Skip to main content

Induced Mutations for Developing New Ornamental Varieties

  • Chapter
  • First Online:
Mutation Breeding for Sustainable Food Production and Climate Resilience

Abstract

The ornamental plant industry is a dynamic and diverse sector worldwide. Plant breeders develop a great number of new cultivars each year to increase production and supply market demands of the ornamental plants. Mutation breeding is a highly effective method for creating genetic variability in ornamental plants with desirable characters expected within a given species’ genetic scope. A mutation creation is called induced mutagenesis of which results are varied according to mutagens and the type of the technique and it is a random process. The target-selected mutagenesis including the random mutagenesis and selection of mutants at a selected locus belongs to this category. By the present, mutations were induced by treatments with physical and chemical mutagens and sometimes their combination. However, biotechnological approaches such as transposable elements, disrupting the gene through the insertion of a DNA fragment and using molecular techniques to create a mutation at a defined site in a DNA molecule have been used to obtain mutations since the development of recombinant DNA technology. There are about 720 ornamental mutant cultivars developed by mutation breeding studies that have been accelerated with tissue culture techniques since the 1970s. In vitro mutagenesis provides for the isolation of chimeric tissues and the propagation of irradiated tissues in mainly vegetatively propagated plants. In addition, in vitro techniques can be supported to the breeding program before, after, and during the mutagen treatments, allowing the scientist to perform the studies timeless and independently of environmental conditions. In vitro techniques have been commonly used in mutation breeding since in vitro technologies were extensively developed. This chapter presents a brief history of mutation breeding in ornamentals and in vitro mutagenesis strategies in ornamental plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulhadi MD, Ayad AO, Kadhim MI (2019) Induced genetic variability in Chrysanthemum morifolium single nodes grown in vitro using ethyl methane sulphonate. Biochem Cell Arch 19(1):151–156

    Google Scholar 

  • Acquaah G (2007) Variation: types, origin, and scale. In: Principles of plant genetics and breeding. Blackwell Publishing, Chichester, pp 75–86

    Google Scholar 

  • Acquaah G (2015) Conventional plant breeding principles and techniques. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools, vol 1. Springer International Publishing, Cham, pp 115–158

    Chapter  Google Scholar 

  • Anonymous. (2018) In: Spencer-Lopes MM, Foster BP, Jankuloski L (eds) Manual on mutation breeding, 3rd edn. Food and Agriculture Organization of the United Nations, Rome, 301pp

    Google Scholar 

  • Barton KA, Binns AN, Matzke AJ, Chilton MD (1983) Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32(4):1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Boutigny AL, Dohin N, Pornin D, Rolland M (2020) Overview and detectability of the genetic modifications in ornamental plants. Hort Res 7(1):1–12

    Google Scholar 

  • Broertjes C (1969) Mutation breeding of Streptocarpus. Euphytica 18:333–339

    Article  Google Scholar 

  • Broertjes C (1972) Mutation breeding of Achimenes. Euphytica 21:48–63

    Article  Google Scholar 

  • Broertjes C, Roest S (1976) Mutation breeding of Chrysanthemum morifolium Ramat, using in vivo and in vitro adventitious bud technique. Euphytica 22:11–19

    Article  Google Scholar 

  • Broertjes C, Van Harten AM (1988) Applied mutation breeding for vegetatively propagated crops. Elsevier Science Publishers, Amsterdam, 345p

    Google Scholar 

  • Brown JL, Harney PM (1974) Induction of non-chimaeral mutants in Begonia. Hort Sci 9(3):276

    Google Scholar 

  • Çelik Ö, Atak Ç (2017) Applications of ionizing radiation in mutation breeding. In: Maghraby AM (ed) New insights on gamma rays. IntechOpen, London, pp 111–132

    Google Scholar 

  • Datta SK (2012) Success story of induced mutagenesis for development of new ornamental varieties. Bioremediat Biodiver Bioavail 6(Special issue 1):15–26

    Google Scholar 

  • Datta SK (2014) Induced mutagenesis: basic knowledge for technological success. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis exploring genetic diversity of crops. Wageningen Academic Publishers, Wageningen, pp 97–139. ISBN: 9789086867967

    Chapter  Google Scholar 

  • Datta SK (2020) Induced mutations: technological advancement for development of new ornamental varieties. Nucleus 2020(63):119–129

    Article  Google Scholar 

  • Datta SK, Teixeira da Silva JA (2006) Role of induced mutagenesis for development of new flower color and type in ornamentals. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology advances and topical issue. Global Science Books Ltd., Middlesex, pp 640–645

    Google Scholar 

  • Donini P, Sonnino A (1998) Induced mutation in plant breeding: current status and future outlook. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, pp 255–291

    Chapter  Google Scholar 

  • Donmez D, Simsek O, Izgu T, Aka Kacar Y, Yalcin Mendi Y (2013) Genetic transformation in citrus. Sci World J 2013:491207

    Article  Google Scholar 

  • Forster BP, Shu QY (2011) Plant mutagenesis in crop improvement: basic terms and applications. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. FAO, Rome, pp 9–20

    Google Scholar 

  • Harun AR (2001) The effective use of physical and chemical mutagen in the induction of mutation for crop improvement in Malaysia. In: Proceedings of the 8th workshop on plant mutation breeding: effective use of physical/chemical mutagens, 9–13 October 2000, Hanoi, pp 111–122

    Google Scholar 

  • Hase Y, Akita Y, Kitamura S, Narumi I, Tanaka A (2012) Development of an efficient mutagenesis technique using ion beams: toward more controlled mutation breeding. Plant Biotechnol 29:193–200

    Article  CAS  Google Scholar 

  • Haspolat G, Senel U, Kantoglu KY, Kunter B, Gunçag N (2019) In vitro mutation on chrysanthemums. Acta Hort 1263:261–266

    Article  Google Scholar 

  • Hernández-Muñoz S, Pedraza-Santos EM, López PA, Gómez-Sanabria JM, Morales-García JL (2019) Mutagenesis in the improvement of ornamental plants. Rev Chapingo Ser Hort 25(3):151–167

    Google Scholar 

  • IAEA (1983) IAEA tech doc no: 340. IAEA Publication Series, Vienna

    Google Scholar 

  • IAEA (Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture) (2018a) 50th anniversary: 1964–2014 and beyond joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. http://www.naweb.iaea.org/nafa/news/50thAnniversary-JointDivisionFAO-IAEA.html. Accessed 11 Jul 2018

  • IAEA (Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture) (2018b) Plant breeding and genetics. http://www.naweb.iaea.org/nafa/pbg/index.html. Accessed 11 Jul 2018

  • IAEA (Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture) (2021) Mutant variety search. https://mvd.iaea.org/#!Search. Accessed 11 Feb 2021

  • Ibrahim R, Ahmad Z, Salleh S, Hassan AA, Ariffin S (2018) Mutation breeding in ornamentals. In: Van Huylenbroeck J (ed) Ornamental crops, Handbook of plant breeding, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-90698-0_8

    Chapter  Google Scholar 

  • International Service for the Acquisition of Agri-biotech Applications (ISAAA) (2022) GM approval database. https://www.isaaa.org/gmapprovaldatabase/default.asp

  • Ishizaka H, Kondo E, Kameari N (2012) Production of novel flower color mutants from the fragrant cyclamen (Cyclamen persicum_C. purpurascens) by ion-beam irradiation. Plant Biotechnol 29:201–208

    Article  CAS  Google Scholar 

  • Jain SM (2000) A review of induction of mutations in fruits of tropical and subtropical regions. Acta Hort 575:295–302. https://doi.org/10.17660/ActaHortic.2002.575.33

    Article  Google Scholar 

  • Jain SM (2005) Major mutation-assisted plant breeding programs supported by FAO/IAEA. Plant Cell Tissue Organ Cult 82:113–123. https://doi.org/10.1007/s11240-004-7095-6

    Article  CAS  Google Scholar 

  • Jain SM, Buiatti M, Gimelli F, Saccardo F (1998) Somaclonal variation in improving ornamental plants. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, pp 81–104

    Chapter  Google Scholar 

  • Kantoğlu KY, Kunter B (2021) Mutasyonıslahı. In: Mendi NY, Kazaz S (eds) Süs Bitkileri Islahı, Klasikve Biyoteknolojik Yöntemler. Gece Kitaplığı, Ankara, pp 145–202. ISBN: 978-625-7478-51-9 (in Turkish)

    Google Scholar 

  • Kantoğlu KY, Kuşvuran Ş, Ellialtıoğlu ŞŞ (2021) Doku kültürü yöntemlerinin stres çalışmalarında kullanımı. In: Ellialtığlu ŞŞ, Daşkan HY, Kuşvuran Ş (eds) Sebzelerde Stres Toleransıve Islah Stratejileri. Gece Kitaplığı, Ankara, pp 708–741. ISBN: 978-625-8449-01-3 (in Turkish)

    Google Scholar 

  • Kazaz S, Kılıç T, Doğan E, Mendi YY, Karagüzel Ö (2020) Süs bitkileri üretiminde mevcut durum ve gelecek. Türkiye Ziraat Mühendisleri IX. Teknik Kongresi Bildiriler Kitabı-1, pp 673–698 (in Turkish)

    Google Scholar 

  • Kharkwal MC (2011) A brief history of plant mutagenesis. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. FAO, Rome, pp 21–30

    Google Scholar 

  • Kishi-Kaboshi M, Aida R, Sasaki K (2018) Genome engineering in ornamental plants: current status and future prospects. Plant Physiol Biochem 131:47–52

    Article  CAS  PubMed  Google Scholar 

  • Lakhssassi N, Zhou Z, Cullen MA, Badad O, El Baze A, Chetto O, Meksem K (2021) TILLING-by-sequencing+ to decipher oil biosynthesis pathway in soybeans: a new and effective platform for high-throughput gene functional analysis. Int J Mol Sci 22(8):4219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lönnig WE (2005) Mutation breeding, evolution, and the law of recurrent variation. Recent Res Dev Genet Breed 2:45–70

    Google Scholar 

  • Maluszynski M, Ahloowalia BS, Sigurbjornsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85:303–315. https://doi.org/10.1007/BF00023960

    Article  Google Scholar 

  • Melsen K, van de Wouw M, Contreras R (2021) Mutation breeding in ornamentals. Hort Sci 56(10):1154–1165

    Google Scholar 

  • Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330(6149):677–678

    Article  CAS  PubMed  Google Scholar 

  • Muller HJ (1927) Artificial transmutation of the gene. Science 66(1699):84–87. https://doi.org/10.1126/science.66.1699.84

    Article  CAS  PubMed  Google Scholar 

  • Nakornthap A (1974) Radiation induced somatic mutations in Kalanchoe (Kalanchoe laciniata). Mutat Breed Newsl 3:14

    Google Scholar 

  • Nelka SAP, Vidanapathirana NP, Dahanayake N, Subasinghe S, Silva TD, Weerasinghe S, Rifnas LM, Rohanadeera H, Madushanka WCMS, Dushane S, Dhanushka TGB, Anuruddhi HIGK (2021) Effect of gamma irradiation on survivability, growth performances and floral characters of Jasminum officinale (samanpichcha). J Agro Technol Rural Sci 1(1):24–29

    Article  Google Scholar 

  • Novak FJ, Brunner H (1992) Plant breeding: Induced mutation technology for crop improvement. IAEA Bull 4:25–33

    Google Scholar 

  • Okamura M, Umemoto N, Onishi N (2012) Breeding glittering carnations by an efficient mutagenesis System. Plant Biotechnol 29:209–214

    Article  Google Scholar 

  • Oladosua Y, Rafii MY, Abdullah N, Hussind G, Ramlie A, Rahimf HA, Miaha G, Usmana M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16

    Article  Google Scholar 

  • Pathirana R (2011) Plant mutation breeding in agriculture. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 32(6):1–20. https://doi.org/10.1079/PAVSNNR20116032

    Article  CAS  Google Scholar 

  • Roychowdhury R, Tah J (2013) Mutagenesis—a potential approach for crop improvement. In: Hakeem KR, Ahmad P, Ozturk M (eds) Crop improvement: new approaches and modern techniques. Springer, New York, pp 149–187

    Chapter  Google Scholar 

  • Schum A (2003) Mutation breeding in ornamental plants: an efficient breeding method. Acta Hort 612:47–60

    Article  Google Scholar 

  • Segui-Simarro JM, Nuez F (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore derived embryogenesis. Physiol Plant 134:1–12. https://doi.org/10.1111/j.1399-3054.2008.01113.x

    Article  CAS  PubMed  Google Scholar 

  • Simsek O, Kacar YA (2010) Discovery of mutations with TILLING and ECOTILLING in plant genomes. Sci Res Essays 5(24):3799–3802

    Google Scholar 

  • Spencer Lopes MM, Forster BP, Mba C, Jankuloski L (2018) Physical mutagenesis. In: Spencer Lopes MM, Forster BP, Jankuloski L (eds) Manual on mutation breeding, 3rd edn. FAO and IAEA, Vienna, pp 15–16

    Google Scholar 

  • Stadler LJ (1928a) Mutations in barley induced by X-rays and radium. Science 68:186–187. https://doi.org/10.1126/science.68.1756.186

    Article  CAS  PubMed  Google Scholar 

  • Stadler LJ (1928b) Genetic effects of X-rays on maize. Proc Natl Acad Sci 14:69–75. https://doi.org/10.1073/pnas.14.1.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J, Jiang J, Zhang F, Liu Y, Ding L, Chen S, Chen F (2019) Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Hort Res 6:109

    Article  Google Scholar 

  • Suprasanna P, Jain SM (2017) Mutant resources and mutagenomics in crop plants. Emirates J Food Agric 29:651–657

    Article  Google Scholar 

  • Suprasanna P, Jain SM, Ochatt SJ, Kulkarni VM, Predieri S (2012) Applications of in vitro techniques in mutation breeding of vegetatively propagated crops. In: Plant mutation breeding and biotechnology. CABI, Wallingford, pp 371–385

    Chapter  Google Scholar 

  • Suprasanna P, Mirajkar SJ, Bhagwat SG (2015) Induced mutations and crop improvement. In: Plant biology and biotechnology. Springer, New Delhi, pp 593–617

    Chapter  Google Scholar 

  • Suprasanna P, Ganapathi TR, Ghag SB, Jain SM (2017) Genetic modifications of horticultural plants by induced mutations and transgenic approach. Acta Hort 1187:219–232

    Article  Google Scholar 

  • Tamaki K, Yamanaka M, Mizutani Y, Hayashi Y, Hirano T, Abe T (2014) Flower color mutants of chrysanthemum obtained using C-ion beam irradiation. RIKEN Accel Prog Rep 47:296

    Google Scholar 

  • Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res 51:223–233

    Article  CAS  PubMed  Google Scholar 

  • Tutuncu M, İzgü T, Sevindik B, Mendi YY (2017) In vitro haploidy techniques in ornamental plants. Res J Agric Sci 10(1):1–6

    Google Scholar 

  • Van Harten AM (1998) Mutation breeding theory and practical applications. Cambridge University Press, Cambridge, pp 1–30. ISBN: 0521470749

    Google Scholar 

  • Van Harten AM (2002) Mutation breeding of vegetatively propagated ornamentals. In: Vainstein A (ed) Breeding for ornamentals: classical and molecular approaches. Kluwer Academic Publishers, Dordrecht, pp 155–127

    Google Scholar 

  • Yamaguchi H (2018) Mutation breeding of ornamental plants using ion beams. Breed Sci 68:71–78. https://doi.org/10.1270/jsbbs.17086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi H, Nagatomi S, Morishita T, Degi K, Tanaka A, Shikazono N, Hase Y (2003) Mutation induced with ion beam irradiation in rose. Nucl Inst Methods Phys Res B 206:561–564

    Article  CAS  Google Scholar 

  • Zhou LB, Li WJ, Ma S, Dong XC, Yu LX, Li Q, Zhou GM, Gao QX (2006) Effects of ion beam irradiation on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionahta. Nucl Inst Methods Phys Res B 244:349–353

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tütüncü .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tütüncü, M., Kantoğlu, K.Y., Kunter, B., Mendi, Y.Y. (2023). Induced Mutations for Developing New Ornamental Varieties. In: Penna, S., Jain, S.M. (eds) Mutation Breeding for Sustainable Food Production and Climate Resilience. Springer, Singapore. https://doi.org/10.1007/978-981-16-9720-3_22

Download citation

Publish with us

Policies and ethics