Skip to main content

Nanoimaging II

  • Chapter
  • First Online:
Advances in Imaging
  • 1141 Accesses

Key Points (Abstract)

Nanotechnology is the newer field of the technology which is using the concept of the using the various atoms and molecules for the newer molecular components of very small size of the nanometre scale size. These newer avenues of the technologies have created the newer concepts of the diagnosis and treatment,. Various biomaterials will be used for the imaging as diagnostic imaging agents. They can be easily modifying due to their physical and chemical by various ligands which will be conjugated to the particle surface, site-specific ligand-molecule interaction, for the assessment molecular tissues. The therapeutic aspects will also have an impact for the various genes and drugs targeting as the nano- and microparticles for therapeutics also. Nanoimaging is the newer form of the molecular imaging modality which is based on the use of the various nanomaterials, like the nanoparticles, nanorods, nanosphere, nanoshells, and nanostars, which are seen mostly in oncological and biomedical imaging. These nano agents can be used as drug carriers, contrast agents for better resolution, photothermal agents, photoacoustic agents, and radiation dose enhancers. Due to the significant advancements and research, there are many nanotechnological advances which are being used in the functional imaging, cancer therapy, and various newer indications. The use of the nanomaterials can be done with all the imaging modalities including the magnetic resonance imaging, computed tomography, positron emission tomography, single-photon emission computerized tomography, optical imaging, ultrasound, and photoacoustic imaging. Along with these therapeutic options various photothermal therapy, photodynamic therapy, chemotherapy, and immunotherapy are there. Here the advances in various multimodality imaging with image-guided therapeutic options as well as various combination therapies can be used and considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosado-De-Castro PH, Morales MDP, Pimentel-Coelho PM, Mendez-Otero R, Herranz F. Development and application of nanoparticles in biomedical imaging. Contrast Media Mol Imaging. 2018;2018:1403826.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol. 2015;88(1054):20150207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yousaf T, Dervenoulas G, Politis M. Advances in MRI methodology. Int Rev Neurobiol. 2018;141:31–76.

    Article  CAS  PubMed  Google Scholar 

  4. Behzadi AH, Farooq Z, Newhouse JH, Prince MR. MRI and CT contrast media extravasation. Medicine. 2018;97(9):e0055.

    Article  Google Scholar 

  5. Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A. Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials. 2019;12(4):617.

    Article  PubMed Central  CAS  Google Scholar 

  6. Iyer SR, Xu S, Stains JP, Bennett CH, Lovering RM. Superparamagnetic iron oxide nanoparticles in musculoskeletal biology. Tissue Eng Part B Rev. 2017;23:373–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garg B, Sung CH, Ling YC. Graphene-based nanomaterials as molecular imaging agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:737–58.

    Article  CAS  PubMed  Google Scholar 

  8. Kwiatkowski G, Jähnig F, Steinhauser J, Wespi P, Ernst M, Kozerke S. Nanometer size silicon particles for hyperpolarized MRI. Sci Rep. 2017;7:1–6.

    Article  CAS  Google Scholar 

  9. Silvestri A, Zambelli V, Ferretti AM, Salerno D, Bellani G, Polito L. Design of functionalized gold nanoparticle probes for computed tomography imaging. Contrast Media Mol Imaging. 2016;11:405–14.

    Article  CAS  PubMed  Google Scholar 

  10. Farooq Aziz AI, Nazir A, Ahmad I, Bajwa SZ, Rehman A, Diallo A, Khan WS. Novel route synthesis of porous and solid gold nanoparticles for investigating their comparative performance as contrast agent in computed tomography scan and effect on liver and kidney function. Int J Nanomedicine. 2017;12:1555.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hainfeld JF, Ridwan SM, Stanishevskiy Y, Smilowitz NR, Davis J, Smilowitz HM. Small, long blood half-life iodine nanoparticle for vascular and tumor imaging. Sci Rep. 2018;8:2–11.

    Article  CAS  Google Scholar 

  12. Badea CT, Clark DP, Holbrook M, Srivastava M, Mowery Y, Ghaghada KB. Functional imaging of tumor vasculature using iodine and gadolinium-based nanoparticle contrast agents: a comparison of spectral micro-CT using energy integrating and photon counting detectors. Phys Med Biol. 2019;64:65007.

    Article  CAS  Google Scholar 

  13. Chen J, Yang XQ, Qin MY, Zhang XS, Xuan Y, Zhao YD. Hybrid nanoprobes of bismuth sulfide nanoparticles and CdSe/ZnS quantum dots for mouse computed tomography/fluorescence dual mode imaging. J Nanobiotechnol. 2015;13:1–10.

    Article  CAS  Google Scholar 

  14. Santos BS, Ferreira MJ. Positron emission tomography in ischemic heart disease. Rev Port Cardiol. 2019;38:599–608.

    Article  PubMed  Google Scholar 

  15. Lee SB, Kumar D, Li Y, Lee IK, Cho SJ, Kim SK, Lee SW, Jeong SY, Lee J, Jeon YH. PEGylated crushed gold shell-radiolabeled core nanoballs for in vivo tumor imaging with dual positron emission tomography and Cerenkov luminescent imaging. J Nanobiotechnol. 2018;16:1–12.

    Article  CAS  Google Scholar 

  16. Kim HY, Li R, Ng T, Courties G, Rodell CB, Prytyskach M, Kohler RH, Pittet MJ, Nahrendorf M, Weissleder R, et al. Quantitative imaging of tumor-associated macrophages and their response to therapy using (64)cu-labeled macrin. ACS Nano. 2018;12:12015–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Keliher EJ, Ye YX, Wojtkiewicz GR, Aguirre AD, Tricot B, Senders ML, Groenen H, Fay F, Perez-Medina C, Calcagno C, et al. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat Commun. 2017;8:1–12.

    Article  CAS  Google Scholar 

  18. Piras AM, Fabiano A, Sartini S, Zambito Y, Braccini S, Chiellini F, Cataldi AG, Bartoli F, de la Fuente A, Erba PA. pH-responsive carboxymethyl cellulose nanoparticles for 68Ga-WBC labelling in PET imaging. Polymers. 2019;11:1615.

    Article  CAS  PubMed Central  Google Scholar 

  19. McDonagh PR, Sundaresan G, Yang L, Sun M, Mikkelsen R, Zweit J. Biodistribution and PET imaging of 89-zirconium labeled cerium oxide nanoparticles synthesized with several surface coatings. Nanomedicine. 2018;14:1429–40.

    Article  CAS  PubMed  Google Scholar 

  20. Si-Mohamed S, Cormode DP, Bar-Ness D, Sigovan M, Naha PC, Langlois JB, Chalabreysse L, Coulon P, Blevis I, Roessl E, et al. Evaluation of spectral photon counting computed tomography K-edge imaging for determination of gold nanoparticle biodistribution in vivo. Nanoscale. 2017;9:18246–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De VeijMestdagh PD, Schreuder WH, Vogel WV, Donswijk ML, Van Werkhoven E, Van Der Wal JE, Dirven R, Karakullukcu B, Sonke JJ, Van Den Brekel MWM, et al. An analysis of SPECT/CT non-visualization of sentinel lymph nodes in renal tumors. EJNMMI Res. 2018; https://doi.org/10.1186/s13550-018-0460-y.

  22. Boschi F, de Sanctis F. Overview of the optical properties of fluorescent nanoparticles for optical imaging. Eur J Histochem. 2017;61:245–8.

    Article  Google Scholar 

  23. De-La-Cuesta J, González E, Pomposo JA. Advances in fluorescent single-chain nanoparticles. Molecules. 2017;22:1–14.

    Article  CAS  Google Scholar 

  24. Kim EH, Chin G, Rong G, Poskanzer KE, Clark HA. Optical probes for neurobiological sensing and imaging. Acc Chem Res. 2018;51:1023–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lecuyer T, Teston E, Ramirez-Garcia G, Maldiney T, Viana B, Seguin J, Mignet N, Scherman D, Richard C. Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics. 2016;6:2488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo R, Lu G, Qin B, Fei B. Ultrasound imaging technologies for breast cancer detection and management: a review. Ultrasound Med Biol. 2018;44:37–70.

    Article  PubMed  Google Scholar 

  27. Han S, Bouchard R, Sokolov KV. Molecular photoacoustic imaging with ultra-small gold nanoparticles. Biomed Opt Express. 2019;10:3472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hartman RK, Hallam KA, Donnelly EM, Emelianov SY. Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging. Laser Phys Lett. 2019;16(2):025603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD. Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci. 2017;5:901–52.

    Article  CAS  PubMed  Google Scholar 

  30. Fathi P, Knox HJ, Sar D, Tripathi I, Ostadhossein F, Misra SK, Esc MB, Chan J, Pan D. Biodegradable biliverdin nanoparticles for efficient photoacoustic imaging. ACS Nano. 2019;13:7690–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harrington WN, Haji MR, Galanzha EI, Nedosekin DA, Nima ZA, Watanabe F, Ghosh A, Biris AS, Zharov VP. Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes. Sci Rep. 2016;6:1–11.

    Article  CAS  Google Scholar 

  32. Wang Y, Shang W, Niu M, Tian J, Xu K. Hypoxia-active nanoparticles used in tumor theranostic. Int J Nanomedicine. 2019;14:3705–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu Z, Zhou P, Pan W, Li N, Tang B. A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat Commun. 2018;9:1–9.

    Article  CAS  Google Scholar 

  34. Press D. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine. 2018;13:3921.

    Article  Google Scholar 

  35. Mangal S, Gao W, Li T, Zhou QT. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin. 2017;38:782–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18:175–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park W, Heo Y-J, Han DK. New opportunities for nanoparticles in cancer immunotherapy. Biomater Res. 2018;22:1–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Evans ER, Bugga P, Asthana V, Drezek R. Metallic nanoparticles for cancer immunotherapy. Mater Today. 2018;21:673–85.

    Article  CAS  Google Scholar 

  39. Martelli S, Chow JCL. Dose enhancement for the flattening-filter-free and flattening-filter photon beams in nanoparticle-enhanced radiotherapy: a Monte Carlo phantom study. Nano. 2020;10:637.

    CAS  Google Scholar 

  40. Mututantri-Bastiyange D, Chow JCL. Imaging dose of cone-beam computed tomography in nanoparticle-enhanced image-guided radiotherapy: a Monte Carlo phantom study. AIMS Bioeng. 2020;7:1–11.

    Article  CAS  Google Scholar 

  41. Chow JCL. Monte carlo nanodosimetry in gold nanoparticle-enhanced radiotherapy. In: Chan MF, editor. Recent advancements and applications applications in dosimetry. New York, NY: Nova Science Publishers; 2018. Chapter 2. Nanomaterials 2020, 10, 1700 38 of 40.

    Google Scholar 

  42. Detappe A, Thomas E, Tibbitt MW, Kunjachan S, Zavidij O, Parnandi N, Reznichenko E, Lux F, Tillement O, Berbeco R. Ultrasmall silica-based bismuth gadolinium nanoparticles for dual magnetic resonance-computed tomography image guided radiotherapy. Nano Lett. 2017;17:1733–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen X, Zhou H, Li X, Duan N, Hu S, Liu Y, Yue Y, Song L, Zhang Y, Li D, et al. Plectin-1 targeted dual-modality nanoparticles for pancreatic cancer imaging. EBioMedicine. 2018;30:129–37.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zheng Y, Zhang H, Hu Y, Bai L, Xue J. MnO nanoparticles with potential application in magnetic resonance imaging and drug delivery for myocardial infarction. Int J Nanomedicine. 2018;13:6177–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Y, Tang Z, Wu Y. The dual-mode imaging of nanogold-labeled cells by photoacoustic microscopy and fluorescence optical microscopy. Technol Cancer Res Treat. 2018;17:1–4.

    Article  Google Scholar 

  46. Song J, Yang X, Jacobson O, Lin L, Huang P, Niu G, Ma Q, Chen X. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano. 2015;9:9199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chow JCL. Photon and electron interactions with gold nanoparticles: a Monte Carlo study on gold nanoparticle-enhanced radiotherapy. In: Grumezescu AM, editor. Nanobiomaterials in medical imaging: applications of nanobiomaterials. Amsterdam: Elsevier; 2016.; Chapter 2. p. 45–70.

    Chapter  Google Scholar 

  48. Chow JCL. Recent progress of gold nanomaterials in cancer therapy. In: Kharissova OV, Torres-Martínez LM, Kharisov BI, editors. Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer Nature: Cham; 2020. p. 1–30.

    Google Scholar 

  49. He C, Chow JC. Gold nanoparticle DNA damage in radiotherapy: a Monte Carlo study. AIMS Bioeng. 2016;3:352.

    Article  CAS  Google Scholar 

  50. Wang Y, Strohm EM, Sun Y, Wang Z, Zheng Y, Wang Z, Kolios MC. Biodegradable polymeric nanoparticles containing gold nanoparticles and paclitaxel for cancer imaging and drug delivery using photoacoustic methods. Biomed Opt Express. 2016;7:4125. Nanomaterials 2020, 10, 1700 39 of 40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ashton JR, Castle KD, Qi Y, Kirsch DG, West JL, Badea CT. Dual-energy CT imaging of tumor liposome delivery after gold nanoparticle-augmented radiotherapy. Theranostics. 2018;8:1782–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Siddique S, Chow JC. Gold nanoparticles for drug delivery and cancer therapy. Appl Sci. 2020;10:3824.

    Article  CAS  Google Scholar 

  53. Li LH, Lu Y, Jiang CY, Zhu Y, Yang XF, Hu XM, Lin ZF, Zhang Y, Peng MY, Xia H, et al. Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded X-ray-responsive bismuth Sulfide@Mesoporous silica core-shell nanoparticles. Adv Funct Mater. 2018;28(5):1704623.

    Article  PubMed  CAS  Google Scholar 

  54. Kim SJ, Lewis B, Steiner MS, Bissa UV, Dose C, Frank JA. Superparamagnetic iron oxide nanoparticles for direct labelling of stem cells and in vivo MRI tracking. Contrast Media Mol Imaging. 2016;11:55–64.

    Article  CAS  PubMed  Google Scholar 

  55. Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-mediated combination therapy: two-in-one approach for cancer. Int J Mol Sci. 2018;19:1–37.

    Article  Google Scholar 

  56. Zhang A, Pan S, Zhang Y, Chang J, Cheng J, Huang Z, Li T, Zhang C, De La Fuentea JM, Zhang Q, et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics. 2019;9:3443–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ramanathan S, Archunan G, Sivakumar M, Selvan ST, Fred AL, Kumar S, Gulyás B, Padmanabhan P. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine. 2018;13:5561–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang J, Zhao T, Han F, Hu Y, Li Y. Photothermal and gene therapy combined with immunotherapy to gastric cancer by the gold nanoshell-based system. J Nanobiotechnol. 2019;17:1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaikh, S. (2022). Nanoimaging II. In: Advances in Imaging . Springer, Singapore. https://doi.org/10.1007/978-981-16-9535-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9535-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9534-6

  • Online ISBN: 978-981-16-9535-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics