Skip to main content

Developing Climate-Resilient Cowpea (Vigna unguiculata [L.]Walp.) Through Genomics-Assisted Breeding Approaches

  • Chapter
  • First Online:
Developing Climate Resilient Grain and Forage Legumes

Abstract

Cowpea (Vigna unguiculata [L].Walp) is an important multifunctional crop of the tropics and subtropics where it constitutes the main source of protein and minerals of the vegetarian diet. It is primarily grown on marginal lands with low inputs, thereby being exposed to various abiotic and biotic stresses, leading to substantial yield losses. The changing climate due to global warming is expected to further increase the yield loss in near future. The drastic change in climate has compelled the plant breeders to develop climate-resilient cowpea, which can withstand abiotic stresses along with new emerging insect pests and pathogens. Unlocking the repository of genetic diversity of cowpea and its wild relatives and their efficient utilization in climate-resilient cowpea pre-breeding programs is imperative now. Recent advances in genomics along with high-throughput phenotyping and genotyping platforms have been exploited toward identifying underlying genes/QTLs for climate change relevant traits in cowpea. Genomics-assisted breeding approaches such as marker-assisted backcrossing (MABC), marker-assisted recurrent selection (MARS), and genomic selection (GS) have proven helpful in developing climate-resilient cowpea. Moreover, genome editing tools can further accelerate the improvement of cowpea for climate change adaptive traits. This chapter discusses the progress and prospects of various genomics-assisted breeding approaches in improving climate resilience and developing better-adapted cowpea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla, M.E. (1992). Resistance in cowpea ( Vignaunguiculata (L. ) Walp.)to a California biotype of the cowpea aphid ( Aphis craccivora Koch), inheritance and mechanisms . Ph D dissertation University of California

    Google Scholar 

  • Agbicodo EM, Fatokun CA, Bandyopadhyay R (2010) Identification of markers associated with bacterial blight resistance loci in cowpea [Vigna unguiculata (L.) Walp.]. Euphytica 175:215–226. https://doi.org/10.1007/s10681-010-0164-5

    Article  CAS  Google Scholar 

  • Andargie M, Pasquet RS, Muluvi GM, Timko MP (2013) Quantitative trait loci analysis of flowering time related traits identified in recombinant inbred lines of cowpea (Vigna unguiculata). Genome 56(5):289–294

    Article  CAS  PubMed  Google Scholar 

  • Angira B (2016) Genetic and physiological studies of heat tolerance in cowpea. (PhD thesis). Texas A&M University

    Google Scholar 

  • Angira B, Zhang Y, Scheuring CF, Zhang Y, Masor L, Coleman JR, Liu YH, Singh BB, Zhang HB, Hays DB, Zhang M (2020) Quantitative trait loci influencing days to flowering and plant height in cowpea, Vigna unguiculata (L.) Walp. Mol Gen Genomics 295:1187–1195

    Article  CAS  Google Scholar 

  • Arnon I (1972) Field crop production in tropical Africa. Leonard Hill Book Company, London

    Google Scholar 

  • Asare AT, Gowda BS, Galyuon IK, Aboagye LL, Takrama JF, Timko MP (2010) Assessment of the genetic diversity in cowpea (Vignaunguiculata L. Walp.) germplasm from Ghana using simple sequence repeat markers. Plant Genetic Resources 8(2):142–150

    Article  CAS  Google Scholar 

  • Ausha C (2013) Varietal screening, loss estimation and management of cowpea pests (MSc thesis). Dharwad University of Agricultural Sciences, Karnatak University, India. 84 pp.

    Google Scholar 

  • Aveling, T, 1999. Cowpea pathology research. (Also available at www.ap.ac.za/academic/microbio/plant/pr-colwpea.html)

  • Ba FS, Pasquet RS, Gepts P (2004) Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] as revealed by RAPD markers. Genet Resour Crop Evol 51(5):539–550

    Article  CAS  Google Scholar 

  • Ba MN, Huesing JE, Tamò M, Higgins TJ, Pittendrigh BR, Murdock LL (2018) An assessment of the risk of Bt-cowpea to non-target organisms in West Africa. J Pest Sci 91(4):1165–1179

    Article  Google Scholar 

  • Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J (2016) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23–36

    Article  CAS  PubMed  Google Scholar 

  • Batieno BJ, Danquah E, Tignegre JB, Huynh BL, Drabo I, Close TJ, Ofori K, Roberts P, Ouedraogo TJ (2016) Application of marker-assisted backcrossing to improve cowpea (Vignaunguiculata L. Walp) for drought tolerance. J Plant Breed Crop Sci 8(12):273–286

    Article  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bett B, Gollasch S, Moore A, Harding R, Higgins TJ (2019) An improved transformation system for cowpea (Vignaunguiculata L. Walp) via sonication and a kanamycin-geneticin selection regime. Front Plant Sci 10:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Birch ANE, Fellows LE, Evans SV, Dhoerty K (1986) Para- aminophenylalanine in Vigna. Possible taxonomic and ecological significance as a seed defence against bruchids. Phytochemistry 25:2745–2749

    Article  CAS  Google Scholar 

  • Blackman R, Eastop VF (1984) Aphids on the world crops. Wiley Inter Science, New York. 400 pp

    Google Scholar 

  • Boukar O, Kong L, Singh BB, Murdock L, Ohm HW (2004) AFLP and AFLP-derived SCAR markers associated with Striga gesnerioides resistance in cowpea. Crop Sci 44(4):1259–1264

    Article  CAS  Google Scholar 

  • Boukar O, Bhattacharjee R, Fatokun C, Kumar PL, Gueye B (2013) Cowpea. In: Singh M, Upadhyaya HD, Bisht IS (eds) Genetic and genomic resources of grain legume improvement, pp 137–155

    Chapter  Google Scholar 

  • Boukar O, Fatokun CA, Huynh BL, Roberts PA, Close TJ (2016) Genomic tools in cowpea breeding programs: status and perspectives. Front Plant Sci 7:757

    Article  PubMed  PubMed Central  Google Scholar 

  • Burridge J, Jochua CN, Bucksch A, Lynch JP (2016) Legume shovelomics: high—throughput phenotyping of commonbean (Phaseolus vulgaris L.) and cowpea (Vignaunguiculatasubsp,unguiculata) root architecture in the field. Field Crops Res 192:21–32. https://doi.org/10.1016/j.fcr.2016.04.008

    Article  Google Scholar 

  • Burridge JD, Schneider HM, Huynh BL (2017) Genome-wide association mapping and agronomic impact of cowpea root architecture. Theor Appl Genet 130:419–431. https://doi.org/10.1007/s00122-016-2823-y

    Article  CAS  PubMed  Google Scholar 

  • Carvalho M, Muñoz-Amatriaín M, Castro I, Lino-Neto T, Matos M, Egea-Cortines M, Rosa E, Close T, Carnide V (2017) Genetic diversity and structure of Iberian Peninsula cowpeas compared to world-wide cowpea accessions using high density SNP markers. BMC Genomics 18(1):1–9

    Article  Google Scholar 

  • Caswel GH (1981) Damage to stored cowpea in the northern part of Nigeria. Samaru J Agric Res 5:4–5

    Google Scholar 

  • Chamarthi SK, Kumar A, Vuong T, Blair MW, Gaur PM, Nguyen HT, Varshney RK (2011) Trait mapping and molecular breeding in legumes: concepts and examples in soybean, common bean and chickpea. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI International, Oxfordshire, UK, pp 296–313

    Chapter  Google Scholar 

  • Chamarthi SK, Belko N, Togola A, Fatokun CA, Boukar O (2019) Genomics-assisted breeding for drought tolerance in cowpea. In: Genomics assisted breeding of crops for abiotic stress tolerance, vol II. Springer, Cham, pp 187–209

    Chapter  Google Scholar 

  • Che P, Chang S, Simon MK, Zhang Z, Shaharyar A, Ourada J et al (2021) Developing a rapid and highly efficient cowpea regeneration, transformation and genome editing system using embryonic axis explants. Plant J 106(3):817–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dannon EA (2011) PhD thesis, Wageningen University, Netherlands, 188 pp.

    Google Scholar 

  • de Moraes GJ, Oliveira CAV, De Albuquerque MM, Salviano LMC, De Possidio PL (1980) The appropriate time to control the green leafhopper on cowpea crops, ComunicadoTecnico, EMBRAPA (CPATSA), 2 pp.

    Google Scholar 

  • d'Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLoS Biol 7(6):e1000124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dinesh HB, Lohithaswa HC, Viswanatha KP, Singh P, Manjunatha L, Ambika DS (2018) Genetic analysis and marker assisted backcrossing for transfer of mosaic virus resistance in cowpea [Vignaunguiculata (L.) Walp.]. Legum Res 41:663–668

    Google Scholar 

  • Dinesh HB, Lohithaswa HC, Viswanatha KP, Singh P, Rao AM (2016) Identification and marker-assisted introgression of QTL conferring resistance to bacterial leaf blight in cowpea (Vigna unguiculata (L.) Walp.). Plant Breed 135(4):506–512

    Article  CAS  Google Scholar 

  • Durairaj C (2000) A note on the host preference by two species of blister beetle in pulse crops. Madras Agric J 87(4/6):355–356

    Google Scholar 

  • Essem F, Ohlson EW, Asare AT, Timko MP (2019) Genetic markers linked to Strigagesnerioides resistance for the improvement of Ghanaian cowpea (Vigna unguiculata) cultivars. Plant Breed 138(5):599–604

    Article  CAS  Google Scholar 

  • Fang J, Chao CCT, Roberts PA, Ehlers JD (2007) Genetic diversity of cowpea [Vignaunguiculata (L.) Walp.] in four West African and USA breeding programs as determined by AFLP analysis. Genet Resour Crop Evol 54(6):1197–1209

    Article  CAS  Google Scholar 

  • Fatokun CA (2002) Breeding cowpea for resistance to insect pests: attempted crosses between cowpea and Vignavexillata. In: Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the World Cowpea Conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, 4–8 September 2000

    Google Scholar 

  • Fatokun CA, Danesh D, Young ND, Stewart EL (1993) Molecular taxonomic relationships in the genus Vigna based on RFLP analysis. Theor Appl Genet 86(1):97–104

    Article  CAS  PubMed  Google Scholar 

  • Fatokun CA, Boukar O, Kamara A, Coulibaly O, Alene A, Boahen S et al (2012) Enhancing cowpea productivity and production in drought- prone areas of Sub-Saharan Africa. In: Abate T (ed) Four seasons of learning and engaging smallholder farmers: progress of phase 1. International Crops Research Institute for the Semi-Arid Tropics, Nairobi, pp 81–112

    Google Scholar 

  • Gomez C (2004) Cowpea: post-harvest operations. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. 71 pp.

    Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57(4):461–485

    Article  CAS  PubMed  Google Scholar 

  • Gusta L (2012) Abiotic stresses and agricultural sustainability. J Crop Improv 26:415–427

    Article  CAS  Google Scholar 

  • Hall AE (1993) Physiology and breeding for heat tolerance in cowpea, and comparison with other crops. In: Kuo CG (ed) Proc. International Symposium on Adaptation of Food Crops to Temperature and Water Stress. August 13–18, 1992. Publ. No. 93-410. Asian Vegetable Research and Development Center, Shanhua, Taiwan, pp 271–284

    Google Scholar 

  • Hall AE, Cisse N, Thiaw S, Elawad HO, Ehlers JD, Ismail AM, Fery RL, Roberts PA, Kitch LW, Murdock LL, Boukar O (2003) Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP. Field Crop Res 82:103–134

    Article  Google Scholar 

  • Heslot N, Jannink J-L, Sorrells ME (2015) Perspectives for genomic selection applications and research in plants. Crop Sci 55:1–12

    Article  Google Scholar 

  • Huang BE, Verbyla KL, Verbyla AP, Raghavan C, Singh VK, Gaur P, Leung H, Varshney RK, Cavanagh CR (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128(6):999–1017

    Article  PubMed  Google Scholar 

  • Huynh BL, Ehlers JD, Ndeve A (2015) Genetic mapping and legume synteny of aphid resistance in African cowpea (Vignaunguiculata L. Walp) grown in California. Mol Breed 35:36. https://doi.org/10.1007/s11032-015-0254-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh BL, Matthews WC, Ehlers JD (2016) A major QTL corresponding to the Rk locus for resistance to root-knot nematodes in cowpea (Vignaunguiculata L. Walp.). Theor Appl Genet 129:87–95. https://doi.org/10.1007/s00122-015-2611-0

    Article  CAS  PubMed  Google Scholar 

  • Huynh BL et al (2018) A multi-parent advanced generation inter-cross MAGIC population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). Plant J 93:1129–1142

    Article  CAS  PubMed  Google Scholar 

  • Ji J, Zhang C, Sun Z, Wang L, Duanmu D, Fan Q (2019) Genome editing in cowpea Vignaunguiculata using CRISPR-Cas9. Int J Mol Sci 20(10):2471

    Article  CAS  PubMed Central  Google Scholar 

  • Juranić M, Nagahatenna DS, Salinas-Gamboa R, Hand ML, Sánchez-León N, Leong WH, Koltunow AM (2020) A detached leaf assay for testing transient gene expression and gene editing in cowpea (Vignaunguiculata [L.] Walp.). Plant Methods 16(1):1–17

    Article  CAS  Google Scholar 

  • Karungi J, Adipala E, Kyamanywa S, Ogenga-Latigo MW, Oyobo N, Jackai LEN (2000) Pest management in cowpeas. Part 2. Integrating planting time, plant density and insecticide application for management of cowpea field insect pests in Uganda. Crop Prot 19(4):237–245

    Article  Google Scholar 

  • Kay DE (1979) Food legumes. Tropical Development and Research Institute, London

    Google Scholar 

  • Ketema S, Tesfaye B, Keneni G, Amsalu Fenta B, Assefa E, Greliche N, Machuka E, Yao N (2020) DArTSeq SNP-based markers revealed high genetic diversity and structured population in Ethiopian cowpea [Vignaunguiculata (L.) Walp] germplasms. PLoS One 15(10):e0239122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanh, T.D., Anh, T.Q., Buu, B.C. and Xuan, T.D., 2013. Applying molecular breeding to improve soybean rust resistance in Vietnamese elite soybean

    Book  Google Scholar 

  • Koona P, Bouda H (2006) Biological activity of Pachypodanthiumstaudtii (Annonaceae) against the bean beetle, Acanthoscelidesobtectus (Say) (Coleoptera: Bruchidae). J Appl Sci Res 2(12):1129–1131

    Google Scholar 

  • Koona P, Osisanya EO, Jackai LEN, Tamo M, Tonye J, Ngeve JM (2001) Interaction between pod age and position on damage to cowpea Vignaunguiculata by hemipteran pod sucking bugs. Bull Entomol Res 91(6):453–459

    CAS  PubMed  Google Scholar 

  • Kusi F, Padi FK, Obeng-Ofori D, Asante SK, Agyare RY, Sugri I, Timko MP, Koebner R, Huynh BL, Santos JR, Close TJ (2018) A novel aphid resistance locus in cowpea identified by combining SSR and SNP markers. Plant Breed 137(2):203–209

    Article  CAS  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756. Legume Research, 42(4) 2019: 437-446 Print ISSN:0250-5371 / Online ISSN:0976-0571 Cowpea genetic resources and its utilization: Indian perspective – A review Kuldeep Tripathi, P.G. Gore, S.P. Ahlawat, V. Tyagi, D.P. Semwal, N.K. Gautam*, J.C. Rana1 and A. Kumar

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas MR, Diop NN, Wanamaker S, Ehlers JD, Roberts PA, Close TJ (2011) Cowpea–soybean synteny clarified through an improved genetic map. Plant Genome 4(3):1–11

    Article  CAS  Google Scholar 

  • Lucas MR, Ehlers JD, Roberts PA, Close TJ (2012) Markers for quantitative resistance to foliar thrips in cowpea. Crop Sci 52:2075–2081. https://doi.org/10.2135/cropsci2011.12.0684

    Article  Google Scholar 

  • Lucas MR, Ehlers JD, Huynh BL (2013) Markers for breeding heat-tolerant cowpea. Mol Breed 31:529–536. https://doi.org/10.1007/s11032-012-9810-z

    Article  Google Scholar 

  • Maheshwari UK (1986) Biological control of major agricultural pulse pest, Mylabrispustulata—a new approach. Indian J Entomol 48:381–387

    Google Scholar 

  • Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genomics 2012

    Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P (2009) Genetic properties of the maize nested association mapping population. Science 325(5941):737–740

    Article  CAS  PubMed  Google Scholar 

  • Mehta BK, Muthusamy V, Zunjare RU, Baveja A, Chauhan HS, Chhabra R, Singh AK, Hossain F (2020) Biofortification of sweet corn hybrids for provitamin-A, lysine and tryptophan using molecular breeding. J Cereal Sci 96:103093. https://doi.org/10.1016/j.jcs.2020.103093

    Article  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 257:1819–1829

    Article  Google Scholar 

  • Monteiro E, Castro I, Carvalho M, Martín JP, Rosa E, Carnide V (2020) Iberian Peninsula cowpea diversity: chloroplast, microsatellite and morpho-agronomic variability. Syst Biodivers 19(2):121–134

    Article  Google Scholar 

  • Muchero W, Diop NN, Bhat PR, Fenton RD, Wanamaker S, Pottorff M, Hearne S, Cisse N, Fatokun C, Ehlers JD, Roberts PA (2009a) A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived SNPs. Proc Natl Acad Sci 106(43):18159–18164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchero W, Ehlers JD, Close TJ, Roberts PA (2009b) Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vignaunguiculata (L.) Walp.]. Theor Appl Genet 118(5):849–863

    Article  CAS  PubMed  Google Scholar 

  • Muchero N, Diop N, Bhat PR (2009c) A consensus genetic map of cowpea [Vignaunguiculata(L) walp.] and synteny based on EST-derived SNPs. Proc Natl Acad Sci 106(43):18159–18164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchero W, Ehlers JD, Roberts PA (2010) QTL analysis for resistance to foliar damage caused by Thripstabaci and Frankliniellaschultzei (Thysanoptera: Thripidae) feeding in cowpea [Vigna unguiculata (L.) Walp.]. Mol Breed 25(1):47–56

    Article  PubMed  Google Scholar 

  • Muchero W, Ehlers JD, Close TJ (2011) Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L) Walp.]. BMC Genomics 12:8. https://doi.org/10.1186/1471-2164-12-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz‐Amatriaín M, Mirebrahim H, Xu P, Wanamaker SI, Luo M, Alhakami H, Alpert M, Atokple I, Batieno BJ, Boukar O, Bozdag S (2017) Genome resources for climate-resilient cowpea, an essential crop for food security. Plant J 89(5):1042–1054

    Article  PubMed  CAS  Google Scholar 

  • Ndeve AD, Santos JR, Matthews WC, Huynh BL, Guo YN, Lo S, Muñoz-Amatriaín M, Roberts PA (2019) A novel root-knot nematode resistance QTL on chromosome Vu01 in Cowpea. G3: Genes Genomes Genetics 9(4):1199–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NDoutoume-Ndong A, Rojas-Rousse D (2008) Rôle de l’intensitélumineuse sur les capacitésparasitairesd’Epelmusorientalis Crawford etd’Epelmusvuilleti Crawford, parasitoïdes des Bruchidaeravageurs de graines de niébé (VignaunguiculataWalp.). Biotechnol Agron Soc Environ 12(1):3–8. [Role of light intensity on the parasitic capacities of Epelmusorientalis Crawford and Epelmusvuilleti Crawford, parasitoids of Bruchidae pests of cowpea seeds (VignaunguiculataWalp.). Biotechnology, Agronomy, Society and Environment]

    Google Scholar 

  • Ng NQ, Marechal R (1985) Cowpea taxonomy, origin and germplasm. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. John Wiley and Sons, Chichester, pp 11–12

    Google Scholar 

  • Nkhoma N, Shimelis H, Laing MD, Shayanowako A, Mathew I (2020) Assessing the genetic diversity of cowpea [Vignaunguiculata (L.) Walp.] germplasm collections using phenotypic traits and SNP markers. BMC Genet 21(1):1–16

    Article  CAS  Google Scholar 

  • Ohlson EW, Thio GI, Sawadogo M (2018) Quantitative trait loci analysis of brown blotch resistance in cowpea variety KN1. Mol Breed 38:110. https://doi.org/10.1007/s11032-018-0867-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oiewalw RO, Bamaiyi LJ (2013) Management of cowpea insect pests. Scholars Acad J Biosci 1(5):217–226

    Google Scholar 

  • Olatoye MO, Hu Z, Aikpokpodion PO (2019) Epistasis detection and modeling for genomic selection in cowpea (Vigna unguiculata L. Walp). Front Genet 10:677

    Article  PubMed  PubMed Central  Google Scholar 

  • Oluwafemi AR (2012) Comparative effects of three plant powders and pirimiphos-methyl against the infestation of Callosobruchusmaculatus (F.)(Coleoptera: Bruchidae) in cowpea seeds. SOAJ Entomol Stud 1:108–117

    Google Scholar 

  • Omo-Ikerodah EE, Fawole I, Fatokun CA (2008) Genetic mapping of quantitative trait loci (QTLs) with effects on resistance to flower bud thrips (Megalurothrips sjostedti) identified in recombinant inbred lines of cowpea (Vigna unguiculata (L.) Walp). Afr J Biotechnol 7:263–270

    CAS  Google Scholar 

  • Onwueme IC, Sinha TD (1991) Field crop production in tropical Africa. Principles and practice. CTA, Wageningen, Netherlands, pp 324–336

    Google Scholar 

  • Ouedraogo J, Maheshwari V, Berner D, St Pierre C-A, Belzile F, Timko M (2001) Identification of AFLP markers linked to resistance of cowpea (Vigna unguiculata L.) to parasitism by Striga gesnerioides. Theor Appl Genet 102:1029–1036

    Article  CAS  Google Scholar 

  • Ouedraogo JT, Ouedraogo M, Gowda BS, Timko MP (2012) Development of sequence characterized amplified region (SCAR) markers linked to race-specific resistance to Striga gesnerioides in cowpea (Vigna unguiculata L.). Afr J Biotechnol 11:12555–12562

    CAS  Google Scholar 

  • Padulosi S, Ng NQ (1997) Origin, taxonomy and morphology of Vigna unguiculata (I) Walp. In: Singh BB, Mohanraj DR, Dahiell KE, Jackai LEN (eds) Advances in cowpea research. A co- Publication of IITA/JIRCAS, IITA, Ibadan, Nigeria, pp 1–12

    Google Scholar 

  • Panella L, Gepts P (1992) Genetic relationships within Vigna unguiculata (L.) Walp. based on isozyme analyses. Genet Resour Crop Evol 39:71–88

    Google Scholar 

  • Parhe SD, Chimote VP, Deshmukh MP, Chandra K, Akash M (2017) Marker-assisted pyramiding of four QTL/genes for Asian rust (Phakopsorapachyrhizi) resistance in soybean. J Crop Improv 31(5):689–711

    Article  CAS  Google Scholar 

  • Pasquet RS (1999) Genetic relationships among subspecies of Vigna unguiculata (L.) Walp. based on allozyme variation. Theor Appl Genet 98(6–7):1104–1119

    Article  CAS  Google Scholar 

  • Pathak RS (1988) Genetics of resistance to aphid in cowpea. Crop Sci 28:474–476

    Article  Google Scholar 

  • Patil DM, Sawardekar SV, Gokhale NB, Bhave SG, Sawant SS, Sawantdesai SA, Lipne KA, Sabale SN, Joshi SN (2013) Genetic diversity analysis in cowpea [Vignaunguiculata (L.) Walp.] by using RAPD markers. Int J Innov Biotechnol Biochem 1(1):15–23

    Google Scholar 

  • Poland JA, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink JL (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5(3):103–113

    CAS  Google Scholar 

  • Pottorff M, Wanamaker S, Ma YQ, Ehlers JD, Roberts PA, Close TJ (2012) Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporumf.sp. tracheiphilum race 3 in cowpea [Vigna unguiculata (L.)Walp]. PLoS ONE 7:e41600. https://doi.org/10.1371/journal.pone.0041600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pottorff MO, Roberts PA, Close TJ, Lonardi S, Wanamaker S, Ehlers JD (2014a) Identification of candidate genes and molecular markers for heat-induced brown discoloration of seed coats in cowpea [Vignaunguiculata (L.) Walp]. BMC Genomics 15(1):328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pottorff MO, Li G, Ehlers JD (2014b) Genetic mapping, synteny, and physical location of two loci for Fusarium oxysporum f. sp. tracheiphilum race 4 resistance in cowpea [Vigna unguiculata (L.) Walp]. Mol Breed 33:779–791. https://doi.org/10.1007/s11032-013-9991-0

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Shi A, Mou B (2017) Association mapping of aphid resistance in USDA cowpea (Vignaunguiculata L. Walp.) core collection using SNPs. Euphytica 213:36. https://doi.org/10.1007/s10681-016-1830-z

    Article  CAS  Google Scholar 

  • Ravelombola W, Shi A, Weng Y (2018) Association analysis of salt tolerance in cowpea (Vignaunguiculata (L.) Walp) at germination and seedling stages. Theor Appl Genet 131:79–91. https://doi.org/10.1007/s00122-017-2987-0

    Article  CAS  PubMed  Google Scholar 

  • Ravelombola W, Shi A, Huynh BL (2021) Loci discovery, network-guided approach, and genomic prediction for drought tolerance index in a multi-parent advanced generation intercross (MAGIC) cowpea population. Hortic Res 8:24. https://doi.org/10.1038/s41438-021-00462-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues MA, Santos CAF, Santana JRF (2012) Mapping of AFLP loci linked to tolerance to cowpea golden mosaic virus. Genet Mol Res 11(4):gmr1819. https://doi.org/10.4238/2012.August.17.12

    Article  CAS  Google Scholar 

  • Rutkoski JE, Poland JA, Singh RP, Huerta-Espino J, Bhavani S, Barbier H et al (2014) Genomic selection for quantitative adult plant stem rust resistance in wheat. Plant Genome 127:1441–1448

    Google Scholar 

  • Rutkoski J, Poland J, Mondal S, Autrique E, Pérez LG, Crossa J, Reynolds M, Singh R (2016) Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3: Genes Genomes Genet 6(9):2799–2808. https://doi.org/10.1534/g3.116.032888

    Article  Google Scholar 

  • Salifou M, Tignegre JBLS, Tongoona P, Offei S, Ofori K, Danquah E (2016) Introgression of Striga resistance gene into farmers’ preferred cowpea varieties in Niger. Int J Plant Breed Genet 3(6):233–240

    Google Scholar 

  • Samireddypalle A, Boukar O, Grings E, Fatokun C, Kodukula P, Devulapalli R et al (2017) Cowpea and groundnut haulms fodder trading and its lessons for multidimensional cowpea improvement for mixed crop livestock systems in West Africa. Front Plant Sci 8:30. https://doi.org/10.3389/fpls.2017.00030

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarr A, Bodian A, Gbedevi KM, Ndir KN, Ajewole OO, Gueye B, Foncéka D, Diop EA, Diop BM, Cissé N, Diouf D (2021) Genetic diversity and population structure analyses of wild relatives and cultivated Cowpea (Vignaunguiculata (L.) Walp.) from Senegal using simple sequence repeat markers. Plant Mol Biol Report 39(1):112–124

    Article  CAS  Google Scholar 

  • Seo E, Kim K, Kang R, Kim G, Park A, Kim WJ, Sun H, Ha BK (2020) Genome-wide association study for flowering time in Korean Cowpea Germplasm. Plant Breed Biotechnol 8(4):413–425

    Article  Google Scholar 

  • Shi A, Buckley B, Mou B (2016) Association analysis of cowpea bacterial blight resistance in USDA cowpea germplasm. Euphytica 208:143–155. https://doi.org/10.1007/s10681-015-1610-1

    Article  CAS  Google Scholar 

  • Shoyinka SA, Thottappilly G, Adebayo GG, Anno-Nyako FO (1997) Survey on cowpea virus incidence and distribution in Nigeria. Int J Pest Manage 43(2):127–132

    Article  Google Scholar 

  • Singh BB (2007) Potential and constraits of improved cowpea varieties in increasing the productivity of cowpea cereal system in dry savanna of west Africa. In: Majiwa P, Odera M, Muchiri N, Omanya G, Werehire P (eds) A plan to apply technology in the improvement of cowpea productivity and utilization for the benefit of farmers and consumers in Africa: proceeding of cowpea stakeholders workshop. African Agricultural Technology Foundation, Nairobi Kenya, pp 14–26

    Google Scholar 

  • Singh BB (2014) Cowpea: the food legume of the 21st century. Crop Science Society of America, Madison, WI

    Book  Google Scholar 

  • Singh, S.R. and Allen, D.J. (1979). Cowpea pest and diseases. Manual Series No. 2, International Institute of Tropical Agriculture, Ibadan

    Google Scholar 

  • Singh SR, Jackai LEN (1985) Insect pests of cowpeas in Africa: their life cycle, economic importance and potential for control. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. John Wiley and Sons, London, pp 217–231

    Google Scholar 

  • Singh BB, Tarawali SA (2011) Cowpea and its improvement: key to sustainable mixed crop/livestock farming systems in West Africa. Agrofor Syst 2:34–41

    Google Scholar 

  • Singh SR, Van Emden HF (1979) Insect pests of grain legumes. Ann Rev Entomol 24(1):255–278

    Article  Google Scholar 

  • Singh KJ, Singh OP, Banafer RN (1990) Evaluation of cowpea varieties against aphid, (Aphis craccivora Koch.) infestation. J Aphidol 4:86–88

    CAS  Google Scholar 

  • Singh BB, Ajeigbe HA, Tarawali SA, Fernandez-Rivera S, Musa A (2003) Improving the production and utilization of cowpea as food and fodder. Field Crops Res 84:169–177

