Skip to main content

PET-MRI

  • Chapter
  • First Online:
Advances in Imaging

Key Points (Abstracts)

PET/MR is the recent and one of the key available imagings. The biggest advantage is the non-invasive nature used for the characterization and quantitative evaluation of various molecular and physiologic processes by the biomarkers in vivo at the cellular level in healthy as well as the various disease states, including neurology, psychiatry, cardiology, and oncology. Thus, hybrid imaging is the combination of PET with CT and MRI which are the anatomical imaging modalities which have revolutionized the concept of molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delso G, Ziegler S. PET/MRI system design. Eur J Nucl Med Mol Imaging. 2009;36(suppl 1):S86–92.

    Article  PubMed  Google Scholar 

  2. Herzog H, Van Den Hoff J. Combined PET/MR systems: an overview and comparison of currently available options. Q J Nucl Med Mol Imaging. 2012;56:247–67.

    CAS  PubMed  Google Scholar 

  3. Torigian DA, Zaidi H, Kwee TC, et al. PET/MR imaging: technical aspects and potential clinical applications. Radiology. 2013;267:26–44.

    Article  PubMed  Google Scholar 

  4. Vaska P, Cao T. The state of instrumentation for combined positron emission tomography and magnetic resonance imaging. Semin Nucl Med. 2013;43:11–8.

    Article  PubMed  Google Scholar 

  5. Lecomte R, Cadorette J, Rodrigue S, et al. Initial results from the Sherbrooke avalanche photodiode positron tomograph. IEEE Trans Nucl Sci. 1996;43:1952–7.

    Article  Google Scholar 

  6. Yoon HS, Ko GB, Kwon S, et al. Initial results of simultaneous PET/MRI experiments with an MRI compatible silicon photomultiplier PET scanner. J Nucl Med. 2012;53:608–14.

    Article  CAS  PubMed  Google Scholar 

  7. Yankeelov TE, Peterson TE, Abramson RG, et al. Simultaneous PET-MRI in oncology: a solution looking for a problem? Magn Reson Imaging. 2012;30:1342–56.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yoo HJ, Lee JS, Lee JM. Integrated whole body MR/PET: where are we? Korean J Radiol. 2015;16(1):32–49.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Werner M, Schmidt H, Schwenzer N. MR/PET: a new challenge in hybrid imaging. Am J Roentgenol. 2012;199:272.

    Article  Google Scholar 

  10. Bagade S, Fowler KJ, Schwarz JK, et al. PET/MRI evaluation of gynaecologic malignancies and prostate cancer. Semin Nucl Med. 2015 Jul;45(4):293–303.

    Article  PubMed  Google Scholar 

  11. Gu J, Chan T, Zhang J, et al. Whole-body diffusion weighted imaging: the added value to whole-body MRI at initial diagnosis of lymphoma. AJR Am J Roentgenol. 2011;197(3):W384–91.

    Article  PubMed  Google Scholar 

  12. Abdulqadhr G, Molin D, Aström G, et al. Whole body diffusion-weighted imaging compared with FDG-PET/CT in staging of lymphoma patients. Acta Radiol. 2011;52:173–80.

    Article  PubMed  Google Scholar 

  13. Partovi S, Kohan A, Rubbert C, et al. Clinical oncologic applications of PET/MRI: a new horizon. Am J Nucl Med Mol Imaging. 2014;4(2):202–12.

    PubMed  PubMed Central  Google Scholar 

  14. Fraum TJ, Fowler KJ, McConathy J, et al. PET/MRI for the body imager: abdominal and pelvic oncologic applications. Abdom Imaging. 2015;40(6):1387–404. PET/MR Imaging in Cancers of the Gastrointestinal Tract 17

    Article  PubMed  Google Scholar 

  15. Sugita R, Ito K, Fujita N, et al. Diffusion-weighted MRI in abdominal oncology: clinical applications. World J Gastroenterol. 2010;16(7):832–6.

    PubMed  PubMed Central  Google Scholar 

  16. Vandecaveye V, De Keyzer F, Vander Poorten V, et al. Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging. Radiology. 2009;251:134–46.

    Article  PubMed  Google Scholar 

  17. Fujii S, Matsusue E, Kanasaki Y, et al. Detection of peritoneal dissemination in gynecological malignancy: evaluation by diffusion-weighted MR imaging. Eur Radiol. 2008;18(1):18–23.

    Article  PubMed  Google Scholar 

  18. Zaidi H, Mawlawi O, Orton CG. Point/counterpoint. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice. Med Phys. 2007;34(5):1525–8.

    Article  PubMed  Google Scholar 

  19. Zaidi H, Montandon ML, Alavi A. The clinical role of fusion imaging using PET, CT, and MR imaging. Magn Reson Imaging Clin N Am. 2010;18(1):133–49.

    Article  PubMed  Google Scholar 

  20. Pietrzyk U. Does PET/CT render software fusion obsolete? Nuklearmedizin. 2005;44(Suppl 1):S13–7.

    PubMed  Google Scholar 

  21. Weigert M, Pietrzyk U, Müller S, Palm C, Beyer T. Whole-body PET/CT imaging: combining software- and hardware-based co-registration. Z Med Phys. 2008;18(1):59–66.

    Article  PubMed  Google Scholar 

  22. Nehmeh SA, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med. 2008;38(3):167–76.

    Article  PubMed  Google Scholar 

  23. Slomka PJ, Baum RP. Multimodality image registration with software: state-of-the-art. Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):S44–55.

    Article  PubMed  Google Scholar 

  24. Zaidi H, Del Guerra A. An outlook on future design of hybrid PET/MRI systems. Med Phys. 2011;38(10):5667–89.

    Article  PubMed  Google Scholar 

  25. Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med. 2006;47(12):1968–76.

    PubMed  Google Scholar 

  26. Frach T, Prescher G, Degenhardt C, et al. The digital silicon photomultiplier – system architecture and performance evaluation. In IEEE NSS-MIC Conference Record, October 30–November 6, 2010, Knoxville, TN, pp. 1722–7.

    Google Scholar 

  27. Lucas AJ, Hawkes RC, Ansorge RE, et al. Development of a combined microPET-MR system. Technol Cancer Res Treat. 2006;5(4):337–41.

    Article  CAS  PubMed  Google Scholar 

  28. Kim JS, Lee JS, Im KC, et al. Performance measurement of the microPET focus 120 scanner. J Nucl Med. 2007;48(9):1527–35.

    Article  PubMed  Google Scholar 

  29. Pichler B, Lorenz E, Mirzoyan R, Pimpl W, Roder F, Schwaiger M. Performance tests of a LSO-APD PET module in a 9.4 tesla magnet. In: IEEE Nuclear Science Symposium and Medical Imaging Conference Record. Albuquerque, NM: IEEE; 1997. p. 1237–9.

    Google Scholar 

  30. Marsden PK, Strul D, Keevil SF, Williams SC, Cash D. Simultaneous PET and NMR. Br J Radiol 2002;75(Spec No):S53–S59.

    Google Scholar 

  31. Cherry SR. Multimodality in vivo imaging systems: twice the power or double the trouble? Annu Rev Biomed Eng. 2006;8:35–62.

    Article  CAS  PubMed  Google Scholar 

  32. Cherry SR, Louie AY, Jacobs RE. The integration of positron emission tomography with magnetic resonance imaging. Proc IEEE. 2008;96(3):416–38.

    Article  CAS  Google Scholar 

  33. Pichler BJ, Judenhofer MS, Catana C, et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 2006;47(4):639–47.

    PubMed  Google Scholar 

  34. Schlyer D, Vaska P, Tomasi D, et al. A simultaneous PET/MRI scanner based on the RatCAP in small animals. IEEE Nucl Sci Symp Conf Rec. 2007;5:3256–9.

    Google Scholar 

  35. Woody C, Schlyer D, Vaska P, et al. Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph. NuclInstr Meth A. 2007;571(1–2):102–5.

    Article  CAS  Google Scholar 

  36. Judenhofer MS, Catana C, Swann BK, et al. PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet. Radiology. 2007;244(3):807–14.

    Article  PubMed  Google Scholar 

  37. Judenhofer MS, Wehrl HF, Newport DF, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14(4):459–65.

    Article  CAS  PubMed  Google Scholar 

  38. Ravindranath B, Junnarkar SS, Purschke ML, et al. Results from prototype II of the BNL simultaneous PET-MRI dedicated breast scanner. IEEE Nucl Sci Symp Conf Rec. 2009: 3315–3317.

    Google Scholar 

  39. Pichler BJ, Kolb A, Nägele T, Schlemmer HP. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010;51(3):333–6.

    Article  PubMed  Google Scholar 

  40. Kang J, Choi Y, Hong KJ, et al. A feasibility study of photosensor charge signal transmission to preamplifier using long cable for development of hybrid PET-MRI. Med Phys. 2010;37(11):5655–64.

    Article  PubMed  Google Scholar 

  41. Wu Y, Catana C, Farrell R, et al. PET performance evaluation of an MR-compatible PET insert. IEEE Trans Nucl Sci. 2009;56(3):574–80.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schlemmer HP, Pichler BJ, Schmand M, et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology. 2008;248(3):1028–35.

    Article  PubMed  Google Scholar 

  43. Wehrl HF, Judenhofer MS, Thielscher A, Martirosian P, Schick F, Pichler BJ. Assessment of MR compatibility of a PET insert developed for simultaneous multiparametric PET/MR imaging on an animal system operating at 7 T. Magn Reson Med. 2011;65(1):269–79.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ. Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):S56–68.

    Article  PubMed  Google Scholar 

  45. Fontaine R, Belanger F, Viscogliosi N, et al. The hardware and signal processing architecture of LabPET, a small animal APDbased digital PET scanner. IEEE Trans Nucl Sci. 2009;56(1):3–9.

    Article  Google Scholar 

  46. Conti M. Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol Imaging. 2011;38(6):1147–57.

    Article  PubMed  Google Scholar 

  47. Chun SY, Reese TG, Ouyang J, et al. MRIbased nonrigid motion correction in simultaneous PET/MRI. J Nucl Med. 2012;53(8):1284–91.

    Article  PubMed  Google Scholar 

  48. Kwee TC, Basu S, Saboury B, Alavi A, Torigian DA. Functional oncoimaging techniques with potential clinical applications. Front Biosci (Elite Ed). 2012;4:1081–96.

    Article  Google Scholar 

  49. Shamim SA, Torigian DA, Kumar R. PET, PET/CT, and PET/MRI assessment of breast cancer. PET Clin. 2008;3(3):381–93.

    Article  Google Scholar 

  50. Hustinx R, Torigian DA, Namur G. Complementary assessment of abdominopelvic disorders with PET/CT and MRI. PET Clin. 2008;3(3):435–49.

    Article  PubMed  Google Scholar 

  51. Katz S, Ferrara T, Alavi A, Torigian DA. PET, CT, and MRI for assessment of thoracic malignancy: structure meets function. PET Clin. 2008;3(3):395–410.

    Article  PubMed  Google Scholar 

  52. Chen K, Blebea J, Laredo JD, Chen W, Alavi A, Torigian DA. Evaluation of musculoskeletal disorders with PET, PET/CT, and PET/MRI. PET Clin. 2008;3(3):451–65.

    Article  PubMed  Google Scholar 

  53. Goldberg MF, Chawla S, Alavi A, Torigian DA, Melhem ER. PET and MRI of brain tumours. PET Clin. 2008;3(3):293–315.

    Article  PubMed  Google Scholar 

  54. Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):S113–20.

    Article  PubMed  Google Scholar 

  55. Donati OF, Hany TF, Reiner CS, et al. Value of retrospective fusion of PET and MR images in detection of hepatic metastases: comparison with 18F-FDG PET/CT and Gd-EOB-DTPA-enhanced MRI. J Nucl Med. 2010;51(5):692–9.

    Article  PubMed  Google Scholar 

  56. Antoch G, Vogt FM, Freudenberg LS, et al. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA. 2003;290(24):3199–206.

    Article  CAS  PubMed  Google Scholar 

  57. Torigian DA, Lopez RF, Alapati S, et al. Feasibility and performance of novel software to quantify metabolically active volumes and 3D partial volumes corrected SUV and metabolic volumetric products of spinal bone marrow metastases on 18F-FDGPET/CT. Hell J Nucl Med. 2011;14(1):8–14.

    PubMed  Google Scholar 

  58. Kwee TC, Basu S, Saboury B, Ambrosini V, Torigian DA, Alavi A. A new dimension of FDG-PET interpretation: assessment of tumor biology. Eur J Nucl Med Mol Imaging. 2011;38(6):1158–70.

    Article  PubMed  Google Scholar 

  59. Kwee TC, Takahara T, Ochiai R, et al. Whole-body diffusion-weighted magnetic resonance imaging. Eur J Radiol. 2009;70(3):409–17.

    Article  PubMed  Google Scholar 

  60. Wolf W. The unique potential for non-invasive imaging in modernizing drug development and in transforming therapeutics: PET/MRI/MRS. Pharm Res. 2011;28(3):490–3.

    Article  CAS  PubMed  Google Scholar 

  61. Benveniste H, Fowler JS, Rooney WD, et al. Maternal-fetal in vivo imaging: a combined PET and MRI study. J Nucl Med. 2003;44(9):1522–30.

    PubMed  Google Scholar 

  62. Musiek ES, Torigian DA, Newberg AB. Investigation of non-neoplastic neurologic disorders with PET and MRI. PET Clin. 2008;3(3):317–34.

    Article  PubMed  Google Scholar 

  63. Heiss WD. The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):S105–12.

    Article  PubMed  Google Scholar 

  64. Boss A, Bisdas S, Kolb A, et al. Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med. 2010;51(8):1198–205.

    Article  PubMed  Google Scholar 

  65. Cho ZH, Son YD, Kim HK, et al. Substructural hippocampal glucose metabolism observed on PET/MRI. J Nucl Med. 2010;51(10):1545–8.

    Article  PubMed  Google Scholar 

  66. Eggers C, Szelies B, Bauer B, et al. Imaging of acetylcholine esterase activity in brainstem nuclei involved in regulation of sleep and wakefulness. Eur J Neurol. 2007;14(6):690–3.

    Article  CAS  PubMed  Google Scholar 

  67. Lee KK, Salamon N. [18F] fluorodeoxyglucose-positron-emission tomography and MR imaging coregistration for presurgical evaluation of medically refractory epilepsy. AJNR Am J Neuroradiol. 2009;30(10):1811–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Salamon N, Kung J, Shaw SJ, et al. FDGPET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology. 2008;71(20):1594–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cruz LC Jr, Sorensen AG. Diffusion tensor magnetic resonance imaging of brain tumors. Magn Reson Imaging Clin N Am. 2006;14(2):183–202.

    Article  PubMed  Google Scholar 

  70. Boss A, Kolb A, Hofmann M, et al. Diffusion tensor imaging in a human PET/MR hybrid system. Investig Radiol. 2010;45(5):270–4.

    Article  Google Scholar 

  71. Vlieger EJ, Majoie CB, Leenstra S, Den Heeten GJ. Functional magnetic resonance imaging for neurosurgical planning in Neurooncology. Eur Radiol. 2004;14(7):1143–53.

    Article  PubMed  Google Scholar 

  72. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Behera D, Jacobs KE, Behera S, Rosenberg J, Biswal S. (18)F-FDG PET/MRI can be used to identify injured peripheral nerves in a model of neuropathic pain. J Nucl Med. 2011;52(8):1308–12.

    Article  PubMed  Google Scholar 

  74. Takalkar A, Chen W, Desjardins B, Alavi A, Torigian DA. Cardiovascular imaging with PET, CT, and MRI. PET Clin. 2008;3(3):411–34.

    Article  PubMed  Google Scholar 

  75. Syed IS, Feng D, Harris SR, et al. MR imaging of cardiac masses. Magn Reson Imaging Clin N Am. 2008;16(2):137–64. vii

    Article  PubMed  Google Scholar 

  76. Probst S, Seltzer A, Spieler B, Chachoua A, Friedman K. The appearance of cardiac metastasis from squamous cell carcinoma of the lung on F-18 FDG PET/CT and post hoc PET/MRI. Clin Nucl Med. 2011;36(4):311–2.

    Article  PubMed  Google Scholar 

  77. Higuchi T, Anton M, Dumler K, et al. Combined reporter gene PET and iron oxide MRI for monitoring survival and localization of transplanted cells in the rat heart. J Nucl Med. 2009;50(7):1088–94.

    Article  CAS  PubMed  Google Scholar 

  78. Bural GG, Torigian DA, Chamroonrat W, et al. Quantitative assessment of the atherosclerotic burden of the aorta by combined FDG-PET and CT image analysis: a new concept. Nucl Med Biol. 2006;33(8):1037–43.

    Article  CAS  PubMed  Google Scholar 

  79. Tahara N, Kai H, Ishibashi M, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;48(9):1825–31.

    Article  CAS  PubMed  Google Scholar 

  80. Fayad ZA, Mani V, Woodward M, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet. 2011;378(9802):1547–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nawaz A, Torigian D, Zhuang H, Alavi A. Study on the correlation of atherosclerosis in the popliteal artery with metabolic activity and metabolic volumetric product of the diabetic foot. J Nucl Med. 2008;49(Suppl 1):197P.

    Google Scholar 

  82. von Schulthess GK, Schlemmer HP. A look ahead: PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):S3–9.

    Article  Google Scholar 

  83. Drzezga A, Souvatzoglou M, Eiber M, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med. 2012;53(6):845–55.

    Article  PubMed  Google Scholar 

  84. Al-Nabhani KZ, Syed R, Michopoulou S, et al. Qualitative and quantitative comparison of PET/CT and PET/MR imaging in clinical practice. J Nucl Med. 2014;55(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  85. Di Gialleonardo V, Wilson DM, Keshari KR. The potential of metabolic imaging. Semin Nucl Med. 2016;46(1):28–39.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kurhanewicz J, Bok R, Nelson SJ, et al. Current and potential applications of clinical 13C MR spectroscopy. J Nucl Med. 2008;49(3):341–4.

    Article  CAS  PubMed  Google Scholar 

  87. Ramirez de Molina A, Rodriguez-Gonzalez A, Gutierrez R, et al. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun. 2002;296(3):580–3.

    Article  CAS  PubMed  Google Scholar 

  88. Awwad HM, Geisel J, Obeid R. The role of choline in prostate cancer. Clin Biochem. 2012;45(18):1548–53.

    Article  CAS  PubMed  Google Scholar 

  89. Piert M, Montgomery J, Kunju LP, et al. 18F-choline PET/MRI: the additional value of PET for MRI-guided transrectal prostate biopsies. J Nucl Med. 2016;57(7):1065–70.

    Article  CAS  PubMed  Google Scholar 

  90. Price DT, Coleman RE, Liao RP, et al. Comparison of [18F]Fluorocholine and [18F]Fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol. 2002;168(1):273–80.

    Article  PubMed  Google Scholar 

  91. Cazaentre T, Clivaz F, Triponez F. False-positive result in 18F-fluorocholine PET/CT due to incidental and ectopic parathyroid hyperplasia. Clin Nucl Med. 2014;39(6):e328–30.

    Article  PubMed  Google Scholar 

  92. Bouchelouche K, Turkbey B, Choyke PL. PSMA PET and radionuclide therapy in prostate cancer. Semin Nucl Med. 2016;46(6):522–35.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gatidis S, Schmidt H, Gucke B, Bezrukov I, Seitz G, Ebinger M, et al. Comprehensive oncologic imaging in infants and preschool children with substantially reduced radiation exposure using combined simultaneous (1)(8)F-Fluorodeoxyglucose positron emission tomography/magnetic resonance imaging: a direct comparison to (1)(8)FFluorodeoxyglucose positron emission tomography/computed tomography. Investig Radiol. 2016;51(1):7–14.

    Article  Google Scholar 

  94. Schafer JF, Gatidis S, Schmidt H, Guckel B, Bezrukov I, Pfannenberg CA, et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273(1):220–31.

    Article  PubMed  Google Scholar 

  95. Hirsch FW, Sattler B, Sorge I, Kurch L, Viehweger A, Ritter L, et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol. 2013;43(7):860–75.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pfluger T, Melzer HI, Mueller WP, Coppenrath E, Bartenstein P, Albert MH, et al. Diagnostic value of combined (1)(8)F-FDG PET/MRI for staging and restaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2012;39(11):1745–55.

    Article  PubMed  Google Scholar 

  97. Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent J, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008;35(8):1581–8.

    Article  CAS  PubMed  Google Scholar 

  98. Goo HW. Whole-body MRI of neuroblastoma. Eur J Radiol. 2010;75(3):306–14.

    Article  PubMed  Google Scholar 

  99. Krohmer S, Sorge I, Krausse A, Kluge R, Bierbach U, Marwede D, et al. Whole-body MRI for primary evaluation of malignant disease in children. Eur J Radiol. 2010;74(1):256–61.

    Article  CAS  PubMed  Google Scholar 

  100. Riad R, Omar W, Kotb M, Hafez M, Sidhom I, Zamzam M, et al. Role of PET/CT in malignant pediatric lymphoma. Eur J Nucl Med Mol Imaging. 2010;37(2):319–29.

    Article  PubMed  Google Scholar 

  101. Volker T, Denecke T, Steffen I, Misch D, Schonberger S, Plotkin M, et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol. 2007;25(34):5435–41.

    Article  PubMed  Google Scholar 

  102. Kaste SC. PET-CT in children: where is it appropriate? Pediatr Radiol. 2011;41(Suppl 2):509–13.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Love C, Tomas MB, Tronco GG, Palestro CJ. FDG PET of infection and inflammation. Radiographics : a review publication of the Radiological Society of North America. Inc. 2005;25(5):1357–68.

    Google Scholar 

  104. Byun BH, Kong CB, Park J, Seo Y, Lim I, Choi CW, et al. Initial metabolic tumor volume measured by 18F-FDG PET/CT can predict the outcome of osteosarcoma of the extremities. J Nuclear Med: Official Publication, Society of Nuclear Medicine. 2013;54(10):1725–32.

    Article  CAS  Google Scholar 

  105. Andersen KF, Fuglo HM, Rasmussen SH, Petersen MM, Loft A. Volume-based F-18 FDG PET/CT imaging markers provide supplemental prognostic information to histologic grading in patients with high-grade bone or soft tissue sarcoma. Medicine. 2015;94(51):e2319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Warbey VS, Ferner RE, Dunn JT, Calonje E, O'Doherty MJ. [18F]FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging. 2009;36(5):751–7.

    Article  CAS  PubMed  Google Scholar 

  107. Bredella MA, Torriani M, Hornicek F, Ouellette HA, Plamer WE, Williams Z, et al. Value of PET in the assessment of patients with neurofibromatosis type 1. AJR Am J Roentgenol. 2007;189(4):928–35.

    Article  PubMed  Google Scholar 

  108. Wasa J, Nishida Y, Tsukushi S, Shido Y, Sugiura H, Nakashima H, et al. MRI features in the differentiation of malignant peripheral nerve sheath tumors and neurofibromas. AJR Am J Roentgenol. 2010;194(6):1568–74.

    Article  PubMed  Google Scholar 

  109. Bisdas S, Ritz R, Bender B, Braun C, Pfannenberg C, Reimold M, et al. Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Investig Radiol. 2013;48(5):295–301.

    Article  CAS  Google Scholar 

  110. la Fougere C, Suchorska B, Bartenstein P, Kreth FW, Tonn JC. Molecular imaging of gliomas with PET: opportunities and limitations. Neuro-Oncology. 2011;13(8):806–19.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Vaidyanathan S, Patel CN, Scarsbrook AF, Chowdhury FU. FDG PET/CT in infection and inflammation--current and emerging clinical applications. Clin Radiol. 2015;70(7):787–800.

    Article  CAS  PubMed  Google Scholar 

  112. Chalian M, Ozturk A, Oliva-Hemker M, Pryde S, Huisman TA. MR enterography findings of inflammatory bowel disease in pediatric patients. AJR Am J Roentgenol. 2011;196(6):W810–6.

    Article  PubMed  Google Scholar 

  113. Narvaez JA, Narvaez J, De Lama E, De Albert M. MR imaging of early rheumatoid arthritis. Radiographics : a review publication of the Radiological Society of North America. Inc. 2010;30(1):143–63. discussion 163–145

    Google Scholar 

  114. Gok B, Jallo G, Hayeri R, Wahl R, Aygun N. The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy. Neuroradiology. 2013;55(5):541–50.

    Article  PubMed  Google Scholar 

  115. Rastogi S, Lee C, Salamon N. Neuroimaging in pediatric epilepsy: a multimodality approach. Radiographics : a review publication of the Radiological Society of North America. Inc. 2008;28(4):1079–95.

    Google Scholar 

  116. Talbot JN, Paycha F, Balogova S. Diagnosis of bone metastasis: recent comparative studies of imaging modalities. Q J Nucl Med Mol Imaging. 2011;55:374–410.

    CAS  PubMed  Google Scholar 

  117. Yang HL, Liu T, Wang XM, et al. Diagnosis of bone metastases: a meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur Radiol. 2011;21:2604–17.

    Article  PubMed  Google Scholar 

  118. Goerres GW, Forster A, Uebelhart D, et al. F-18 FDG whole-body PET for the assessment of disease activity in patients with rheumatoid arthritis. Clin Nucl Med. 2006;31:386–90.

    Article  PubMed  Google Scholar 

  119. Palmer WE, Rosenthal DI, Schoenberg OI, et al. Quantification of inflammation in the wrist with gadolinium-enhanced MR imaging and PET with 2- [F-18]-fluoro-2-deoxy-D-glucose. Radiology. 1995;196:647–55.

    Article  CAS  PubMed  Google Scholar 

  120. Andersen FL, Ladefoged CN, Beyer T, et al. Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. NeuroImage. 2014;84:206–16.

    Article  PubMed  Google Scholar 

  121. Ripa RS, Knudsen A, Hag AMF, et al. Feasibility of simultaneous PET/MR of the carotid artery: first clinical experience and comparison to PET/CT. Am J Nucl Med Mol Imaging. 2013;3(4):361–71.

    PubMed  PubMed Central  Google Scholar 

  122. Pedersen SF, Graebe M, Fisker Hag AM, Hojgaard L, Sillesen H, Kjaer A. Gene expression and 18FDG uptake in atherosclerotic carotid plaques. Nucl Med Commun. 2010;31(5):423–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaikh, S. (2022). PET-MRI. In: Advances in Imaging . Springer, Singapore. https://doi.org/10.1007/978-981-16-9535-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9535-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9534-6

  • Online ISBN: 978-981-16-9535-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics