–7.

    Article  Google Scholar 

  215. Chao A, Thun MJ, Jacobs EJ, Henley SJ, Rodriguez C, Calle EE. Cigarette smoking and colorectal cancer mortality in the Cancer Prevention Study II. J Natl Cancer Inst. 2000;92:1888–96.

    Article  CAS  PubMed  Google Scholar 

  216. Giovannucci E. An updated review of the epidemiological evidence that cigarette smoking increases risk of colorectal cancer. Cancer Epidemiol Biomark Prev. 2001;10:725–31.

    CAS  Google Scholar 

  217. Friedemann-Sánchez G, Griffin JM, Partin MR. Gender differences in colorectal cancer screening barriers and information needs. Health Expect. 2007;10:148–60.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Ritvo P, Myers RE, Paszat L, Serenity M, Perez DF, Rabeneck L. Gender differences in attitudes impeding colorectal cancer screening. BMC Public Health. 2013;13:500.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Pox CP, Altenhofen L, Brenner H, Theilmeier A, Von Stillfried D, SchmiegelW. Efficacy of a nationwide screening colonoscopy program for colorectal cancer. Gastroenterology. 2012;142:1460–7.e2.

    Article  PubMed  Google Scholar 

  220. HSE.ie. BowelScreen for Health Professionals. https://www.bowelscreen.ie/healthprofessional. Accessed 22 July 2021.

  221. Benedix F, Kube R, Meyer F, Schmidt U, Gastinger I, Lippert H, et al. Comparison of 17,641 patients with right- and left-sided colon cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum. 2010;53:57–64.

    Article  PubMed  Google Scholar 

  222. Hwang YJ, Shin DW, Kim N, Yoon H, Shin CM, Park YS, et al. Sex difference in bowel preparation quality and colonoscopy time. Korean J Intern Med. 2021;36:322–31.

    Article  PubMed  Google Scholar 

  223. Gandhi K, Tofani C, Sokach C, Patel D, Kastenberg D, Daskalakis C. Patient characteristics associated with quality of colonoscopy preparation: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16:357–69.

    Article  PubMed  Google Scholar 

  224. Khashab MA, Pickhardt PJ, Kim DH, Rex DK. Colorectal anatomy in adults at computed tomography colonography: normal distribution and the effect of age, sex, and body mass index. Endoscopy. 2009;41:674–8.

    Article  CAS  PubMed  Google Scholar 

  225. Ness RM, Manam R, Hoen H, Chalasani N. Predictors of inadequate bowel preparation for colonoscopy. Am J Gastroenterol. 2001;96:1797–802.

    Article  CAS  PubMed  Google Scholar 

  226. Rotondano G, Rispo A, Bottiglieri ME, De Luca L, Lamanda R, Orsini L, et al. Quality of bowel cleansing in hospitalized patients undergoing colonoscopy: a multicenter prospective regional study. Dig Liver Dis. 2015;47:669–74.

    Article  PubMed  Google Scholar 

  227. Akere A, Otegbayo JA. Complete colonoscopy: impact of patients’ demographics and anthropometry on caecal in tubation time. BMJ Open Gastroenterol. 2016;3:e000076.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Chung JI, Kim N, Um MS, Kang KP, Lee DH, Na JC, et al. Learning curves for colonoscopy: a prospective evaluation of gastroenterology fellows at a single center. Gut Liver. 2010;4:31–5.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayoung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, N. (2022). Sex Difference of Colorectal Cancer. In: Kim, N. (eds) Sex/Gender-Specific Medicine in the Gastrointestinal Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-19-0120-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0120-1_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0119-5

  • Online ISBN: 978-981-19-0120-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics