Skip to main content
Log in

Induced mutagenesis for genetic improvement of Allium genetic resources: a comprehensive review

  • Review
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The genus Allium is one of the largest monocotyledon genera having 1000 designated species with commercial and economic significance. Allium cepa L. (onion) and Allium sativum L. (garlic) are the most imperative edible species of this genus which are cultivated and consumed globally. Despite that, not much systematic and focused research has been carried out in these crops due to constraints like biennial nature, high crossability, cross or sexual incompatibilities/limited sexual reproduction, obligate apomict, large genome size, high heterozygosity, etc. To create genetic variability, induced mutagenesis is the optimum and best alternative for Alliums especially for the development of genetically improved and wider adaptive cultivars under changing climatic scenario. Development of new cultivars having tolerance against various biotic and abiotic stresses needs continuous efforts and attention of the breeder. For that, sufficient and wide genetic variation in the germplasm is the driving force for the breeders to select best genotypes. Development of mutants can be an alternative breeding strategy since mutations cause heritable genetic variations, which provide the eventual foundation for the evolution of new cultivars, forms or species. Such variations could be created artificially through various chemicals or physical agents, known as mutagens. Mutation breeding is an efficient and conventional method of crop improvement. With the aid of modern omics and molecular markers, allium breeding could be accelerated to develop desired products under rapidly climate scenario. This is the first comprehensive and detailed review on induced mutagenesis and mutation breeding in alliums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from Sikora et al. (2011)

Fig. 4
Fig. 5

Adapted from Kim et al. (2009)

Similar content being viewed by others

References

  • Agrawal MK, Fageria MS, Dhaka RS (2003) Garlic breeding: a review. Agric Rev 24:70–74

    Google Scholar 

  • Ahirwar R (2015) Gamma radiation induced chromosomal aberrations at mitosis in Allium cepa L. Int J Sci Res 4(4):855–858

    Google Scholar 

  • Ahirwar R, Verma RC (2016) Ethyl methane sulphonate (EMS) induced translocation and inversion heterozygote in Allium cepa L. Cytologia 81(2):149–153

    Article  CAS  Google Scholar 

  • Ahloowalia BS (1998) In vitro techniques and mutagenesis for the improvement of vegetatively propagated plants. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Springer, Dordrecht, pp 293–309

    Chapter  Google Scholar 

  • Ahloowalia BS, Maluszynski M (2001) Induced mutations: a new paradigm in plant breeding. Euphytica 118:167–173

    Article  CAS  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Ahmad S, Qureshi S (1992) Comparative study of two cultivars of Zea mays after seed irradiation. II. Effect of radiation on yield. Sarhad J Agr 8:655–658

    Google Scholar 

  • Ali BT, Amin BT, Behzad S (2012) Ethyl methane sulphonate (EMS) induced mutagenesis in Malaysian rice (cv. MR219) for lethal dose. Am J Plant Sci 3:1661–1665

    Article  Google Scholar 

  • Al-Oudat M (1990) Effect of low dose gamma irradiation on onion yield. Ann Biol 6:61–67

    Google Scholar 

  • Al-Safadi B, Mir AN, Arabi MIE (2000) Improvement of garlic (Allium sativum L.) resistant to white rot and storability using γ-irradiation induced mutations. J Genet Breed 54(3):175–181

    Google Scholar 

  • Al-Safadi B, Sharabi NE, Nabulsi I (2002) Evaluation of tissue culture and growth assays to identify irradiated from non-irradiated vegetables. J Veg Crop Prod 8:109–121

    Article  Google Scholar 

  • Amjad M, Anjum MA (2002) Effect of gamma radiation on onion seed viability, germination potential seedling growth and morphology. Pak J Agri Sci 39:202–206

    Google Scholar 

  • Amjad M, Anjum MA (2007) Effect of post-irradiation ageing on onion seeds. Acta Physiol Plant 29(1):63–69

    Article  Google Scholar 

  • Bado S, Forster BP, Nielen S, Ali AM, Lagoda PJ, Till BJ, Laimer M (2015) Plant mutation breeding: current progress and future assessment. Plant Breed Rev 39:23–88

    Google Scholar 

  • Banerjee M, Sharma AK (1971) Effects of certain physical and chemical agents on the chromosomes of different varieties of Allium cepa L. Ind Agric 15:199–206

    CAS  Google Scholar 

  • Banjare C, Shukla N, Sharma PK, Shrivastava R, Chandravanshi D (2017) Effect of Ethyl Methane Sulphonate (EMS) on sprouting and survival characteristics of garlic (Allium sativum L.). Agric Update 12:1350–1356

    Article  Google Scholar 

  • Bhamburkar S, Bhalla JK (1980) Different mutagenic sensitivity of three variety of Allium cepa L. J Cytol Genet 15:178–185

    CAS  Google Scholar 

  • Bhat TA, Khan AH, Parveen S (2005) Comparative analysis of meiotic abnormalities induced by gamma rays, EMS and MMS in Vicia faba L. J Indian Botan Soc 84:45–58

    Google Scholar 

  • Campos FF, Generoso WM, Caprinpin JM (1960) Effect of X-rays on the bulbs and seeds of onion (Allium cepa L.). Philipp Agric 44:125–133

    CAS  Google Scholar 

  • Choudhary AD, Dnyanansagar VR (1982) Studies on effect of physical and chemical mutagens in garlic (Allium sativum L.). J Indian Bot Soc 61:85–90

    Google Scholar 

  • Choudhary AD, Dnyansagar VR (1980a) Induced chromosomal aberrations in garlic. J Cytol Genet 15:58–60

    Google Scholar 

  • Choudhary AD, Dnyansagar VR (1980b) Effect of physical and chemical mutagens on morphological parameters in garlic. J Indian Bot Soc 59(3):202–206

    Google Scholar 

  • Datta SK (1984) Radiosensitivity. Everyman’s. Science 19:269–273

    Google Scholar 

  • Datta SK (2002) Parameters for detecting effects of ionizing radiations on plants. In: Tripathi RD, Kulshreshtha K, Agarwal M, Ahmad KJ, Varshney CK, Krupa S, Pushpangadan P (eds) Plant responses to environmental stress. International Book Distributing Co, Lucknow, pp 257–265

    Google Scholar 

  • Datta BK, Bhattacharya GN, Sudhendu M (1992) Differential susceptibility of two varieties of Vigna radiata in response to ethyl methane sulphonate. In: Proceedings of the environmental pollution: impact of technology on quality of life, Febuary 21–23 Santiniketan, India, pp 25–30

  • Datta SK, Chakrabarty D, Verma AK, Banerji BK (2011) Gamma ray induced chromosomal aberrations and enzyme related defense mechanism in Allium cepa L. Caryologia 64(4):388–397

    Google Scholar 

  • Devi SJ (2020) Morphological studies of gamma irradiated Allium tuberosum Rottler ex Sprengel local cv. Ningtham sidabi. Stud Indian Place Names 40(50):684–692

    Google Scholar 

  • Dhanayanth KPM, Reddy V (2000) Cytogenetic effects of gamma rays and ethyle methane sulphonate in chilli piper (Capsicum annuum). Cytology 65:129–133

    Article  Google Scholar 

  • Duangjit J, Bohanec B, Chan AP, Town CD, Havey MJ (2013) Transcriptome sequencing to produce SNP-based genetic maps of onion. Theor Appl Genet 126:2093–2101

    Article  CAS  PubMed  Google Scholar 

  • Eady CC (1995) Towards the transformation of onion (Allium cepa L). N Z J Crop Hort Sci 23:239–250

    Article  Google Scholar 

  • El-Fiki A, Adly M (2020) Morphological, molecular, and organosulphur compounds characterization in irradiated garlic (Allium sativum) by GC–MS and SCoT markers. J Radiat Res Appl Sci 13(1):61–70. https://doi.org/10.1080/16878507.2019.1697079

    Article  CAS  Google Scholar 

  • Etoh T, Simon PW (2002) Diversity, fertility and seed production of garlic. In: Rabinowitch HD, Currah L (eds) Allium Crop Science: Recent Advances, CAB Intl. Wallingford, UK, pp 101–117

    Chapter  Google Scholar 

  • FAOSTAT (2020) Onion production, area and productivity. http://www.fao.org/faostat/en/#data/QC. Accessed 20 Feb 2021

  • Fritsch RM, Friesen N (2002) Evolution, domestication and taxonomy. In: Rabinowitch HD, Currah L (eds) Allium Crop Science: Recent Advances. CABI International, UK, pp 5–30

    Chapter  Google Scholar 

  • Gohil RN, Koul AK (1984) Investigations on effect of physical mutagen on garlic (Allium sativum L.). Allium News 1:70–74

    Google Scholar 

  • Gore MA, Wright MH, Ersoz ES, Bouffard P, Szekeres ES, Jarvie TP, Hurwitz BL, Narechania A, Harkins TT, Grills GS, Ware DH, Buckler ES (2009) Large-scale discovery of genes enriched SNPs. Plant Genome 2:121–133

    Article  CAS  Google Scholar 

  • Guar BK, Nirale AS (1975) Limited growth stimulation by low dose X-irradiation of onion seedling. Stimul Newsl 8:13–17

    Google Scholar 

  • Hao WU, Cheng-Zuo LI (2006) Breeding of the new onion variety by laser mutagenesis and culture techniques. Acta Laser Biol Sin 15:651–654

    Google Scholar 

  • Hassan L, Ahmad SD (2000) Chromosomal aberrations induced by chemical mutagens in allium. Pak J Biol Sci 3(7):1187–1189

    Article  Google Scholar 

  • Hassan MHA, Wang H, Li X (2014) Performance of garlic callus, regenerated sprouts and formed plantlets under ethyl methane sulphonate affect. J Int Acad Res Multidisc 5(2):446–456

    Google Scholar 

  • Humera A, Javed I (2012) Genetic analysis of somaclonal variants and induced mutants of potato (Solanum tuberosum L.) cv. diamante using RAPD markers. Pak J Bot 44:215–220

    Google Scholar 

  • IAEA (2020) Mutant varieties database. https://mvd.iaea.org/#!Search?page=1&size=25&sortby=Name&sort=ASC&Criteria[0][field]=FreeText&Criteria[0][val]=allium. Accessed 20 Feb 2021

  • Ipek ME, Ipek AH, Almquist SG, Simon PW (2005) Demonstration of linkage and development of the first low-density genetic map of garlic, based on AFLP markers. Theor Appl Genet 110:228–236

    Article  CAS  PubMed  Google Scholar 

  • Ipek M, Sahin N, Ipek A, Cansev A, Simon PW (2015) Development and validation of new SSR markers from expressed regions in the garlic genome. Sci Agric 72:41–46

    Article  Google Scholar 

  • Jain MS, Suprasanna P (2011) Induced mutations for enhancing nutrition and food production. Gene Conserve 10(41):201–2015

    Google Scholar 

  • Jankowicz-Cieslak J, Huynh OA, Dussorth B, Saraye B, Till BJ (2012) Low-cost mutation discovery methods suitable for developing countries. Sci Med 3:245–249

    Google Scholar 

  • Joshi N, Ravindran A, Mahajan V (2011) Investigations on chemical mutagen sensitivity in onion (Allium cepa L.). Int J Bot 7(3):243–248. https://doi.org/10.3923/ijb.2011.243.248

    Article  CAS  Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55. https://doi.org/10.1038/nrm3486

    Article  CAS  PubMed  Google Scholar 

  • Kamenetsky R (2007) Garlic: Botany and Horticulture. Hortic Rev 33:123–171. https://doi.org/10.1002/9780470168011.ch2

    Article  CAS  Google Scholar 

  • Kataria AS, Singh N (1989) Mutation studies in onion (Allium cepa L.) II. Mutagenic effectiveness and efficiency of gamma rays, EMS, NMU and EL. Ann Agric Res 10:131–135

    Google Scholar 

  • Kataria AS, Singh N (1989) Mutation studies in onion (Allium cepa L.) III. Types and frequency of macromutations. Ind J Hort 46(3):395–400

    Google Scholar 

  • Kataria AS, Singh N (1989) Mutation studies in onion (Allium cepa L.) I. Mutagen sensitivity and mutability. Ind J Hort 46(2):199–203

    Google Scholar 

  • Kataria AS, Singh N (1990) Mutation studies in onion (Allium cepa L.) IV. Effect of mutagens on total soluble solids contents. Ind J Hort 47(2):216–219

    Google Scholar 

  • Kato M, Masamura N, Shono J, Okamoto D, Abe T, Imai S (2016) Production and characterization of tearless and non-pungent onion. Sci Rep 6:23779. https://doi.org/10.1038/srep23779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul A (1985) Induction of somatic mutations in Allium sativum and Allium cepa var. viviparum. Dissertation, University of Kashmir, India

  • Khan S, Al-Qurainy F (2009) Mutagenic effect of sodium azide on seed germination of Eruca sativa (L.). Aust J Basic Appl Sci 3:3081–3087

    CAS  Google Scholar 

  • Khan S, Goyal S (2009) Improvement of mungbean variety through induced mutations. Afri J Plant Sci 3:174–180

    Google Scholar 

  • Khar A, Hirata S, Abdelrahman M, Shigyo M, Singh H (2020) Breeding and genomic approaches for climate-resilient garlic. In: Kole C (ed) Genomic designing of climate-smart vegetable crops. Springer, Cham. https://doi.org/10.1007/978-3-319-97415-6_8

    Chapter  Google Scholar 

  • Kharkwal MC (1998) Induced mutations in chickpea (Cicer arietinum L.) I. Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens. Indian J Genet 58(2):159–167

    CAS  Google Scholar 

  • Kharkwal MC (2012) A brief history of plant mutagenesis. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 21–30

    Chapter  Google Scholar 

  • Kharkwal MC, Shu QY (2010) The role of induced mutations in world food security. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 33–38

    Google Scholar 

  • Khassanov FO (2018) Taxonomical and Ethnobotanical Aspects of Allium Species from Middle Asia with Particular Reference to Subgenus Allium. In: Shigyo M, Khar A, Abdelrahman M (eds) The Allium Genomes. Compendium of Plant Genomes. Springer, Switzerland, pp 11–22. https://doi.org/10.1007/978-3-319-95825-5_2

    Chapter  Google Scholar 

  • Kim DW, Jung TS, Nam SH, Kwon HR, Kim A, Chae SH, Choi SH, Kim DW, Kim RN, Park HS (2009) GarlicESTdb: an online database and mining tool for garlic EST sequences. BMC Plant Biol 9(1):61. https://doi.org/10.1186/1471-2229-9-61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirtane SA (2014) Studies on induced mutations in onion: effect of combination treatments of gamma radiation and sodium azide on biological and biochemical parameters of onion (Allium cepa L). AARJMD 1(25):119–129

    Google Scholar 

  • Kirtane SA (2014) Studies on Induced mutations in onion: frequency and spectrum of chlorophyll mutations. Biol Forum 6(2):141–144

    Google Scholar 

  • Kirtane SA (2018) Comparative mutagenic effectiveness and efficiency of sodium azide and gamma radiation in onion (Allium cepa L.). Int J Theor Appl Sci 10(1):169–173

    Google Scholar 

  • Kirtane S, Dhumal KN (2004) Studies on induced mutations in onion: biological and cytological effects of mutagen in M1 generation. Int J Mendel 21:11–13

    Google Scholar 

  • Kirtane S, Laware SL, Khar A, Lawande KE, Dhumal KN (2000) Induced macromolecular variability in onion (Allium cepa L). In: National symposium on Onion and Garlic, production and post-harvest management, challenges and strategies. November 19–21. Krishi Vigyan Kendra, YCMOU, Nashik (MS), India, p 186

  • Kirtane S, Lawande KE, Trivedi AP, Dhumal KN (2001) Pollen sterility in mutagens treated onion (Allium cepa L). Allium Improv Newsl 11:4–6

    Google Scholar 

  • Koul AK, Gohil RN (1971) Further studies on natural triploidy in viviparous onion. Cytologia 36:253–261

    Article  Google Scholar 

  • Kostov K, Batchvarova R, Slavov S (2007) Application of chemical mutagenesis to increase the resistance of tomato to Orobanche ramosa L. Bulg J Agric Sci 13:505–513

    Google Scholar 

  • Kulkarni GB (2011) Effect of mutagen on pollen-fertitity and other parameter in horse gram Imacrotyloma untflorum (lam). Biosci Discov 2:146–150

    Google Scholar 

  • Kumar S, Chaudhary BD (1996) Effect of doses of physical and chemical mutagens on the germination and mortality/survivability of induced mutations in Indian mustard (Brassica juncea (L.) Czern and Coss). Agr Sci Digest 16:17–20

    CAS  Google Scholar 

  • Kumar DS, Chakrabarty D, Verma AK, Banerji BK (2011) Gamma ray induced chromosomal aberrations and enzyme related defense mechanism in Allium cepa L. Caryologia 64(4):388–397

    CAS  Google Scholar 

  • Kuhl JC, Cheung F, Yuan Q, Martin W, Zewdie Y, McCallum J, Catanach A, Rutherford P, Sink KC, Jenderek M, Prince JP (2004) A unique set of 11,008 onion expressed sequence tags reveals expressed sequence and genomic differences between the monocot orders Asparagales and Poales. Plant Cell 16:114–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawande KE, Khar A, Mahajan V, Srinivas PS, Sankar V, Singh RP (2009) Onion and garlic research in India. J Hort Sci 4(2):91–119

    Google Scholar 

  • Lee IS, Kim DS, Hyun DY, Lee SJ, Song HS, Lim YP, Lee YI (2003) Isolation of gamma-induced rice mutants with increased tolerance to salt by anther culture. J Plant Biotechnol 5:51–57

    Google Scholar 

  • Ma K, Kwag J, Zhao W, Dixit A, Lee G, Kim H, Chung M et al (2009) Isolation and characteristics of eight novel polymorphic microsatellite loci from the genome of garlic (Allium sativum L.). Sci Hortic 122:355–361

    Article  CAS  Google Scholar 

  • Mahajan V, Devi A, Khar A, Lawande KE (2015) Studies on mutagenesis in garlic using chemical mutagens to determine lethal dose (LD50) and create variability. Ind J Hortic 72(2):289–292

    Article  Google Scholar 

  • Mahandjiev A, Kosturkova G, Mihov M (2001) Enrichment of Pisum sativum gene resources through combined use of physical and chemical mutagens. Israel J Plant Sci 49:279–284

    Google Scholar 

  • Martin W, McCallum J, Shigyo M, Jakŝe J, Kuhl JC, Yamane N, Sink KC, Town CD, Havey MJ (2005) Genetic mapping of expressed sequences in onion and in silico comparisons show scant collinearity with rice. Mol Genet Genom 274:197–204

    Article  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    Article  CAS  PubMed  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mlcochova L, Chloupek O, Uptmoor R, Ordon F, Friedt W (2004) Molecular analysis of the barley cv. ‘Valticky’ and its X-ray-derived semi dwarf-mutant ‘Diamant.’ Plant Breed 123:421–427. https://doi.org/10.1111/j.1439-0523.2004.01023.x

    Article  CAS  Google Scholar 

  • Mostafa HH, Wang H, Shen D, Qiu Y, Li X (2015) Sprout differentiation and mutation induction of garlic (Allium sativum L.) callus exposed to gamma radiation. Plant Growth Regul 75(2):465–471. https://doi.org/10.1007/s10725-015-0060-z

    Article  CAS  Google Scholar 

  • Nabulsi I, Al-Safadi B, Ali NM, Arabi MIE (2001) Evaluation of some garlic (Allium sativum L.) mutants resistant to white rot disease by RAPD analysis. Ann Appl Biol 138(2):197–202. https://doi.org/10.1111/j.1744-7348.2001.tb00102.x

    Article  CAS  Google Scholar 

  • Oladosu Y, Mohd YR, Norhani A, Ghazali H, Asfaliza R, Harun AR, Gous M, Magaji U (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16. https://doi.org/10.1080/13102818.2015.1087333

    Article  CAS  Google Scholar 

  • Park SJ, Sook K, JaeSung K, JaeMoon H, SoonTae K (2004) Effect of γ-radiation treatment on growth and antioxidative capacity in garlic (Allium sativum L.). Korean J Horti Sci Tech 22(4):407–410

    Google Scholar 

  • Peiwen X, Sun H, Yang Y, Liu H, Sun S (1999) A primary study on mutation induction of in vitro cultured garlic shoots by 60Co γ-ray irradiation. Acta Agri Nucleatae Sin 13:142–146

    Google Scholar 

  • Perez-Moreno L, Lopez-Munoz J, Pureco A, Hinojosa JC (1991) Production of radiation induced mutants of garlic (Allium sativum L.) resistant to white rot caused by the fungus Sclerotium cepivorum Berk. Plant Mutat Crop Improv IAEA 498:211–219

    Google Scholar 

  • Predieri S, Divrgilio N (2007) In-vitro mutagenesis and mutant multiplication, Chapter 30. In: Jain SM, Haggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Berlin, pp 323–333

    Chapter  Google Scholar 

  • Ramakrishnan U (2002) Prevalence of micronutrient malnutrition worldwide. Nutr Rev 60:S46-52

    Article  PubMed  Google Scholar 

  • Robledo-Paz A, Tovar-Soto HM (2012) Biotechnological tools for garlic propagation and improvement. Innov Biotechnol 10:30636. https://doi.org/10.5772/30636

    Article  Google Scholar 

  • Rosario TL, Miranda MB (1991) Induced mutation in garlic (Allium sativum). In: Plant mutation breeding for crop improvement, vol 1. IAEA, Vienna, pp 485–489

  • Schunk CR, Eberius M (2012) Phenomics in plant biological research and mutation breeding. In: Shu QY, Forster BF, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, UK, pp 535–559

    Chapter  Google Scholar 

  • Schwartz HF, Mohan SK (1995) Compendium of onion and garlic diseases. Disease compendium series of the American Phytopathological Society

  • Selvaraj N, Natarajan S, Ramaraj B (2011) Studies on induced mutations in garlic. Newsletter 45:40–41

    Google Scholar 

  • Shashidhar TR, Dharmatti PR, Nagaraja TE (2005) Determination of LD50 for physical mutagen in garlic cv. Vannur Local Karnataka J Hort 1(2):110–111

    Google Scholar 

  • Sigurbjörnsson B, Micke A (1974) Philosophy and accomplishments of mutation breeding. Polyploidy and induced mutations in plant breeding. IAEA, Vienna, pp 303–343

    Google Scholar 

  • Sikora P, Chawade A, Larsson M, Olsson J, Olsson O (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Genom. https://doi.org/10.1155/2011/314829

    Article  Google Scholar 

  • Singh BB (1974) Radiation induced changes in catalase, lipase and ascorbic acid of safflower seeds during germination. Radiat Bot 14:195–199

    Article  CAS  Google Scholar 

  • Singh F, Khoshoo TN, Ved BS (1967) Natural triploidy in viviparous onions. Cytologia 32:403–407

    Article  Google Scholar 

  • Singh H, Verma P, Lal SK, Khar A (2021) Optimization of EMS mutagen dose for short day Indian onion (Allium cepa L.). Ind J Hort 78(1):35–40

    Article  Google Scholar 

  • Sinuraya M, Rosmayati R, Hasanuddin H, Hanafiah DS (2015) Radio-sensitivity and the influence of gamma rays irradiation on local samosir shallots. In: Proceedings of the Annual International Conference Syiah Kuala University, vol 5, pp 228–231

  • Stadler LJ (1928) Mutations in barley induced by X-rays and radium. Science 68:186

    Article  CAS  PubMed  Google Scholar 

  • Taner Y, Besirli G, Kunter B, Yanmaz R (2004) Determining effective radiation mutagen dose for garlic (Allium sativum L). Bahce (yalova) 33(1–2):95–99

    Google Scholar 

  • Till BJ, Reynolds SH, Weil C et al (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol. https://doi.org/10.1186/1471-2229-4-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Till BJ, Cooper J, Tai TH et al (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19. https://doi.org/10.1186/1471-2229-7-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ussuf KK, Nair PM (1974) Effect of gamma irradiation on the indole acetic acid synthesizing system and its significance in sprout inhibition of potatoes. Rad Bot 14:251–256

    Article  CAS  Google Scholar 

  • Van Der Meer QP (1997) Old and new crops within edible Alliums. Acta Hort 433:17–31

    Article  Google Scholar 

  • Van Harten AM (1998) Mutation breeding. Theory and practical applications. Cambridge University, Cambridge, p 353

    Google Scholar 

  • Wani MR, Khan S (2006) Estimates of genetic variability in mutated populations and the scope of selection for yield attributes in Vigna radiata (L.) Wilczek. Egypt J Biol 8:1–6

    Google Scholar 

  • Watanabe Y, Yukawa M, Kim HS, Nishimura Y (2000) Radiation effects on growth and seed germination of Arabidopsis. Annual Report 1999–2000. National Institute of Radiological Sciences, Anagawa, Chiba-shi, Japan

  • Wattoo JI, Aslam K, Shah SM, Shabir G, Sabar M, Naveed SA, Waheed R, Samiullah QH, Muqaddasi AM (2012) Ethyle methane sulphonate (EMS) induced mutagenic attempts to create genetic variability in Basmati rice. J Plant Breed Crop Sci 4(7):101–105. https://doi.org/10.5897/JPBCS11.080

    Article  CAS  Google Scholar 

  • Xixiang L, Hassan MHA, Haiping W (2014) Performance of garlic callus, regenerated sprouts and formed plantlets under ethyl methane sulphonate affect. J Int Acad Res Multidisc 5(2):446–456

    Google Scholar 

  • Yamaguchi H, Nagatomi S, Morishita T et al (2003) Mutation induced with ion-beam irradiation in rose. Nucl Instr Methods Phys Res 206:561–564. https://doi.org/10.1016/S0168-583X(03)00825-5

    Article  CAS  Google Scholar 

  • Zargar GH, Zeerak NA, Ahanger HU, Wani SA (1994) Mutagenic effect of gamma rays, ethyl methanesulphonate and their combination in top-onion (Allium cepa var. viviparum). J Nucl Agric Biol 23(4):249–250

    CAS  Google Scholar 

  • Zewdie Y, Havey MJ, Prince JP, Jenderek MM (2005) The first genetic linkages among expressed regions of the garlic genome. J Am Soc Hortic Sci 130:569–574

    Article  CAS  Google Scholar 

  • Zhao WG, Chung JW, Lee GA, Ma KH, Kim HH, Kim KT, Chung IM, Lee JK, Kim NS, Kim SM, Park YJ (2011) Molecular genetic diversity and population structure of a selected core set in garlic and its relatives using novel SSR markers. Plant Breed 130:46–54

    Article  CAS  Google Scholar 

  • Zheng Z, Wang HB, Chen GD, Yan GJ, Liu CJ (2013) A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica 191:311–316. https://doi.org/10.1007/s10681-013-0909-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Khar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Khar, A. & Verma, P. Induced mutagenesis for genetic improvement of Allium genetic resources: a comprehensive review. Genet Resour Crop Evol 68, 2669–2690 (2021). https://doi.org/10.1007/s10722-021-01210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-021-01210-8

Keywords

Navigation