Skip to main content

Advances in Mutation Breeding of Groundnut (Arachis hypogaea L.)

  • Chapter
  • First Online:
Mutation Breeding for Sustainable Food Production and Climate Resilience

Abstract

Induced mutagenesis finds a significant place in crop enhancement methodologies for bringing genetic variability in desired genetic backgrounds. Mutation breeding along with recombination breeding has developed >3300 mutant varieties in various crop species globally. In groundnut, radiation and chemical mutagenesis have been extensively employed for genetic improvement of vegetative, reproductive, agronomical, biochemical and physiological traits. Consequently, these mutant traits were instrumental in delivering 112 suitable productive cultivars in this allotetraploid leguminous crop. Induced mutants and their derived varieties acted not only as basic genetic pool for evolving desirable varieties but also for understanding various functions at biochemical and molecular levels. Numerous farmers, traders and exporters have benefitted by cultivating groundnut mutant varieties in many countries. Recent advances in genomics have facilitated to utilize molecular tools like gene editing, TILLING and mutagenomics for developing desired and improved traits in groundnut, addressing famers’ concerns, consumer preference and industrial needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdalla E, Bakhit O, Elsheikh S (2018) Groundnut mutants with end-season drought tolerance for the marginal drylands of north Kord Ofan state, Sudan. In: FAO/IAEA International symposium on plant mutation breeding and biotechnology. IAEA, Vienna, p IAEA-CN-263-196

    Google Scholar 

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innas H, Canos L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Ahmed MSH, Mohamed SMS (2009) Improvement of groundnut (Arachis hypogaea L.) productivity under saline condition through mutation induction. World J Agric Sci 5:680–685

    CAS  Google Scholar 

  • Alberte RS, Hesketh JD, Kirby JS (1976) Comparisons of photosynthetic activity and lamellar characteristics of virescent and normal green peanut leaves. Z Pflanzenphysiol 77(2):152–159

    Article  CAS  Google Scholar 

  • Annual Report (2001) National Research Centre for Groundnut, Junagadh, India. pp 43–47

    Google Scholar 

  • Anonymous (2002) Development of thermo-tolerant lines in groundnut: an approach based on temperature induction response technique (TIR). In: Progress report. BRNS, Bhabha Atomic Research Centre, Mumbai, India, pp 1–20

    Google Scholar 

  • Arndell T, Sharma N, Langridge P, Baumann U, Watson-Haigh NS, Whitford R (2019) gRNA validation for wheat genome editing with the CRISPR-Cas9 system. BMC Biotechnol 19(1):1–12

    Article  CAS  Google Scholar 

  • Ashri A, Goldin E (1965) The mutagenic activity of diethyl sulfate in peanuts. Radiat Bot 5:431–441

    Article  CAS  Google Scholar 

  • Ashri A, Levy A (1976) Natural and induced plasmon variation affecting growth habit in peanuts, A. hypogaea. In: Filer K (ed) Experimental mutagenesis in plants. Bulgaria, Bulgarian Acad Sci Sofia, pp 417–430

    Google Scholar 

  • Ashri A, Offenbach R, Cahaner A, Levy A (1977) Transmission of acriflavine-induced trisomic mutants affecting branching pattern in peanuts, Arachis hypogaea L. Z Pflanzenzüchtg 79:210–218

    CAS  Google Scholar 

  • Azad MAK, Hamid MA, Yasmine F (2014) Enhancing abiotic stress tolerance in groundnut through induced mutation. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring genetic diversity of crops. Wageningen Academic Publishers, The Netherlands

    Google Scholar 

  • Azzam CR, Azer SA, Khaleifa MMA, Abol-Ela MF (2007) Characterization of peanut mutants and molecular markers associated with resistance to pod rot diseases and aflatoxin contamination by RAPD and ISSR. Arab J Biotech 10(2):301–320

    Google Scholar 

  • Badigannavar AM, Mondal S (2009) Genetic enhancement of groundnut (Arachis hypogaea L.) for high oil content through gamma ray mutagenesis. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome, pp 101–103

    Google Scholar 

  • Badigannavar AM, Murty GSS (2007) Genetic enhancement of groundnut through gamma ray induced mutagenesis. Plant Mutat Rep 1(3):16–21

    Google Scholar 

  • Badigannavar AM, Kale DM, Murty GSS (2002) Genetic base and diversity in groundnut genotypes. Plant Breed 121:348–353

    Article  CAS  Google Scholar 

  • Badigannavar AM, Mondal S, Murty GSS (2007) Induction of salt tolerance for radicle growth in groundnut through gamma ray mutagenesis. BARC Newslett 285:226–236

    Google Scholar 

  • Badigannavar AM, Mondal S, D’Souza SF (2012) Development and deployment of Trombay groundnut (Arachis hypogaea L.) varieties with desirable agronomic features. In: DAE-BRNS Life Sci Symp, p 60

    Google Scholar 

  • Badigannavar AM, Mondal S, Bhad PG (2020) Radiation based induced mutagenesis in Trombay groundnuts: developments and accomplishments. IANCAS Bull XV 1:45–49

    Google Scholar 

  • Basu MS (2002) Characterization of released groundnut (Arachis hypogaea L) cultivars. National Research Centre for Groundnut, Junagadh, India, pp 1–254

    Google Scholar 

  • Benedict CR, Ketring DL (1972) Nuclear gene affecting greening in virescent peanut leaves. Plant Physiol 49(6):972–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat RS, Rockey J, Shirasawa K, Tilak IS, Patil MPB, Lachagam VBR (2020) DNA methylation and expression analyses reveal epialleles for the foliar disease resistance genes in peanut (Arachis hypogaea L.). BMC Res Notes 13:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birthal PS, Parthasarathy Rao P, Nigam SN, Bantilan CS, Bhagavatulu S (2010) Groundnut and soybean economies in Asia: facts, trends and outlook. ICRISAT, Patancheru, India, pp 22–26

    Google Scholar 

  • Bora KC, Patil SH, Subbaiah KC (1961) X-ray and neutron induced meiotic irregularities in plants with special reference to Arachis hypogaea and Plantago ovata. In: Proc effects of ionizing radiations on seeds. IAEA, Vienna, pp 203–216

    Google Scholar 

  • Branch WD (2000) Registration of ‘Georgia Hi-O/L’ peanut. Crop Sci 40:1823–1824.

    Google Scholar 

  • Branch WD (2002) Variability among advanced gamma-irradiation induced large-seeded mutant breeding lines in the ‘Georgia Browne’ peanut cultivar. Plant Breed 121:275–277

    Article  Google Scholar 

  • Brown N, Branch WD, Johnson M, Wallace J (2021) Genetic diversity assessment of Georgia peanut cultivars developed during ninety years of breeding. Plant Genome 2021:e20141. https://doi.org/10.1002/tpg2.20141

    Article  Google Scholar 

  • Busolo-Bulafu (1991) Utilization of induced mutations for groundnut breeding in Uganda. Mutat Breed Newslett 30:4

    Google Scholar 

  • Cabanos CS, Katayama H, Urabe H, Kuwata C, Murota Y, Abe T, Okumoto Y, Maruyama N (2012) Heavy-ion beam irradiation is an effective technique for reducing major allergens in peanut seeds. Mol Breed 30:1037–1044

    Article  CAS  Google Scholar 

  • Chen T, Huang L, Wang M, Huang Y, Zeng R, Wang X, Wang L, Wan S, Zhang L (2020) Ethyl methyl sulfonate-induced mutagenesis and its effects on peanut agronomic, yield and quality traits. Agronomy 10:655

    Article  CAS  Google Scholar 

  • Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu KD, Meksem K, Comai L, Henikoff S (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Dave RS, Mitra RK (2000) Partial characterization of cDNA clone of a low temperature induced gene from groundnut. Int Arachis Newslett 20:36–37

    Google Scholar 

  • Directorate of Groundnut Research (DGR) (2010) Andhra farmer scores a record yield with Trombay groundnuts. DGR Newslett IX(3–4):1

    Google Scholar 

  • Donini B, Kawai T, Micke A (1984) Spectrum of mutant characters utilized in developing improved cultivars. In: Selection in mutation breeding. IAEA, Vienna, pp 7–31

    Google Scholar 

  • Doo HS, Cheong YK, Park KH (2008) Variations in the chemical compositions of peanut mutants induced by gamma radiation. Korean J Breed Sci 40:113–118

    Google Scholar 

  • Fang CQ, Wang CT, Wang PW, Tang YY, Wang XZ, Cui FG, Yu SL (2012) Identification of a novel mutation in FAD2B from a peanut EMS mutant with elevated oleate content. J Oleo Sci 61(3):143–148

    Article  CAS  PubMed  Google Scholar 

  • FAO (1998) The state of the World’s Plant Genetic Resources for Food and Agriculture. FAO, Rome

    Google Scholar 

  • FAOSTAT (2020). http://www.fao.org/faostat/en/#data/QC

  • Francisco MDL, Resurreccion AVA (2008) Functional components in peanuts. Crit Rev Food Sci Nutr 48:715–746

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Wang Q, Li L, Lang T, Guo J, Wang S, Sun Z, Han S, Huang B, Dong W, Zhang X, Du P (2021) Physical mapping of repetitive oligonucleotides facilitates the establishment of a genome map-based karyotype to identify chromosomal variations in peanut. BMC Plant Biol 21:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadgil JD, Mitra R (1982) Sucrose, raffinose and stachyose concentration in some Trombay groundnut cultures derived from mutation breeding. Mutat Breed Newslett 20:6–7

    Google Scholar 

  • Gadgil JD, Mitra R (1983) Chemical composition of seeds in induced groundnut mutants and their derivatives. Indian J Agric Sci 53:295–298

    Google Scholar 

  • Giriraj K, Itnal CJ (eds) (1999) Oilseeds scenario in India. Highlights of oilseeds research in north Karnataka. University of Agricultural Sciences, Dharwad, India, pp 1–64

    Google Scholar 

  • Gowda MVC, Nadaf HL, Sheshagiri R (1996) The role of mutation in intraspecific differentiation of groundnut (Arachis hypogaea L.). Euphytica 90:105–113

    Article  Google Scholar 

  • Gowda MVC, Bhat RS, Motagi BN, Sujay V, Kumari V, Sujatha B (2010) Association of high-frequency origin of late leaf spot resistant mutants with AhMITE1 transposition in peanut. Plant Breed 129:567–569

    CAS  Google Scholar 

  • Gregory WC (1955) X-ray breeding of peanuts (Arachis hypogaea L.). Agric J 47:396–399

    CAS  Google Scholar 

  • Gregory WC (1960) The peanut NC 4x, a milestone in crop breeding. Crops Soils 12(8):12–13

    Google Scholar 

  • Guo Y, Abernathy B, Zeng Y, Ozias-Atkin P (2015) TILLING by sequencing to identify induced mutations in stress resistance genes of peanut (Arachis hypogaea). BMC Genomics 16:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo F, Ma J, Hou L, Shi S, Sun J, Li G, Zhao C, Xia H, Zhao S, Wang X, Zhao Y (2020) Transcriptome profiling provides insights into molecular mechanism in Peanut semi-dwarf mutant. BMC Genomics 21:211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han S, Liu H, Yan M, Qi F, Wang Y, Sun Z, Huang B, Dong W, Tang F, Zhang X, He G (2017) Differential gene expression in leaf tissues between mutant and wild-type genotypes response to late leaf spot in peanut (Arachis hypogaea L.). PLoS One 12(8):e0183428

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan IB, Anes UC (2015) Cytogenetic and morphological effects of gamma radiation induced mutation in groundnut varieties in Nigeria. J Adv Biol Basic Res 01:44–46

    Google Scholar 

  • Holbrook CC, Stalker HT (2003) Peanut breeding and genetic resources. Plant Breed Rev 22:297–356

    Google Scholar 

  • Huang BY, Zhang XY, Miao LJ, Yan Z, Hai Y, Yi ML, Xu J, Chen ZK (2008) RNAi transformation of AhFAD2 gene and fatty acid analysis of transgenic seeds. Chinese J Oil Crop Sci 30(3):290–293

    CAS  Google Scholar 

  • Hussein HA, El-Sharkawy AM, Hussein EH, Sorour WA (1991) Mutation breeding experiments in peanuts (Arachis hypogaea L.). In: Plant mutation breeding for crop improvement, vol 2. IAEA, Vienna, pp 199–206

    Google Scholar 

  • IAEA (2021) Mutant variety database [Online]. http://mvd.iaea.org/. Accessed 1 Aug 2021

  • ICAR-IASRI (2019) Agricultural research data book. Indian Agricultural Statistics Research Institute (IASRI), New Delhi, India, pp 1–366

    Google Scholar 

  • Jiang X, Zhou Y (1987) The value of the radiation induced mutant Fushi in peanut cross breeding. Mutat Breed Newslett 30:2–3

    Google Scholar 

  • Jiang X, Zhou Y (1988) “Fushi” - excellent mutant germplasm for peanut improvement. Acta Agric Nucleata Sinica 2:147–153

    Google Scholar 

  • Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DB (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15(5):648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshua DC, Bhatia CR (1983) Increased cotyledonary cell size in induced large seed mutants in three grain legumes. Environ Exp Bot 23:175–181

    Article  Google Scholar 

  • Kale DM, Mouli C, Murty GSS, Rao MVP (1997) Development of a new groundnut variety, TG-26 by using induced mutations in cross breeding. Mutat Breed Newslett 43:25–27

    Google Scholar 

  • Kale DM, Badigannavar AM, Murty GSS (2000a) Forty years of mutation research in groundnut at Trombay: accomplishments and potentials. In: Proc DAE-BRNS Symp Use of nuclear and molecular techniques in crop improvement. Bhabha Atomic Research Centre, Mumbai, India, pp 184–193

    Google Scholar 

  • Kale DM, Badigannavar AM, Murty GSS (2000b) Development of new large pod Trombay Groundnut (Arachis hypogaea) selections. Indian J Agric Sci 70:365–369

    Google Scholar 

  • Kale DM, Badigannavar AM, Murty GSS (2002) High yields with ideal ideotypes of groundnut varieties TAG 24 and TG 26. Int Arachis Newslett 22:13–15

    Google Scholar 

  • Kale DM, Murty GSS, Badigannavar AM (2004a) TG-37A a new Trombay groundnut variety with wide adaptation. Int Arachis Newslett 24:19–20

    Google Scholar 

  • Kale DM, Murty GSS, Badigannavar AM (2004b) TPG-41 a new large-seeded groundnut variety released in India. Int Arachis Newslett 24:21–22

    Google Scholar 

  • Kale DM, Murty GSS, Badigannavar AM (2007) New Trombay groundnut variety TG-38 suitable for the residual moisture situation in India. J SAT Agric Res 3:1–2

    Google Scholar 

  • Kale DM, Murty GSS, Badigannavar AM, Makane VG, Toprope VN, Shirshikar SP, Jangawad NP (2008) TLG 45, a large seed groundnut variety for Marathwada region of Maharashtra in India. J SAT Agric Res 6:1–2

    Google Scholar 

  • Kale DM, Murty GSS, Badigannavar AM, Dhal JK (2009) New Trombay groundnut variety TG 51 for commercial cultivation in India. J SAT Agric Res 7:1–2

    Google Scholar 

  • Kale DM, Murty GSS, Badigannavar AM, Gupta PC, Bhanushali TB, Sain RS, Chaudhary BR, Kumawat SM, Kumar S, Parameshwarappa KG, Malligawad LH, Kenchanagoudar PV, Bentur MG (2010) A new large-seeded groundnut variety TG 39 for Rajasthan and Karnataka states in India. J SAT Agric Res 8:1–3

    Google Scholar 

  • Karaman K, Kizil S, Başak M, Uzun B, Yol E (2021) Development of EMS-induced mutagenized groundnut population and discovery of point mutations in the ahFAD2 and Ara h 1 genes by TILLING. J Oleo Sci 70:1631–1640

    Article  CAS  PubMed  Google Scholar 

  • Karavolias NG, Horner W, Abugu MN, Evanega SN (2021) Application of gene editing for climate change in agriculture. Front Sustain Food Syst 5:685801. https://doi.org/10.3389/fsufs.2021.685801

    Article  Google Scholar 

  • Kaur N, Alok A, Kaur N, Pandey P, Awasthi P, Tiwari S (2018) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct Integr Genomics 18(1):89–99

    Article  CAS  PubMed  Google Scholar 

  • Kavera, Nadaf HL, Hanchinal RR (2013) Genetic improvement for oil quality through induced mutagenesis in groundnut (Arachis hypogaea L.). Indian J Genet 73:378–385

    Article  CAS  Google Scholar 

  • Knoll J, Ramos M, Zeng Y, Holbrook C, Chow M, Chen S, Maleki S, Bhattacharya A, Ozias-Akins P (2011) TILLING for allergen reduction and improvement of quality traits in peanut (Arachis hypogaea L.). BMC Plant Biol 11:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kris-Etherton MP, Pearson AT, Ying W, Hargrove LR, Moriarty K, Fishell V, Etherton DT (2001) High monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am Soc Clin Nutr 70:1009–1015

    Article  Google Scholar 

  • Levy A, Ashri A (1978) Induced plasmon mutations affecting the growth habit of peanuts, A. hypogaea L. Mutat Res 51:347–360

    Article  CAS  Google Scholar 

  • Lin O, Chen R, Lin T, Li B, Zhuang W (2005) Cytological effect of laser-irradiated peanut seeds and induction of mutation. In: Proc. SPIE 5630, Optics in health care and biomedical optics: diagnostics and treatment II. https://doi.org/10.1117/12.572813

    Chapter  Google Scholar 

  • Liu L, Van Zanten L, Shu QY, Maluszynski M (2004) Officially released mutant varieties in China. Mutat Breed Rev 14:1–64

    Google Scholar 

  • Livore AB, Landau A, Prina AR (2018) The success of IMI tolerant rice varieties in Latin America. In: FAO/IAEA international symposium on plant mutation breeding and biotechnology. IAEA, Vienna, p IAEA-CN-263-131

    Google Scholar 

  • Lodha ML, Johari RP, Sharma ND, Mehta SL (1983) Nitrogen fixation in relation to dark CO2 fixation in developing nodules of Arachis hypogaea L. mutants. Indian J Exp Biol 21:629–632

    CAS  Google Scholar 

  • Lodha ML, Johari RP, Sharma ND, Mehta SL (1985) Photosynthesis and translocation rate in Arachis hypogaea L. mutants. Biochem Physiol Pflanz 180:337–343

    Article  Google Scholar 

  • Lowder L, Malzahn A, Qi Y (2016) Rapid evolution of manifold CRISPR systems for plant genome editing. Front Plant Sci 7:1683

    Article  PubMed  PubMed Central  Google Scholar 

  • Manjunath NG, Saravanan S, Sushmitha R, Arumugam Pillai M, Sheela J, Shoba D (2020) Mutagenic efficiency and effectiveness of gamma rays and EMS in groundnut (Arachis hypogaea L.). Electronic. J Plant Breed 11(3):875–880

    Google Scholar 

  • Mathur RK, Manivel P, Gor HK, Chikani BM (1998) Fixing the sublethal dose for sodium azide on groundnut. Int Arachis Newslett 18:16–17

    Google Scholar 

  • Mathur RK, Manivel P, Samdur MY, Gor HK, Chikani BM (2000) Creation of genetic variability through mutation breeding in groundnut. In: DAE-BRNS symposium. Bhabha atomic Research Centre, Mumbai, India

    Google Scholar 

  • Menon PM, Raman VS, Krishnaswami S (1970) An induced monosomic in groundnut. Madras Agric J 57:80–82

    Google Scholar 

  • Mondal S, Badigannavar AM (2010) Induction of genetic variability for fatty acid composition in a large-seeded groundnut variety through induced mutagenesis. J SAT Agric Res 8:1–3

    Google Scholar 

  • Mondal S, Badigannavar AM (2013) A narrow leaf groundnut mutant, TMV2-NLM has a G to A mutation in AhFAD2A gene for high oleate trait. Indian J Genet 73:105–109

    Article  CAS  Google Scholar 

  • Mondal S, Badigannavar AM (2016) Development of high protein groundnut (Arachis hypogaea L.) mutant through induced mutagenesis. J Oilseeds Res 33:98–101

    Google Scholar 

  • Mondal S, Badigannavar AM, Kale DM, Murty GSS (2007) Induction of genetic variability in a disease resistant groundnut breeding line. BARC Newslett 285:237–247

    Google Scholar 

  • Mondal S, Badigannavar AM, D’Souza SF (2011) Induced variability for fatty acid profile and molecular characterization of high oleate mutant in cultivated groundnut (Arachis hypogaea L.). Plant Breed 130:242–247

    Article  CAS  Google Scholar 

  • Mondal S, Petwal VC, Badigannavar AM, Bhad PG, Verma VP, Goswami SG, Dwivedi J (2017) Electron beam irradiation revealed genetic differences in radio-sensitivity and generated mutants in groundnut (Arachis hypogaea L.). Appl Radiat Isotopes 122:78–83

    Article  CAS  Google Scholar 

  • Mondal S, Nazareth J, Bhad PG, Badigannavar AM (2018) Isolation of high oleate recombinants in peanut by Near Infra-Red Spectroscopy and confirmation with allele specific polymerase chain reaction marker. J Am Oil Chemists Soc 95:113–121

    Article  CAS  Google Scholar 

  • Moreira ARD, Boroni MAP, Macedo VS, Bressan J, Alfenas BCG, Mattes R, Costa MB (2014) High oleic peanuts: new perspective to attenuate glucose homeostasis disruption and inflammation related obesity. Obesity 22:1981–1988

    Article  Google Scholar 

  • Motagi BN, Gowda MVC, Sheshagiri R (1996) Mutants resistant to foliar diseases in groundnut. Curr Sci 71:582–584

    Google Scholar 

  • Motagi BN, Bhat RS, Pujer S, Nayak SN, Janila P, Pandey MK, Varshney RK, Bera SK, Pal KK, Mondal S, Badigannavar AM, Nagaraju P, Yenagi BS, Sugandhi RS, Nimbal A, Goudar I, Roopa U, Nadaf HL, Gowda MVC (2022) Genetic enhancement of groundnut: current status and future prospects. In: Gosal SS, Wani SH (eds) Accelerated plant breeding, vol 4. https://doi.org/10.1007/978-3-030-81107-5_3

    Chapter  Google Scholar 

  • Mouli C, Kale DM (1982a) An early maturing groundnut with foliaceous stipule marker. Curr Sci 51:132–134

    Google Scholar 

  • Mouli C, Kale DM (1982b) Gamma ray induced Spanish bunch mutant with large pod groundnut. Oleagineux 37:583–588

    Google Scholar 

  • Mouli C, Kale DM (1989) Early maturing mutants in groundnut cultivar, Phule Pragati (JL-24). Curr Sci 58:690–692

    Google Scholar 

  • Mouli C, Kale DM (1991) Hard seed character in groundnut. In: National Symp genetics and biotechnology for crop improvement. ICAR-Indian Institute of Rice Research, Hyderabad, India, pp 91–94

    Google Scholar 

  • Mouli C, Patil SH (1976) Gamma ray induced mutant with suppressed branches in the peanut. J Hered 67:322–324

    Article  Google Scholar 

  • Mouli C, Kale DM, Patil SH (1986) Inheritance of sequential flowering pattern in the mutants of groundnut cultivar, Robut-33-1. Curr Sci 55:1185–1187

    Google Scholar 

  • Mouli C, Kale DM, Murty GSS (1987) Induced mutants of groundnut cultivar, Phule-Pragati. Curr Sci 56:1237–1238

    Google Scholar 

  • Mouli C, Kale DM, Patil SH (1989a) Mutation research on groundnut in India. In: Farook SA, Khan IA (eds) Recent advances in genetics and cytogenetics, ICAR-Indian Institute of Rice Research Hyderabad, India 141–153

    Google Scholar 

  • Mouli C, Kale DM, Patil SH (1989b) Somnath: a high yielding Virginia runner variety of groundnut. Groundnut News 1:5

    Google Scholar 

  • Mouli C, Kale DM, Patil SH (1990) TG-19A: a large seeded Spanish groundnut. Groundnut News 2:3

    Google Scholar 

  • Murty GSS, Badigannavar AM, Mondal S, Kale DM (2004) Research and impact of groundnut mutation breeding in India. In: Basu MS, Singh NB (eds) Groundnut research in India. National Research Centre for Groundnut, Junagadh, India, pp 57–69

    Google Scholar 

  • Nadaf HL, Kaveri SB, Madhusudan K, Motagi BN (2009) Induced genetic variability for yield and yield components in peanut (Arachis hypogaea L.). In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome, pp 346–348

    Google Scholar 

  • Nadaf HL, Biradar K, Murthy GSS, Krishnaraj PU, Bhat RS, Pasha MA, Yerimani AS (2017) Novel mutations in oleoyl-PC desaturase (ahFAD2B) identified from new high oleic mutants induced by gamma rays in peanut. Crop Sci 57:2538–2546

    Article  CAS  Google Scholar 

  • Nkuna RT, Wang CT, Wang XZ, Tang YY, Wang ZW, Zhang JC (2021) Sodium azide induced high-oleic peanut (Arachis hypogaea L.) mutant of Virginia type. Genet Resour Crop Evol 68:1759–1767

    Article  CAS  Google Scholar 

  • NRCG (2000) Progress rep kharif groundnut workshop. University of Agricultural Sciences, Dharwad, India, pp 9–10

    Google Scholar 

  • Pathirana R, Weerasena LA, Jayamanna (1998) Induced mutations for improvement of groundnut and mungbean. In: Improvement of grain legume production using induced mutations. IAEA, Vienna, pp 1–544

    Google Scholar 

  • Patil SH (1966) Mutations induced in groundnut by X-rays. Indian J Genet 26A:334–348

    Google Scholar 

  • Patil SH (1968) Cytogenetics of X-ray induced in aneuploids in Arachis hypogaea L. Canadian J Genet Cytol 10:545–550

    Article  CAS  Google Scholar 

  • Patil SH (1973) Trombay groundnut selections for increased oil content and their comparative yield performances. Indian J Agric Sci 43:370–376

    Google Scholar 

  • Patil SH (1975) A new groundnut variety for export. Nuclear India 13:7–8

    Google Scholar 

  • Patil SH (1977) Trombay groundnuts: a home in Gujarat for TG-17. Nuclear India 16:3

    Google Scholar 

  • Patil SH, Bora KC (1961) Meiotic abnormalities induced by X-rays in Arachis hypogaea L. Indian J Genet 21:59–67

    Google Scholar 

  • Patil SH, Mouli C (1977) X-ray induced asynaptic mutant in groundnut. Indian J Exp Biol 15:521–524

    Google Scholar 

  • Patil SH, Mouli C (1979) Mutation research on groundnut in India. In: Proc symp the role of induced mutation in crop improvement. ICAR-Indian Institute of Rice Research, Hyderabad, India, pp 221–241

    Google Scholar 

  • Patil SH, Mouli C (1984) Preferential segregation of two allelic mutations for small leaf character in groundnut. Theor Appl Genet 67:327–332

    Article  CAS  PubMed  Google Scholar 

  • Patil SH, Mouli C, Kale DM (1982) Progress report on varietal improvement in groundnut at BARC. In: 2nd RC meeting. FAO/IAEA, Vienna

    Google Scholar 

  • Patil SH, Kale DM, Deshmukh SN, Fulzele GR, Weginwar BG (1995) Semi-dwarf, early maturing and high yielding new groundnut variety, TAG-24. J Oilseed Res 12:254–257

    Google Scholar 

  • Prasad MVR, Kaul S, Jain HK (1984) Induced mutants of peanut (Arachis hypogaea L.) for canopy and pod bearing characters. Indian J Genet 44:25–34

    Google Scholar 

  • Prasad MVR, Mamede FBF, DaSilva FP (1985) Mutational improvement of peanut. Pesq Agropec Bras Brasília 20:439–445

    Google Scholar 

  • Qiu Q, Li Z, Shen F, Wang C, Miao H (1997) Peanut breeding through mutation techniques in China. Mutat Breed Newslett 43:6–7

    Google Scholar 

  • Rajendra Prasad MN, Gowda MVC, Patil RK (1998) Screening groundnut mutants for resistance to Spodoptera litura and thrips. Int Arachis Newslett 18:29–30

    Google Scholar 

  • Reddy PS, Reddi MV, Raju BT, Ali SM (1977) Creation of genetic variability by recourse to irradiation in groundnut (Arachis hypogaea L.). Oleagineux 32:59–62

    Google Scholar 

  • Sharma ND, Mehta SL, Patil SH, Eggum BO (1981) Oil and protein quality of groundnut mutants. Qual Plant Foods Hum Nutr 31:85–90

    Article  CAS  Google Scholar 

  • Sharma ND, Santha IM, Patil SH, Mehta SL (1985) Fatty acid and amino acid composition of groundnut mutants. Qual Plant Foods Hum Nutr 35:3–8

    Article  CAS  Google Scholar 

  • Shikazono N, Suzuki C, Kitamura S, Watanabe H, Tano S, Tanaka A (2005) Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J Exp Bot 56:587–596

    Article  CAS  PubMed  Google Scholar 

  • Shin DS, Compadre CM, Maleki S, Kopper RA, Sampson H, Huang SK, Burks AW, Bannon GA (1998) Biochemical and structural analysis of the IgE binding sites on Ara h 1, an abundant and highly allergenic peanut protein. J Biol Chem 273:13753–13759

    Article  CAS  PubMed  Google Scholar 

  • Shivraj A, Ramana Rao BV (1963) A note on the effects of fast neutrons and gamma rays on groundnut. Indian Oilseed J 7:156–157

    Google Scholar 

  • Shivraj A, Gangaprasada RN, Ramana Rao BV, Razvi HA (1962) Effects of fast neutrons on seeds of groundnut. Indian Oilseeds J 11:24–30

    Google Scholar 

  • Shu H, Luo Z, Peng Z, Wang J (2020) The application of CRISPR/Cas9 in hairy roots to explore the functions of AhNFR1 and AhNFR5 genes during peanut nodulation. BMC Plant Biol 20:417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivaram MR, Rathinaswamy R, Appadurai R, Sivasubramaniam S (1989) CO 2 a high yielding mutant bunch groundnut. Madras Agric J 76:424–426

    Google Scholar 

  • Sui J, Wang Y, Wang P, Qiao L, Sun S, Hu X, Chen J, Wang J (2015) Generation of peanut drought tolerant plants by pingyangmycin-mediated in vitro mutagenesis and hydroxyproline-resistance screening. PLoS One 10(3):e0119240

    Article  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Matsuoka C, Utsushi H, Natsume S, Kanzaki H, Matsumura H, Saitoh H, Yoshida K, Cano LM, Kamoun S, Terauchi R (2013a) MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene pii. New Phytol 200:276–283

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013b) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Tang YY, Wang XZ, Wu Q, Fang CQ, Guani SY, Yang W, Wang CT, Wang PW (2013) Identification of differentially expressed genes from developing seeds of a normal oil peanut cultivar and its high oil EMS mutant. Res Crops 14(2):511–516

    Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Toomer OT (2020) A comprehensive review of the value-added uses of peanut (Arachis hypogaea) skins and by-products. Crit Rev Food Sci Nutr 60(2):341

    Article  CAS  PubMed  Google Scholar 

  • Valls JFM, Costa LC, Custodio AR (2013) A novel trifoliolate species of Arachis (Fabaceae) and further comments on the taxonomic section trierectoides. Bonplandia 22:91–97

    Article  Google Scholar 

  • Wan L, Li B, Pandey MK, Wu Y, Lei Y, Yan L, Dai X, Jiang H, Zhang J, Wei G, Varshney RK, Liao B (2016) Transcriptome analysis of a new peanut seed coat mutant for the physiological regulatory mechanism involved in seed coat cracking and pigmentation. Front Plant Sci 7:1491

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan L, Li B, Lei Y, Yan L, Ren X, Chen Y, Dai X, Jiang H, Zhang J, Guo W, Chen A, Liao B (2017) Mutant transcriptome sequencing provides insights into pod development in peanut (Arachis hypogaea L.). Front Plant Sci 8:1900

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan L, Lei Y, Yan L, Liu Y, Pandey MK, Wan X, Varshney RK, Fang J, Liao B (2020) Transcriptome and metabolome reveal redirection of flavonoids in a white testa peanut mutant. BMC Plant Biol 20:161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CT, Yang XD, Chen DX, Zhang JC, Xu JZ, Yang WQ (2002) Production of extra large-podded and small podded peanut mutants following chemical mutagen treatment. J Peanut Sci 31(4):5–8

    Google Scholar 

  • Wang CT, Tang YY, Wang XZ, Zhang SW, Li GJ, Zhang JC, Yu SL (2011a) Sodium azide mutagenesis resulted in a peanut plant with elevated oleate content. Electron J Biotechnol 14(2). https://doi.org/10.2225/vol14-issue-2-fulltext-4

  • Wang CN, Wang XZ, Tang YY, Zhang JC, Chen DX, Xu JZ, Yang XD, Song GS, Cui FG (2011b) Huayu 40, a groundnut cultivar developed through EMS mutagenesis. J SAT Agric Res 9:1–3

    Google Scholar 

  • Wang CT, Zhang JC, Tang YY, Guan SY, Wang XZ, Wu Q, Shan L, Zhu LG, Su JW, Yu ST (eds) (2013) Peanut genetic improvement. Shanghai Science and Technology Press, Shanghai. 531 pp

    Google Scholar 

  • Wang JS, Sui JM, Xie YD, Guo HJ, Qiao LX, Zhao LL, Yu SL, Liu LX (2015) Generation of peanut mutants by fast neutron irradiation combined with in vitro culture. J Radiat Res 56:437–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Shi L, Liu Y, Zhao M, Wang X, Qiao L, Sui J, Li G, Zhu H, Yu S (2020) Development of peanut varieties with high oil content by in vitro mutagenesis and screening. J Integr Agric 19(12):2974–2982

    Article  CAS  Google Scholar 

  • Wen S, Liu H, Li X, Chen X, Hong Y, Li H, Lu Q, Liang X (2018) TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid. Plant Mol Biol 97:177–185

    Article  CAS  PubMed  Google Scholar 

  • Woo J, Kim J, Kwon S, Claudia C, Cho SW, Kim H, Kim S, Kim S, Choe S, Kim J (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164

    Article  CAS  PubMed  Google Scholar 

  • Wu LR, Chen J, Shi YQ, Miao HR, Qi W, Chen XD, Hu WG (2006) Breeding of Huayu 22 by 60Co γ-rays mutagenesis combined with hybridization. J Nucl Agric Sci 20:309–311

    CAS  Google Scholar 

  • Yu ST, Yu HB, Yu GQ, Zhao LR, Sun HX, Tang YY, Wang XZ, Wu Q, Sun XQ, Wang CT (2015) Isolation of differentially expressed genes from developing seeds of a high-protein peanut mutant and its wild type using Genefishing™ technology. In: Zhang TC, Nakajima M (eds) Advances in applied biotechnology, Lecture notes in electrical engineering, vol 332. https://doi.org/10.1007/978-3-662-45657-6_5

    Chapter  Google Scholar 

  • Yu ST, Wang CT, Wang H, Yu GQ, Shi PX, Ren L, Yu HB, Du ZB (2019) Two-step chemical mutagen treatment to convert Fuhua 12, a normal oleic Spanish peanut cultivar, into its high oleic version. IOP Conf Ser Earth Environ Sci 346:012039

    Article  Google Scholar 

  • Yuan M, Zhu J, Gong L, He L, Lee C, Hans S, Chen C, He G (2019) Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Plant Biotechnol 19:24

    Article  Google Scholar 

  • Zhuang W, Chen H, Yang M, Wang J, Pandey MK, Zhang C, Chang W, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C, Wang J, Deng Y, Wang D, Khan AW, Yang Q, Cai T, Bajaj P, Wu K, Guo B, Zhang X, Li J, Liang F, Hu J, Liao B, Liu S, Chitikineni A, Yan S, Zheng Y, Shan S, Liu Q, Xie D, Wang Z, Khan SA, Ali N, Zhao C, Li X, Luo Z, Zhang S, Zhuang R-R, Peng Z, Wang S, Mamadou G, Zhuang Y, Zhao Z, Yu W, Xiong F, Quan W, Yuan M, Li Y, Zou H, Xia H, Zha L, Fan J, Yu J, Xie W, Yuan J, Chen K, Zhao S, Chu W, Chen Y, Sun P, Meng F, Zhuo T, Zhao Y, Li C, He G, Zhao Y, Wang C, Kavikishor PB, Pan R, Paterson AH, Wang X, Ming R, Varshney RK (2019) The Arachis hypogaea genome elucidates legume karyotypes, polyploidy evolution and crop domestication. Nat Genet 51:865–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand M. Badigannavar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Badigannavar, A.M., Mondal, S. (2023). Advances in Mutation Breeding of Groundnut (Arachis hypogaea L.). In: Penna, S., Jain, S.M. (eds) Mutation Breeding for Sustainable Food Production and Climate Resilience. Springer, Singapore. https://doi.org/10.1007/978-981-16-9720-3_16

Download citation

Publish with us

Policies and ethics