Skip to main content

Improving Chickpea Genetic Gain Under Rising Drought and Heat Stress Using Breeding Approaches and Modern Technologies

  • Chapter
  • First Online:
Developing Climate Resilient Grain and Forage Legumes

Abstract

Increasing grain legume production, particularly for chickpea, will provide essential “plant-based dietary protein” and other micronutrients under the changing global climate. Drought and terminal heat stress limit plant growth and negatively affect various phenological events, causing severe yield losses. Among various strategies for improving stress tolerance, the judicious utilization of available genetic variation in the chickpea gene pool could minimize the adverse effects of drought and heat stress, sustaining chickpea yields. In addition, advancements in chickpea genomic resources, from molecular markers, namely, SSR, SNP, and INDELs and tools for association genetics, RNA-seq, to the availability of chickpea genome sequences and efforts of global chickpea germplasm resequencing allow us to identify loci and haplotypes contributing to drought and heat tolerance across the whole genome. Thus, molecular markers have enabled the successful transfer of drought-tolerant traits to elite chickpea cultivars using marker-assisted and haplotype-based breeding approaches. Likewise, the role of drought- and heat-responsive proteins and metabolites could significantly improve our understanding of the molecular mechanisms of drought and heat tolerance in chickpea via proteomics and metabolomics. Moreover, emerging novel breeding technologies (e.g., genomic selection, speed breeding, and genome editing) could enhance the necessary genetic gain to feed the increasing global population under an abruptly changing global climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal G, Garg V, Kudapa H, Doddamani D, Pazhamala LT, Khan AW, Thudi M, Lee SH, Varshney RK (2016) Genomewide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea. Plant Biotechnol J 14:1563–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arif A, Parveen N, Waheed MQ, Atif RM, Waqar I, Shah TM (2021) A comparative study for assessing the drought-tolerance of chickpea under varying natural growth environments. Front Plant Sci 11:2228

    Article  Google Scholar 

  • Awasthi S, Peto R, Read S, Clark S, Pande V, Bundy D, DEVTA (Deworming and Enhanced Vitamin A) team (2013) Vitamin A supplementation every 6 months with retinol in 1 million pre-school children in north India: DEVTA, a cluster-randomised trial. Lancet 381(9876):1469–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi R, Kaushal N, Vadez V, Turner NC, Berger J, Siddique KH, Nayyar H (2014) Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Func Plant Biol 41:1148–1167

    Article  CAS  Google Scholar 

  • Awasthi JP, Saha B, Regon P, Sahoo S, Chowra U, Pradhan A et al (2017) Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India. PLoS One 12(4):e0176357. https://doi.org/10.1371/journal.pone.0176357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badhan S, Kole P, Ball A, Mantri N (2018) RNA sequencing of leaf tissues from two contrasting chickpea genotypes reveals mechanisms for drought tolerance. Plant Physiol Biochem 129:295–304

    Article  CAS  PubMed  Google Scholar 

  • Badhan S, Ball AS, Mantri N (2021) First Report of CRISPR/Cas9 Mediated DNA-Free Editing of 4CL and RVE7 Genes in Chickpea Protoplasts. Int J Mol Sci 22:396

    Article  CAS  PubMed Central  Google Scholar 

  • Bhandari K, Sita K, Sehgal A, Bhardwaj A, Gaur P, Kumar S, Singh S, Siddique KH, Prasad PV, Jha U, Nayyar H (2020) Differential heat sensitivity of two cool-season legumes, chickpea and lentil, at the reproductive stage, is associated with responses in pollen function, photosynthetic ability and oxidative damage. J Agron Crop Sci 206:734–758

    Article  CAS  Google Scholar 

  • Bharadwaj C, Tripathi S, Soren KR, Thudi M, Singh RK, Sheoran S et al (2020) Introgression of “QTL-hotspot” region enhances drought tolerance and grain yield in three elite chickpea cultivars. Plant Genome. https://doi.org/10.1002/tpg2.20076

  • Bhaskarla V, Zinta G, Ford R, Jain M, Varshney RK, Mantri N (2020) Comparative root transcriptomics provide insights into drought adaptation strategies in chickpea (Cicer arietinum L.). Int J Mol Sci 21:1781

    Article  CAS  PubMed Central  Google Scholar 

  • Bohra A, Chand Jha U, Godwin ID, Kumar Varshney R (2020) Genomic interventions for sustainable agriculture. Plant Biotechnol J 18:2388–2405