    Article  Google Scholar 

  • Sobda G, Boukar O, Tongoona PB, Ayertey J, Offei KS (2017) Quantitative trait loci (QTL) for cowpea resistance to flower bud thrips (MegalurothripssjostedtiTrybom). Int J Plant Breed Genet 4(6):292–299

    Google Scholar 

  • Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E et al (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11:e1004982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steele WM (1972) Cowpeas in Nigeria. Ph. D. Dissertation. University of Reading, UK

    Google Scholar 

  • Stoilova T, Pereira G (2013) Assessment of the genetic diversity in a germplasm collection of cowpea (Vignaunguiculata (L.) Walp.) using morphological traits. Afr J Agric Res 8(2):208–215

    Google Scholar 

  • Tar'an B, Buchwaldt L, Tullu A, Banniza S, Warkentin TD, Vandenberg A (2003) Using molecular markers to pyramid genes for resistance to ascochyta blight and anthracnose in lentil (Lens culinarisMedik). Euphytica 134(2):223–230

    Article  CAS  Google Scholar 

  • Tesema T, Eshetayehu T (2006) Collection, conservation, characterization and sustainable utilization of Grain Legumes in Ethiopia. In: Proceedings of the workshop on food and forage legumes 22–26 September 2003, Addis Ababa, Ethiopia, pp 15–22

    Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi K, Gore PG, Ahlawat SP, Tyagi V, Semwal DP, Gautam NK, Rana JC, Kumar A (2019) Cowpea genetic resources and its utilization: Indian perspective—a review. Legum Res 42(3):439–448. https://doi.org/10.18805/LR-4146

    Article  Google Scholar 

  • Ubi BE, Mignouna H, Thottappilly G (2000) Construction of a genetic linkage map and QTL analysis using a recombinant inbred population derived from an intersubspecific cross of Cowpea: Vignaunguiculta (L.) Walp. Breed Sci 50(3):161–172

    Article  CAS  Google Scholar 

  • Vaillancourt RE, Weeden NF, Barnard J (1993) Isozyme diversity in the cowpea species complex. Crop Sci 33(3):606–613

    Article  CAS  Google Scholar 

  • Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S, Kashiwagi J, Samineni S, Singh VK, Thudi M, Jaganathan D (2013) Fast-track introgression of “QTL-hotspot” for root traits and other drought tolerance traits in JG11, an elite and leading variety of chickpea. Plant Genome 6:1–9

    Google Scholar 

  • Varshney RK, Saxena RK, Upadhyaya HD (2017) Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet 49:1082–1088

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Singh VK, Kumar A, Powell W, Sorrells ME (2018) Can genomics deliver climate-change ready crops? Curr Opin Plant Biol 45:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdcourt B (1970) Studies in the Lepminosue-Papilionoideae for the Flora of Tropical East Africa. IV Kew Bull 24:507–569

    Article  Google Scholar 

  • Verma AK, Deepti S (2016) Abiotic stress and crop improvement: current scenario. Adv Plants Agric Research 4:345–346

    Google Scholar 

  • Wang C, Hu S, Gardner C, Lubberstedt T (2017) Emerging avenues for utilization of exotic germplasm. Trends Plant Sci 22:624–637

    Article  CAS  PubMed  Google Scholar 

  • Wubneh WY (2016) Biological control of chickpea pod borer, HelicoverpaarmigeraHubner (Lepidoptera: Noctuidae): a global concern. World Science News 45(2):92–110

    CAS  Google Scholar 

  • Zhou Q, Fu D, Mason A, Zeng Y, Zhao C, Huang Y (2014) In silico integration of quantitative trait loci for seed yield and yield-related traits in Brassica napus. Mol Breed 33:881–894. https://doi.org/10.1007/s11032-013-0002-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahay, G., Mehta, B.K., Dikshit, N., Shashikumara, P., Bhargavi, H.A., Priyadarshini, P. (2022). Developing Climate-Resilient Cowpea (Vigna unguiculata [L.]Walp.) Through Genomics-Assisted Breeding Approaches. In: Jha, U.C., Nayyar, H., Agrawal, S.K., Siddique, K.H.M. (eds) Developing Climate Resilient Grain and Forage Legumes. Springer, Singapore. https://doi.org/10.1007/978-981-16-9848-4_4

Download citation

Publish with us

Policies and ethics