Skip to main content

Molecular Imaging Precision Medicine

  • Chapter
  • First Online:
Advances in Imaging
  • 1168 Accesses

Key Points (Abstract)

Precision Medicine is the focussed part of the imaging, which is evolving in a very fast way and here the concept is that the right therapy for the right patient, at right time, which is very specific as per the molecular targets which will be expressed in various diseases or tumours which are pertaining to the context of patient’s environment and lifestyle. Being the newer concept, it is challenging with the focussed tailor-made diagnostic and treatment options. But there are some limitations related to this modality where the specific biomarkers will be focussed for a particular patient for the diagnostic, mapping of the heterogeneity or homogeneity of particular tissues that are involved, this also includes the various therapy failures and early response to the therapy.

PET is essential to accurately stage patients with potentially curable lung cancer. PET plays a central role in precision medicine by helping to noninvasively assess molecular pathobiology and genetic make-up of disease so that appropriate therapy is selected and started. PET is key for subsequent treatment strategy of patients with lung cancer, including monitoring of therapy response, detection of recurrence, and prediction of patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bu LL, Yang K, Xiong WX, et al. Toward precision medicine in Parkinson’s disease. Ann Transl Med. 2016;4(2):26.

    PubMed  PubMed Central  Google Scholar 

  3. Montine TJ, Montine KS. Precision medicine: clarity for the clinical and biological complexity of Alzheimer’s and Parkinson’s diseases. J Exp Med. 2015;212(5):601–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nalls MA, Pankratz N, Lill CM, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014;46(9):989–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Armstrong RA, McKee AC, Stein TD, et al. A quantitative study of tau pathology in eleven cases of chronic traumatic encephalopathy. Neuropathol Appl Neurobiol. 2017; 43(2):154–166. https://doi.org/10.1111/nan.12323. [Epub ahead of print]. Molecular Imaging and Precision Medicine 15.

  7. Mosconi L, Rinne JO, Tsui WH, et al. Amyloid and metabolic positron emission tomography imaging of cognitively normal adults with Alzheimer’s parents. Neurobiol Aging. 2013;34(1):22–34.

    Article  CAS  PubMed  Google Scholar 

  8. Vemuri P, Lesnick TG, Przybelski SA, et al. Effect of lifestyle activities on Alzheimer disease biomarkers and cognition. Ann Neurol. 2012;72(5):730–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kemppainen NM, Aalto S, Karrasch M, et al. Cognitive reserve hypothesis: Pittsburgh compound B and fluorodeoxyglucose positron emission tomography in relation to education in mild Alzheimer’s disease. Ann Neurol. 2008;63(1):112–8.

    Article  PubMed  Google Scholar 

  10. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology. 1984;34(7):939–44.

    Article  CAS  PubMed  Google Scholar 

  13. Kleinman M, Frank S. Epidemiology and clinical diagnosis of Parkinson disease. PET Clin. 2013;8(4):447–58.

    Article  PubMed  Google Scholar 

  14. Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev. 2011;91(4):1161–218.

    Article  CAS  PubMed  Google Scholar 

  15. Alcalay RN, Caccappolo E, Mejia-Santana H, et al. Cognitive performance of GBA mutation carriers with early-onset PD: the CORE-PD study. Neurology. 2012;78(18):1434–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Srivatsal S, Cholerton B, Leverenz JB, et al. Cognitive profile of LRRK2-related Parkinson’s disease. Mov Disord. 2015;30(5):728–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stamelou M, Bhatia KP. Atypical parkinsonism: diagnosis and treatment. Neurol Clin. 2015;33(1):39–56.

    Article  PubMed  Google Scholar 

  18. Farde L, Nordstrom AL, Wiesel FA, et al. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry. 1992;49(7):538–44.

    Article  CAS  PubMed  Google Scholar 

  19. Eisensehr I, Linke R, Noachtar S, et al. Reduced striatal dopamine transporters in idiopathic rapid eye movement sleep behaviour disorder. Comparison with Parkinson’s disease and controls. Brain. 2000;123(Pt 6):1155–60.

    Article  PubMed  Google Scholar 

  20. Stiasny-Kolster K, Doerr Y, Moller JC, et al. Combination of ‘idiopathic’ REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alphasynucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. Brain. 2005;128(Pt 1):126–37.

    CAS  PubMed  Google Scholar 

  21. McKeith IG, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology. 2005;65(12):1863–72.

    Article  CAS  PubMed  Google Scholar 

  22. American Cancer Society. Key statistics for lung cancer. 2016. Available at: http://www.cancer.org/cancer/lungcancer-non-smallcell/detailedguide/non-small-cell-lung-cancer-key-statistics. Accessed July 9, 2016.

  23. Gould MK, Tang T, Liu IL, et al. Recent trends in the identification of incidental pulmonary nodules. Am J Respir Crit Care Med. 2015;192(10):1208–14.

    Article  PubMed  Google Scholar 

  24. Gould MK, Maclean CC, Kuschner WG, et al. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA. 2001;287:914–24.

    Article  Google Scholar 

  25. Gambhir SS, Czernin J, Schwimmer J, et al. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42:1S–93S.

    CAS  PubMed  Google Scholar 

  26. Cronin P, Dwamena B, Kelly AM, et al. Solitary pulmonary nodules: meta-analytic comparison of cross-sectional imaging modalities for diagnosis of malignancy. Radiology. 2008;246:772–82.

    Article  PubMed  Google Scholar 

  27. Garcia-Velloso MJ, Bastarrika G, de-Torres JP, et al. Assessment of indeterminate pulmonary nodules detected in lung cancer screening: diagnostic accuracy of FDG PET/CT. Lung Cancer. 2016;97:81–6.

    Article  PubMed  Google Scholar 

  28. Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49(3):480–508.

    Article  PubMed  Google Scholar 

  29. Sider L, Horejs D. Frequency of extrathoracic metastases from bronchogenic carcinoma in patients with normal-sized hilar and mediastinal lymph nodes on CT. AJR Am J Roentgenol. 1988;151(5):893–5.

    Article  CAS  PubMed  Google Scholar 

  30. MacManus MP, Hicks RJ, Matthews JP, et al. High rate of detection of unsuspected distant metastases by PET in apparent stage III non-small-cell lung cancer: implications for radical radiation therapy. Int J Radiat Oncol Biol Phys. 2001;50(2):287–93.

    Article  CAS  PubMed  Google Scholar 

  31. Hellwig D, Ukena D, Paulsen F, et al. Onko-PET der Deutschen gesellschaft fur nuklearmedizin. Metaanalysis of the efficacy of positron emission tomography with F-18-fluorodeoxyglucose in lung tumors. Basis for discussion of the German consensus conference on PET in oncology 2000. Pneumologie. 2001;55(8):367–77.

    Article  CAS  PubMed  Google Scholar 

  32. Cook GJ, Houston S, Rubens R, et al. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol. 1998;16(10):3375–9.

    Article  CAS  PubMed  Google Scholar 

  33. Hustinx R, Paulus P, Jacquet N, et al. Clinical evaluation of whole-body 18F-fluorodeoxyglucose positron emission tomography in the detection of liver metastases. Ann Oncol. 1998;9(4):397–401.

    Article  CAS  PubMed  Google Scholar 

  34. Reed CE, Harpole DH, Posther KE, et al. American College of Surgeons oncology group Z0050 trial. Results of the American College of Surgeons oncology group Z0050 trial: the utility of positron emission tomography in staging potentially operable non-small cell lung cancer. J Thorac Cardiovasc Surg. 2003;126(6):1943–51.

    Article  PubMed  Google Scholar 

  35. Lardinois D, Weder W, Roudas M, et al. Etiology of solitary extrapulmonary positron emission tomography and computed tomography findings in patients with lung cancer. J Clin Oncol. 2005;23:6846–53.

    Article  PubMed  Google Scholar 

  36. Schaarschmidt BM, Grueneisen J, Metzenmacher M, et al. Thoracic staging with 18F-FDG PET/MR in non-small cell lung cancer: does it change therapeutic decisions in comparison to 18F-FDG PET/CT? Eur Radiol. 2017; 27(2):681–688. 10.1007/s00330-016-4397-0. [Epub ahead of print].

    Google Scholar 

  37. National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. Washington, DC: National Academies Press (US); 2011.

    Google Scholar 

  38. Erasmus JJ, Gladish GW, Broemeling L, et al. Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response. J Clin Oncol. 2003;21:2574–82.

    Article  PubMed  Google Scholar 

  39. Wahl RL, Jacene H, Kasamon Y, et al. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.

    Article  CAS  PubMed  Google Scholar 

  40. Vansteenkiste J, Fischer BM, Dooms C, et al. Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review. Lancet Oncol. 2004;5:531–40.

    Article  PubMed  Google Scholar 

  41. Weber WA, Petersen V, Schmidt B, et al. Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol. 2003;21:2651–7.

    Article  CAS  PubMed  Google Scholar 

  42. Cerfolio RJ, Bryant AS, Winokur TS, et al. Repeat 18F-FDG-PET after neoadjuvant therapy is a predictor of pathologic response in patients with non-small cell lung cancer. Ann Thorac Surg. 2004;78:1903–9.

    Article  PubMed  Google Scholar 

  43. Hicks RJ, Mac Manus MP, Matthews JP, et al. Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys. 2004;60(2):412–8.

    Article  PubMed  Google Scholar 

  44. Paez JG, Jänne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500.

    Article  CAS  PubMed  Google Scholar 

  45. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39.

    Article  CAS  PubMed  Google Scholar 

  46. Sunaga N, Oriuchi N, Kaira K, et al. Usefulness of FDG-PET for early prediction of the response to gefitinib in non-small cell lung cancer. Lung Cancer. 2008;59(2):203–10.

    Article  PubMed  Google Scholar 

  47. Takahashi R, Hirata H, Tachibana I, et al. Early [18F] fluorodeoxyglucose positron emission tomography at two days of gefitinib treatment predicts clinical outcome in patients with adenocarcinoma of the lung. Clin Cancer Res. 2012;18(1):220–8.

    Article  CAS  PubMed  Google Scholar 

  48. van Gool MH, Aukema TS, Schaake EE, et al. NEL study group. Timing of metabolic response monitoring during erlotinib treatment in non-small cell lung cancer. J Nucl Med. 2014;55(7):1081–6.

    Article  PubMed  CAS  Google Scholar 

  49. Benz MR, Herrmann K, Walter F, et al. (18)F-FDG PET/CT for monitoring treatment responses to the epidermal growth factor receptor inhibitor erlotinib. J Nucl Med. 2011;52(11):1684–9.

    Article  CAS  PubMed  Google Scholar 

  50. Hachemi M, Couturier O, Vervueren L, et al. [18F] FDG positron emission tomography within two weeks of starting erlotinib therapy can predict response in non-small cell lung cancer patients. PLoS One. 2014;9(2):e87629.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. van Gool MH, Aukema TS, Schaake EE, et al. (18)Ffluorodeoxyglucose positron emission tomography versus computed tomography in predicting histopathological response to epidermal growth factor receptor-tyrosine kinase inhibitor treatment in resectable non-small cell lung cancer. Ann Surg Oncol. 2014;21(9):2831–7.

    Article  PubMed  Google Scholar 

  52. Ullrich RT, Zander T, Neumaier B, et al. Early detection of erlotinib treatment response in NSCLC by 3′- deoxy-3′-[F]-fluoro-L-thymidine ([F]FLT) positron emission tomography (PET). PLoS One. 2008;3(12):e3908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sohn HJ, Yang YJ, Ryu JS, et al. [18F]Fluorothymidine positron emission tomography before and 7 days after gefitinib treatment predicts response in patients with advanced adenocarcinoma of the lung. Clin Cancer Res. 2008;14(22):7423–9.

    Article  CAS  PubMed  Google Scholar 

  54. Kahraman D, Scheffler M, Zander T, et al. Quantitative analysis of response to treatment with erlotinib in advanced non-small cell lung cancer using 18FFDG and 3′-deoxy-3’-18F-fluorothymidine PET. J Nucl Med. 2011;52(12):1871–7.

    Article  CAS  PubMed  Google Scholar 

  55. Zander T, Scheffler M, Nogova L, et al. Early prediction of nonprogression in advanced non-small-cell lung cancer treated with erlotinib by using [(18)F]fluorodeoxyglucose and [(18)F]fluorothymidine positron emission tomography. J Clin Oncol. 2011;29(13):1701–8.

    Article  CAS  PubMed  Google Scholar 

  56. Bhoil A, Singh B, Singh N, et al. Can 3′-deoxy-3′-(18) F-fluorothymidine or 2′-deoxy-2′-(18)F-fluoro-dglucose PET/CTbetter assess response after 3-weeks treatment by epidermal growth factor receptor kinase inhibitor, in non-small lung cancer patients? Preliminary results. Hell J Nucl Med. 2014;17(2):90–6.

    PubMed  Google Scholar 

  57. Gerbaudo VH, Katz SI, Nowak AK, et al. Multimodality imaging review of malignant pleural mesothelioma diagnosis and staging. PET Clin. 2011;6(3):275–97.

    Article  PubMed  Google Scholar 

  58. Cook GJ, O’Brien ME, Siddique M, et al. Non-small cell lung cancer treated with erlotinib: heterogeneity of (18)F-FDG uptake at PET-association with treatment response and prognosis. Radiology. 2015;276(3):883–93.

    Article  PubMed  Google Scholar 

  59. Oberg K, Kvols L, Caplin M, et al. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann Oncol. 2004;15(6):966–73.

    Article  CAS  PubMed  Google Scholar 

  60. Siegel RL, Miller KD, Jemal A, et al. Cancer statistics. CA Cancer J Clin. 2015;2015(65):5–29.

    Article  Google Scholar 

  61. Heidenreich A, Bastian PJ, Bellmunt J, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intentupdate 2013. Eur Urol. 2014;65:124–37.

    Article  PubMed  Google Scholar 

  62. Briganti A, Karnes RJ, Gandaglia G, et al. Natural history of surgically treated high-risk prostate cancer. Urol Oncol. 2015;33(163):e7–13.

    Google Scholar 

  63. Punnen S, Cooperberg MR, D’Amico AV, et al. Management of biochemical recurrence after primary treatment of prostate cancer: a systematic review of the literature. Eur Urol. 2013;64:905–15.

    Article  PubMed  Google Scholar 

  64. Freedland SJ, Presti JC Jr, Amling CL, et al. Time trends in biochemical recurrence after radical prostatectomy: results of the SEARCH database. Urology. 2003;61:736–41.

    Article  PubMed  Google Scholar 

  65. Boorjian SA, Eastham JA, Graefen M, et al. A critical analysis of the long-term impact of radical prostatectomy on cancer control and function outcomes. Eur Urol. 2012;61:664–75.

    Article  PubMed  Google Scholar 

  66. Khuntia D, Reddy CA, Mahadevan A, et al. Recurrence-free survival rates after external-beam radiotherapy for patients with clinical T1-T3 prostate carcinoma in the prostate-specific antigen era: what should we expect? Cancer. 2004;100:1283–92.

    Article  PubMed  Google Scholar 

  67. Choueiri TK, Dreicer R, Paciorek A, et al. A model that predicts the probability of positive imaging in prostate cancer cases with biochemical failure after initial definitive local therapy. J Urol. 2008; 179:906–10 [discussion: 10].

    Google Scholar 

  68. PhelpsME. Inaugural article: positron emissiontomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A. 2000;97:9226–33.

    Article  Google Scholar 

  69. Castellucci P, Ceci F, Graziani T, et al. Early biochemical relapse after radical prostatectomy: which prostate cancer patients may benefit from a restaging 11C-choline PET/CT scan before salvage radiation therapy? J Nucl Med. 2014;55:1424–9.

    Article  CAS  PubMed  Google Scholar 

  70. Ceci F, Herrmann K, Castellucci P, et al. Impact of 11C-choline PET/CT on clinical decision making in recurrent prostate cancer: results from a retrospective two-Centre trial. Eur J Nucl Med Mol Imaging. 2014;41(12):2222–31.

    Article  PubMed  Google Scholar 

  71. Evangelista L, Guttilla A, Zattoni F, et al. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol. 2013;63(6):1040–8.

    Article  PubMed  Google Scholar 

  72. Briganti A, Karnes RJ, Joniau S, et al. Prediction of outcome following early salvage radiotherapy among patients with biochemical recurrence after radical prostatectomy. Eur Urol. 2014;66:479–86.

    Article  CAS  PubMed  Google Scholar 

  73. Fossati N, Karnes RJ, Cozzarini C, et al. Assessing the optimal timing for early salvage radiation therapy in patients with prostate-specific antigen rise after radical prostatectomy. Eur Urol. 2015;69(4):728–33.

    Article  PubMed  Google Scholar 

  74. Stephenson AJ, Scardino PT, Kattan MW, et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol. 2007;25:2035–41.

    Article  PubMed  Google Scholar 

  75. Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem. 2004;91:528–39.

    Article  CAS  PubMed  Google Scholar 

  76. Barinka C, Rojas C, Slusher B, et al. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr Med Chem. 2012;19:856–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Foss CA, Mease RC, Fan H, et al. Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin Cancer Res. 2005;11:4022–8.

    Article  CAS  PubMed  Google Scholar 

  78. Afshar-Oromieh A, Avtzi E, Giesel FL, et al. The diagnostic value of PET/CT imaging with the (68)Galabelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:197–209.

    Article  CAS  PubMed  Google Scholar 

  79. Eiber M, Maurer T, Souvatzoglou M, et al. Evaluation of hybrid 68Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2015;56:668–74.

    Article  PubMed  Google Scholar 

  80. Prasad V, Steffen IG, Diederichs G, et al. Biodistribution of [(68)Ga]PSMA-HBED-CC in patients with prostate cancer: characterization of uptake in normal organs and tumour lesions. Mol Imaging Biol. 2016;18(3):428–36.

    Article  CAS  PubMed  Google Scholar 

  81. Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nakazawa M, Antonarakis ES, Luo J. Androgen receptor splice variants in the era of enzalutamide and abiraterone. Horm Cancer. 2014;5(5):265–73. Molecular Imaging and Precision Medicine 9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weissleder R, Mahmood U. Molecular imaging. Radiology. 2001;219(2):316–33.

    Article  CAS  PubMed  Google Scholar 

  84. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545–80.

    Article  CAS  PubMed  Google Scholar 

  85. Kaufman J, Lee M. Vascular and interventional radiology. Philadelphia, PA: Mosby; 2004. p. xi.

    Book  Google Scholar 

  86. Kar S, Kumar A, Gao F, Qiu B, Zhan X, Yang X. Percutaneous optical imaging system to track reporter gene expression from vasculatures in vivo. J Biomed Opt. 2006;11(3):34008.