    Article  PubMed  PubMed Central  Google Scholar 

  • Borhani S, Vessal S, Bagheri A, Shokouhifar F (2020) Differential gene expression pattern of drought responsive transcription factors in chickpea: an expressional analysis. J Plant Growth Regul 39:1211–1220

    Article  CAS  Google Scholar 

  • Canci H, Toker C (2009a) Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). J Agron Crop Sci 19:47–54

    Article  Google Scholar 

  • Canci H, Toker C (2009b) Evaluation of annual wild Cicer species for drought and heat resistance under field conditions. Genet Resour Crop Evol 56:1. https://doi.org/10.1007/s10722-008-9335-9

    Article  Google Scholar 

  • Cevik S, Akpinar G, Yildizli A, Kasap M, Karaosmanoğlu K, Ünyayar S (2019) Comparative physiological and leaf proteome analysis between drought-tolerant chickpea Cicer reticulatum and drought-sensitive chickpea C. arietinum. J Biosci 44:1–3

    Article  CAS  Google Scholar 

  • Chen Y, Ghanem ME, Siddique KHM (2017) Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. J Exp Bot 68:1987–1999

    CAS  PubMed  Google Scholar 

  • Coyne CJ, Kumar S, von Wettberg EJ, Marques E, Berger JD, Redden RJ, Ellis TN, Brus J, Zablatzká L, Smýkal P (2020) Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement. Legume Sci 2:e36

    Article  Google Scholar 

  • Deokar AA, Kondawar V, Jain PK, Karuppayil M, Raju NL, Vadez V, Varshney RK, Srinivasan R (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol 11:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devasirvatham V, Tan DKY, Trethowan RM, Gaur PM, Mallikarjuna N (2010) Impact of high temperature on the reproductive stage of chickpea. In: Food security from sustainable agriculture. Proceedings of the 15th Australian Society of Agronomy Conference, 15–18 November 2010, Lincoln, New Zealand

    Google Scholar 

  • Devasirvatham V, Gaur P, Mallikarjuna N, Raju TN, Trethowan RM, Tan DKY (2012) Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct Plant Biol 39:1009–1018

    Article  PubMed  Google Scholar 

  • Devasirvatham V, Gaur P, Mallikarjuna N, Raju TN, Trethowan RM, Tan DKY (2013) Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Res 142:9–19

    Article  Google Scholar 

  • Devasirvatham V, Gaur PM, Raju TN, Trethowan RM, Tan DKY (2015) Field response of chickpea (Cicer arietinum L.) to high temperature. Field Crops Res 172:59–71

    Article  Google Scholar 

  • Dua RP (2001) Genotypic variations for low and high temperature tolerance in gram (Cicer arietinum). Indian J Agric Sci 71:561–566

    Google Scholar 

  • Farooq M, Ullah A, Lee DJ, Alghamdi SS, Siddique KH (2018) Desi chickpea genotypes tolerate drought stress better than kabuli types by modulating germination metabolism, trehalose accumulation, and carbon assimilation. Plant Physiol Biochem 126:47–54

    Article  CAS  PubMed  Google Scholar 

  • Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291

    Article  CAS  PubMed  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M (2016) Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 6:19228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur PM, Krishnamurty L, Kashiwagi J (2008) Improvement drought-avoidance root traits in chickpea (Cicer arietinum L.)-current status of research at ICRISAT. Plant Prod Sci 1:3–11

    Article  Google Scholar 

  • Gaur PM, Jukanti AK, Varshney RK (2012) Impact of genomic technologies on chickpea breeding strategies. Agronomy 2:199–221

    Article  Google Scholar 

  • Getahun T, Negash K, Chang PL, von Wettberg E, Carrasquilla-Garcia N, Gaur PM, Fikre A, Haileslassie T, Cook D, Tesfaye K (2021) Screening of heat-tolerant Ethiopian chickpea accessions: assessment of phenological and agromorphological traits and genomic relationships. Agrosyst Geosci Environ 4(3):e20211

    Article  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Großkinsky DK, Svensgaard J, Christensen S, Roitsch T (2015) Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J Exp Bot 66:5429–5440

    Article  PubMed  CAS  Google Scholar 

  • Guo R, Shi L, Jiao Y, Li M, Zhong X, Gu F, Liu Q, Xia X, Li H (2018) Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. AoB Plants 10(2):ply016

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Mishra SK, Misra S, Pandey V, Agrawal L, Nautiyal CS, Chauhan PS (2020) Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach. Plant Physiol Biochem 151:88–102

    Article  CAS  PubMed  Google Scholar 

  • Hamwieh A, Imtiaz M (2015) Identifying water-responsive and drought-tolerant chickpea genotypes. Crop Pasture Sci 66:1003–1011

    Article  CAS  Google Scholar 

  • Hamwieh A, Imtiaz M, Malhotra RS (2013) Multi-environment QTL analyses for drought-related traits in a recombinant inbred population of chickpea (Cicer arietinum L.). Theor Appl Genet 126:1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Hein NT, Ciampitti IA, Jagadish SV (2021) Bottlenecks and opportunities in field-based high-throughput phenotyping for heat and drought stress. J Expt Bot. 2021 Jan 20

    Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SC, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BB (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754

    Article  CAS  PubMed  Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, Bhanuprakash A, Mulaosmanovic B, Gujaria N, Krishnamurthy L, Gaur PM, Kavikishor PB, Shah T, Srinivasan R, Lohse M, Xiao Y, Town CD, Cook DR, May GD, Varshney RK (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866

    Article  CAS  PubMed  Google Scholar 

  • Jagadish SVK, Way DA, Sharkey TD (2021) Plant heat stress: concepts directing future research. Plant Cell Environ 44(7):1992–2005. https://doi.org/10.1111/pce.14050

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, Kishor PB, Nguyen H, Sutton T, Varshney RK (2015) Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. Mol Gen Genomics 290:559–571

    Article  CAS  Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729

    Article  CAS  PubMed  Google Scholar 

  • Jha UC (2018) Current advances in chickpea genomics: applications and future perspectives. Plant Cell Rep 37:947–965

    Article  CAS  PubMed  Google Scholar 

  • Jha UC, Shil S (2015) Association analysis of yield contributing traits of chickpea genotypes under high temperature condition. Trends Biosci 8:2335–2341

    Google Scholar 

  • Jha UC, Chaturvedi SK, Bohra A, Basu PS, Khan MS, Barh D (2014a) Abiotic stresses, constraints and improvement strategies in chickpea. Plant Breed 133:163–178

    Article  Google Scholar 

  • Jha UC, Bohra A, Singh NP (2014b) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701

    Article  Google Scholar 

  • Jha UC, Basu PS, Singh DK (2015) Genetic variation and diversity analysis of chickpea genotypes based on quantitative traits under high temperature stress. Int J Bio-Resour Stress Manag 6:700–706

    Article  Google Scholar 

  • Jha UC, Bohra A, Jha R, Parida S (2017) Integrated’ omics’ approaches to sustain major global grain legume productivity under heat stress. Plant Breed 136:437–459

    Article  CAS  Google Scholar 

  • Jha UC, Jha R, Bohra A, Parida SK, Kole PC, Thakro V, Singh D, Singh NP (2018a) Population structure and association analysis of heat stress relevant traits in chickpea (Cicer arietinum L.). 3. Biotech 8:43

    Google Scholar 

  • Jha UC, Jha R, Singh NP, Shil S, Kole PC (2018b) Heat tolerance indices and their role in selection of heat stress tolerant chickpea (Cicer arietinum L.) genotypes. Indian J Agric Sci 88:260–267

    Google Scholar 

  • Jha UC, Kole PC, Singh NP (2018c) Genetic variability and marker trait association analysis of various phenological and yield related traits for heat tolerance in chickpea (Cicer arietinum L.). Int J Bioresour Stress Manag 9:345–352

    Article  Google Scholar 

  • Jha UC, Kole PC, Singh NP (2019a) Nature of gene action and combining ability analysis of yield and yield related traits in chickpea (Cicer arietinum L.) under heat stress. Indian J Agric Sci 89:500–508

    CAS  Google Scholar 

  • Jha UC, Kole PC, Singh NP, Sandip S, Hemant K (2019b) GGE bi-plot analysis for grain yield in chickpea (Cicer arietinum) under normal and heat stress conditions. Indian J Agric Sci 89:721–725

    Google Scholar 

  • Jha UC, Kole PC, Singh NP (2019c) QTL mapping for heat stress tolerance in chickpea (Cicer arietinum L.). Legume Res. https://doi.org/10.18805/LR-4121

  • Jha UC, Bohra A, Nayyar H (2020) Advances in “omics” approaches to tackle drought stress in grain legumes. Plant Breed 139:1–27

    Article  Google Scholar 

  • Jha UC, Jha R, Thakro V, Kumar A, Gupta S, Nayyar H, Basu P, Parida SK, Singh NP (2021a) Discerning molecular diversity and association mapping for phenological, physiological and yield traits under high temperature stress in chickpea (Cicer arietinum L.). J Genet 100:1–5

    Article  Google Scholar 

  • Jha UC, Palakurthi R, Nayyar H, Jha R, Valluri VK, Bajaj P, Chitikineni A, Singh NP, Varshney RK, Thudi M (2021b) Major QTLs and potential candidate genes for heat stress tolerance identified in chickpea (Cicer arietinum L.). Front Plant Sci 12:1241

    Article  Google Scholar 

  • Jukanti AK, Gaur PM, Gowda CL, Chibbar RN (2012) Nutritional quality and health bene ts of chickpea (Cicer arietinum L.): a review. Br J Nutr 1:S11–S26

    Article  CAS  Google Scholar 

  • Jumrani K, Bhatia VS (2014) Impact of elevated temperatures on growth and yield of chickpea (Cicer arietinum L.). Field Crop Res 164:90–97

    Article  Google Scholar 

  • Kahraman A, Pandey A, Khan MK, Lindsay D, Moenga S, Vance L, Bergmann EM, Carrasquilla-Garcia N, Chang PL, Shin MG, von Wettberg EJ, Tar’an B, Cook DR, Penmetsa RV (2017) Distinct subgroups of Cicer echinospermum are associated with hybrid sterility and hybrid breakdown in interspecific crosses with cultivated chickpea. Crop Sci. https://doi.org/10.2135/cropsci2017.06.0335

  • Kale SM, Jaganathan D, Ruperao P, Chen C, Punna R, Kudapa H, Thudi M, Roorkiwal M, Katta MA, Doddamani D, Garg V, Kishor PB, Gaur PM, Nguyen HT, Batley J, Edwards D, Sutton T, Varshney RK (2015) Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinum L.). Sci Rep 5(15296)

    Google Scholar 

  • Kalra N, Chakraborty D, Sharma A, Rai HK, Jolly M, Chander S, Kumar PR, Bhadraray S, Barman D, Mittal RB, Lal M, Sehgal M (2008) Effect of temperature on yield of some winter crops in northwest India. Curr Sci 94:82–88

    Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Upadhyaya HD, Krishna H, Chandra S, Vadez V, Serraj R (2005) Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea. Euphytica 146(3):213–222

    Article  Google Scholar 

  • Kashiwagi J, Krishnamurty L, Gaur PM, Chandra S, Upadhyaya HD (2008) Estimation of gene effects of the drought avoidance root characteristics in chickpea (Cicer arietinum L.). Field Crops Res 105:64–69

    Article  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Gaur PM, Upadhyaya HD, Varshney RK, Tobita S (2013) Traits of relevance to improve yield under terminal drought stress in chickpea (C. arietinum L.). Field Crops Res 145:80–95

    Article  Google Scholar 

  • Kaushal N, Awasthi R, Gupta K, Gaur PM, Siddique KHM, Nayyar H (2013) Heat-stress- induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct Plant Biol 40:1334–1349

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Bano A, Rahman MA, Rathinasabapathi B, Babar MA (2019a) UPLC-HRMS-based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long-term drought stress. Plant Cell Environ 42:115–132

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Bano A, Rahman MA, Guo J, Kang Z, Babar MA (2019b) Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci Rep 9:1–9

    Google Scholar 

  • Khan N, Bano A, Babar MA (2019c) Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L. PLoS One 14:e0213040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandal H, Gupta SK, Dwivedi V, Mandal D, Sharma NK, Vishwakarma NK, Pal L, Choudhary M, Francis A, Malakar P, Singh NP (2020) Root-specific expression of chickpea cytokinin oxidase/dehydrogenase 6 leads to enhanced root growth, drought tolerance and yield without compromising nodulation. Plant Biotechnol J 18:2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy L, Kashiwagi J, Upadhyaya HD, Serraj R (2003) Genetic diversity of drought avoidance root traits in the mini-core germplasm collection of chickpea. Int Chickpea Pigeonpea Newslett 10:21–24

    Google Scholar 

  • Krishnamurthy L, Gaur PM, Basu PS, Chaturvedi SK, Tripathi S, Vadez V, Rathore A, Varshney RK, Gowda CLL (2011) Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genet Res 9:59–69

    Article  Google Scholar 

  • Krishnamurthy L, Kashiwagi J, Upadhyaya HD, Gowda CLL, Gaur PM, Singh S et al (2013a) Partitioning coefficient—a trait that contributes to drought tolerance in chickpea. Field Crops Res 149:354–365

    Article  Google Scholar 

  • Krishnamurthy L, Kashiwagi J, Tobita S, Ito O, Upadhyaya HD, Gowda CLL, Gaur PM, Sheshshayee MS, Singh S, Vadez V, Varshney RK (2013b) Variation in carbon isotope discrimination and its relationship with harvest index in the reference collection of chickpea germ-plasm. Funct Plant Biol 40:1350–1361

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Abbo S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semi-arid environments. Adv Agron 72:107–138

    Article  CAS  Google Scholar 

  • Kumar J, Rao BV (1996) Super early chickpea developed at ICRISAT Asia center. Int Chickpea Pigeonpea Newslett 3:17–18

    Google Scholar 

  • Kumar M, Chauhan AS, Kumar M, Yusuf MA, Sanyal A, Chauhan PS (2019) Transcriptome sequencing of chickpea (Cicer arietinum L.) genotypes for identification of drought-responsive genes under drought stress condition. Plant Mol Biol Rep 17:186–203

    Article  CAS  Google Scholar 

  • Langridge P, Fleury D (2011) Making the most of’ omics’ for crop breeding. Trends Biotechnol 29:33–40

    Article  CAS  PubMed  Google Scholar 

  • Leport L, Turner NC, French RJ, Barr MD, Duda R, Davies SL, Siddique KHM (1999) Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. Eur J Agron 11:279–291

    Article  Google Scholar 

  • Li Y, Ruperao P, Batley J, Edwards D, Khan T, Colmer TD, Pang J, Siddique KH, Sutton T (2018) Investigating drought tolerance in chickpea using genomewide association mapping and genomic selection based on whole-genome resequencing data. Front Plant Sci 9:190

    Article  PubMed  PubMed Central  Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4:580–585

    CAS  Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2011) Effect of drought stress and subsequent recovery on protein, carbohydrate contents, catalase and peroxidase activities in three chickpea (Cicer arietinum) cultivars. Aust J Crop Sci 5:1255–1260

    CAS  Google Scholar 

  • Mahdavi Mashaki K, Garg V, NasrollahnezhadGhomi AA, Kudapa H, Chitikineni A, Zaynali Nezhad K et al (2018) RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLoS One 13:e0199774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Makonya GM, Ogola JB, Muasya AM, Crespo O, Maseko S, Valentine AJ, Ottosen CO, Rosenqvist E, Chimphango SB (2020) Intermittent moisture supply induces drought priming responses in some heat-tolerant chickpea genotypes. Crop Sci 60:2527–2542

    Article  CAS  Google Scholar 

  • Mantri NL, Ford R, Coram TE, Pang EC (2007) Transcriptional proling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genome 8:303

    Article  CAS  Google Scholar 

  • Marques E, Kur A, Bueno E, von Wettberg E (2020a) Defining and improving the rotational and intercropping value of a crop using a plant–soil feedbacks approach. Crop Sci 60(5):2195–2203

    Article  Google Scholar 

  • Marques E, Krieg CP, Dacosta-Calheiros E, Bueno E, Sessa E, Penmetsa RV, von Wettberg EJ (2020b) The impact of domestication on aboveground and belowground trait responses to nitrogen fertilization in wild and cultivated genotypes of chickpea (Cicer sp.). Front Genet. https://doi.org/10.3389/fgene.2020.576338

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genomewide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mir AH, Bhat MA, Dar SA, Sofi PA, Bhat NA, Mir RR (2021) Assessment of cold tolerance in chickpea (Cicer spp.) grown under cold/freezing weather conditions of North-Western Himalayas of Jammu and Kashmir, India. Physiol Mol Biol Plants 27(5):1105–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moenga SM, Gai Y, Carrasquilla-Garcia N, Perilla-Henao LM, Cook DR (2020) Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress. Plant J 104:1195–1214

    Article  CAS  PubMed  Google Scholar 

  • Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9:553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nasr Esfahani M, Sulieman S, Schulze J, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2014) Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls. Plant J 79:964–980

    Article  CAS  PubMed  Google Scholar 

  • Nasti RA, Voytas DF (2021) Attaining the promise of plant gene editing at scale. Proc Nat Acad Sci 118(22)

    Google Scholar 

  • Pang J, Turner NC, Du YL, Colmer TD, Siddique KHM (2017a) Pattern of water use and seed yield under terminal drought in chickpea genotypes. Front Plant Sci 8:1375

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang J, Turner NC, Khan T, Du YL, Xiong JL, Colmer TD et al (2017b) Response of chickpea (Cicer arietinum L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set. J Exp Bot 68:1973–1985

    CAS  PubMed  Google Scholar 

  • Parankusam S, Bhatnagar-Mathur P, Sharma KK (2017) Heat responsive proteome changes reveal molecular mechanisms underlying heat tolerance in chickpea. Environ Exp Bot 141:132–144

    Article  CAS  Google Scholar 

  • Parry MA, Andralojc PJ, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann Bot 89:833–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul PJ, Samineni S, Sajja SB, Rathore A, Das RR, Khan AW, Chaturvedi SK et al (2018a) Capturing genetic variability and selection of traits for heat tolerance in a chickpea recombinant inbred line (RIL) population under field conditions. Euphytica 214:27

    Article  CAS  Google Scholar 

  • Paul PJ, Samineni S, Thudi M, Sajja SB, Rathore A, Das RR, Khan AW, Chaturvedi SK, Lavanya GR, Varshney RK, Gaur PM (2018b) Molecular mapping of QTLs for heat tolerance in chickpea. Int J Mol Sci 19:E2166

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Zeng A, Zhu T, Fang S, Gong Y, Tao Y, Zhou Y, Liu K (2017) Using remotely sensed spectral reflectance to indicate leaf photosynthetic efficiency derived from active fluorescence measurements. J Appl Remote Sens 11:026034

    Article  Google Scholar 

  • Purushothaman R, Thudi M, Krishnamurthy L, Upadhaya HD, Kashiwagi J, Gowda CLL, Varshney RK (2015) Association of mid-reproductive stage canopy depression with the molecular markers and grain yield of chickpea (Cicer arietinum L.) germplasm under terminal drought. Field Crops Res 174:1–11

    Article  Google Scholar 

  • Purushothaman R, Krishnamurthy L, Upadhyaya HD, Vadez V, Varshney RK (2016) Shoot traits and their relevance in terminal drought tolerance of chickpea (Cicer arietinum L.). Field Crop Res 197:10–27

    Article  Google Scholar 

  • Ramamoorthy P, Krishnamurthy L, Upadhyaya HD, Vadez V, Varshney RK (2016) Shoot traits and their relevance in terminal drought tolerance of chickpea (Cicer arietinum L.). Field Crop Res 197:10–27. https://doi.org/10.1016/j.fcr.2016.07.016

    Article  Google Scholar 

  • Ramamoorthy P, Krishnamurthy L, Upadhyaya HD, Vadez V, Varshney RK (2017) Root traits confer grain yield advantages under terminal drought in chickpea (Cicer arietinum L.). Field Crop Res 201:146–161. https://doi.org/10.1016/j.fcr.2016.11.004

    Article  Google Scholar 

  • Rani A, Devi P, Jha UC, Sharma KD, Siddique KH, Nayyar H (2020) Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Front Plant Sci 10:1759

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehman AU, Malhotra RS, Bett K, Taran B, Bueckert R, Warkentin TD (2011) Mapping QTL associated with traits affecting grain yield in chickpea (Cicer arietinum L.) under terminal drought stress. Crop Sci 51:450–463

    Article  Google Scholar 

  • Roorkiwal M, Bharadwaj C, Barmukh R, Dixit GP, Thudi M, Gaur PM, Chaturvedi SK, Fikre A, Hamwieh A, Kumar S, Sachdeva S (2020) Integrating genomics for chickpea improvement: achievements and opportunities. Theor Appl Genet 133:1703–1720

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadeghi-Tehran P, Sabermanesh K, Virlet N, Hawkesford MJ (2017) Automated method to determine two critical growth stages of wheat: heading and flowering. Front Plant Sci 8:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Sagar S, Biswas DK, Chandrasekar R, Singh A (2021) Genomewide identification, structure analysis and expression profiling of phospholipases D under hormone and abiotic stress treatment in chickpea (Cicer arietinum). Int J Biol Macromol 169:264–273

    Article  CAS  PubMed  Google Scholar 

  • Samineni S, Thudi M, Sajja S, Varshney RK, Gaur PM (2017) Impact of genomics on Chickpea breeding. In: The chickpea genome. Compendium of plant genomes book series (CPG). Springer, pp 125–134

    Google Scholar 

  • Samineni S, Sen M, Sajja SB, Gaur PM (2020) Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding. Crop J 8:164–169. https://doi.org/10.1016/j.cj.2019.08.003

    Article  Google Scholar 

  • Serraj R, Sinclair TR, Purcell LC (1999) Symbiotic N2 fixation response to drought. J Exp Bot 50:143–155

    CAS  Google Scholar 

  • Shah TM, Imran M, Atta BM, Ashraf MY, Hameed A, Waqar I, Shafiq M, Hussain K, Naveed M, Aslam M, Maqbool MA (2020) Selection and screening of drought tolerant high yielding chickpea genotypes based on physio-biochemical indices and multi-environmental yield trials. BMC Plant Biol 20:1–6

    Article  CAS  Google Scholar 

  • Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi H, Garg V, Kumar V, Chitikineni A, Gaur PM, Sutton T, Terauchi R, Varshney RK (2016) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14:2110–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivasakthi K, Thudi M, Tharanya M, Kale SM, Kholová J, Halime MH, Jaganathan D, Baddam R, Thirunalasundari T, Gaur PM, Varshney RK, Vadez V (2018) Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome. BMC Plant Biol 18:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith DT, Potgieter AB, Chapman SC (2021) Scaling up high-throughput phenotyping for abiotic stress selection in the field. Theor Appl Genet 134:1845–1866

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan A, Takeda H, Senboku T (1996) Heat tolerance in food legumes as evaluated by cell membrane thermo stability and chlorophyll fluorescence techniques. Euphytica 88:35–45

    Article  Google Scholar 

  • Srivastava R, Bajaj D, Malik A, Singh M, Parida SK (2016) Transcriptome landscape of perennial wild Cicer microphyllum uncovers functionally relevant molecular tags regulating agronomic traits in chickpea. Sci Rep 6:1–17

    Article  CAS  Google Scholar 

  • Talip M, Adak A, Kahraman A, Berger J, Sari D, Sari H, Penmetsa RV, von Wettberg EJ, Cook DR, Toker C (2018) Agro-morphological traits of Cicer reticulatum Ladizinsky in comparison to C. echinospermum P.H. Davis in terms of improvement. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-017-0587-0

  • Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao NV, Fikre A, Kimurto P, Sharma PC, Sheshashayee MS, Tobita S, Kashiwagi J, Ito O, Killian A, Varshney RK (2014) Genetic dissection of drought and heat tolerance in chickpea through genomewide and candidate gene-based association mapping approaches. PLoS One 9:e96758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toker C, Canci H, Yildirim T (2007) Evaluation of perennial wild Cicer species for drought resistance. Genet Resour Crop Evol 54:1781–1786

    Article  Google Scholar 

  • Toker C, Berger J, Eker T, Sari D, Sari H, Gokturk RS, Kahraman A, Aydin B, von Wettberg EJ (2021) Cicer turcicum: a new Cicer species and its potential to improve chickpea. Front Plant Sci 12:662891. https://doi.org/10.3389/fpls.2021.662891

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya H, Dronavalli D, Gowda C, Singh S (2011) Identification and evaluation of chickpea germplasm for tolerance to heat stress. Crop Sci 51:2079–2094

    Article  Google Scholar 

  • Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KH (2009) A comprehensive resource of drought- and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genome 10:1–8

    Article  CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo MC, Thudi M, Gowda CL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013a) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S, Kashiwagi J, Samineni S, Singh VK, Thudi M, Jaganathan D (2013b) Fast-track introgression of ‘QTL-hotspot’ for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. Plant Genome. https://doi.org/10.3835/plantgenome2013.07.0022

  • Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti AK, Jayalakshmi V, Vemula A, Singh SJ, Yasin M, Sheshshayee MS, Viswanatha KP (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Thudi M, Roorkiwal M, He W, Upadhyaya H, Yang W, Bajaj P, Curby P, Rathore A, Jian J, Doddamani D, Khan AW, Garg V, Chitikineni A, Xu D, Gaur PM, Singh NP, Chaturvedi SK, Krishnamurth L, Fikre A, Kimurto P, Sheshashayee MS, Bharadwaj C, Wang J, Lee SH, Edwards D, Kavikishor PB, Nguyen HT, Siddique KHM, Sutton T, Penmetsa RV, von Wettberg EJ, Vigouroux Y, Liu X, Xun X (2019) Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat Genet 51(5):857

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Roorkiwal M, Sun S, Bajaj P, Chitikineni A, Thudi M, Singh NP, Du A, Khan AW, Wang Y, Garg V, Upadhyaya HD, Fan G, Cowling W, Crossa J, Gentzbittel L, Voss-Fels K, Valluri V, Sinha P, Singh VK, Ben C, Rathore A, Ramu P, Singh MK, Tar’an B, Bharadwaj C, Yasin M, Pithia MS, Singh S, Soren KR, Kudapa H, Jarquin D, Hickey L, Dixit GP, Hamwieh A, Kumar S, Deokar S, Chaturvedi SK, Howard R, Edwards D, Lyons E, Kumar A, Vigouroux Y, Hayes B, von Wettberg EJ, Datta SK, Yang H, Nguyen H, Wang J, KHM S, Mohapatra T, Bennetzen JL, Xun X, Xin L (2021) A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 599:622–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vessal S, Arefian M, Siddique KH (2020) Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings. BMC Genome 21:1–5

    Article  CAS  Google Scholar 

  • von Wettberg EJ, Ray-Mukherjee J, Adesky ND, Sistla S (2014) The evolutionary ecology and genetics SRS traits: revisiting Chapin, Autumn, and Pugnaire 1993. 2014. Chapter 9. In: Rajakaruna N, Boyd RS, Harris TB (eds) Plant ecology and evolution in harsh environments. Nova Publishers

    Google Scholar 

  • von Wettberg EJ, Chang PL, Greenspan A, Carrasquila-Garcia N, Basdemir F, Moenga S, Bedada G, Dacosta-Calheiros E, Moriuchi KS, Balcha L, Mamo B, Singh V, Cordeiro MA, Vance L, Bergmann E, Warschefsky EJ, Marques E, Dinegde KN, Sani SG, Getahun T, Yilmaz MA, Cacmak A, Rose J, Migneault A, Krieg CP, Saylak S, Temel H, Noujdina NV, Friesen ML, Siler E, Linday D, Akhmetov Z, Ozelik H, Kholova J, Can C, Caur P, Yildirim M, Sharma H, Vadez V, Tesfaye K, Woldemedhin AF, Tar’an B, Ayodogan A, Bekun B, Penmetsa RV, Berger J, Kahraman A, Nuzhdin SV, Cook DR (2018) Ecology and community genomics of an important crop wild relative as a prelude to agricultural innovation. Nat Commun 9(1):1–13. https://doi.org/10.1038/s41467-018-02867-z

    Article  CAS  Google Scholar 

  • Xiong X, Duan L, Liu L, Tu H, Yang P, Wu D, Chen G, Xiong L, Yang W, Liu Q (2017) Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization. Plant Methods 13:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2003) Plant responses to drought and stress. Bulg J Plant Physiol (Special Issue):187–206

    Google Scholar 

  • Zaman-Allah M, Jenkinson DM, Vadez V (2011a) A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. J Exp Bot 62:4239–4252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman-Allah M, Jenkinson DM, Vadez V (2011b) Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Funct Plant Biol 38:270–281

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jha, U.C. et al. (2022). Improving Chickpea Genetic Gain Under Rising Drought and Heat Stress Using Breeding Approaches and Modern Technologies. In: Jha, U.C., Nayyar, H., Agrawal, S.K., Siddique, K.H.M. (eds) Developing Climate Resilient Grain and Forage Legumes. Springer, Singapore. https://doi.org/10.1007/978-981-16-9848-4_1

Download citation

Publish with us

Policies and ethics