    Article  CAS  PubMed  Google Scholar 

  87. Funovics MA, Weissleder R, Mahmood U. Catheter-based in vivo imaging of enzyme activity and gene expression: feasibility study in mice. Radiology. 2004;231(3):659–66.

    Article  PubMed  Google Scholar 

  88. Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol. 2003;21(11):1361–7.

    Article  CAS  PubMed  Google Scholar 

  89. Yang X, Atalar E, Li D, et al. Magnetic resonance imaging permits in vivo monitoring of catheter-based vascular gene delivery. Circulation. 2001;104(14):1588–90.

    Article  CAS  PubMed  Google Scholar 

  90. Du X, Yang Y, Le Visage C, et al. In vivo US monitoring of catheter-based vascular delivery of gene microspheres in pigs: feasibility. Radiology. 2003;228(2):555–9.

    Article  PubMed  Google Scholar 

  91. Weissleder R. Molecular imaging in cancer. Science. 2006;312(5777):1168–71.

    Article  CAS  PubMed  Google Scholar 

  92. Bouchelouche K, Capala J, Oehr P. Positron emission tomography/computed tomography and radioimmunotherapy of prostate cancer. Curr Opin Oncologia. 2009;21(5):469–74.

    Article  Google Scholar 

  93. Camacho JC, Moncayo V, Kokabi N, et al. (90)Y Radioembolization: multimodality imaging pattern approach with angiographic correlation for optimized target therapy delivery. Radiographics. 2015;35(5):1602–18.

    Article  PubMed  Google Scholar 

  94. Murthy R, Nunez R, Szklaruk J, et al. Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics. 2005;25(Suppl 1):S41–55.

    Article  PubMed  Google Scholar 

  95. Ahmadzadehfar H, Sabet A, Muckle M, et al. 99mTc-MAA/90Y-bremsstrahlung SPECT/CT after simultaneous Tc-MAA/90Y-microsphere injection for immediate treatment monitoring and further therapy planning for radioembolization. Eur J Nucl Med Mol Imaging. 2011;38(7):1281–8.

    Article  PubMed  Google Scholar 

  96. Wondergem M, Smits ML, Elschot M, et al. 99mTcmacroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J Nucl Med. 2013;54(8):1294–301.

    Article  CAS  PubMed  Google Scholar 

  97. Ulrich G, Dudeck O, Furth C, et al. Predictive value of intratumoral 99mTc-macroaggregated albumin uptake in patients with colorectal liver metastases scheduled for radioembolization with 90Y-microspheres. J Nucl Med. 2013;54(4):516–22.

    Article  CAS  PubMed  Google Scholar 

  98. Kao YH, Hock Tan AE, Burgmans MC, et al. Imageguided personalized predictive dosimetry by arteryspecific SPECT/CT partition modeling for safe and effective 90Y radioembolization. J Nucl Med. 2012;53(4):559–66.

    Article  CAS  PubMed  Google Scholar 

  99. Eaton BR, Kim HS, Schreibmann E, et al. Quantitative dosimetry for yttrium-90 radionuclide therapy: tumor dose predicts fluorodeoxyglucose positron emission tomography response in hepatic metastatic melanoma. J VascInterv Radiol. 2014;25(2):288–95.

    Article  Google Scholar 

  100. Willowson KP, Tapner M, Team QI, et al. A multicentre comparison of quantitative (90)Y PET/CT for dosimetric purposes after radioembolization with resin microspheres: the QUEST phantom study. Eur J Nucl Med Mol Imaging. 2015;42(8):1202–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lhommel R, van Elmbt L, Goffette P, et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-spheres. Eur J Nucl Med Mol Imaging. 2010;37(9):1654–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaikh, S. (2022). Molecular Imaging Precision Medicine. In: Advances in Imaging . Springer, Singapore. https://doi.org/10.1007/978-981-16-9535-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9535-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9534-6

  • Online ISBN: 978-981-16-9535-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics