Skip to main content

Cotton Breeding

  • Chapter
  • First Online:
Fundamentals of Field Crop Breeding

Abstract

Cotton (Gossypium spp.) is an economically important cash crop grown in more than 90 countries in tropical, sub-tropical and temperate climate for its fibre, oil and protein. Cotton belongs to the genus Gossypium that contains 50 species, of which 43 are diploids (2n = 26) and seven tetraploids (2n = 4x = 52). The diploid species are grouped in seven genomes designated as A–G and K. The tetraploid species with AADD genome originated from natural crossing involving cultivated diploid G. herbaceum (A1) and wild diploid species G. raimondii (D5), followed by polyploidization. Cultivated cotton has a narrow genetic base which is becoming a hindrance in sustaining cotton productivity worldwide. Broadening the genetic base of cultivated cotton by mobilizing the useful genetic variations from diverse exotic accessions, races of cultivated species and wild accessions requires to be the top priority. The use of molecular markers and advances in sequencing technology has resulted in the development of huge genomic resources that includes molecular markers, several linkage maps and more than 6497 quantitative trait loci (QTL) representing more than 30 agronomically important traits mapped on specific chromosomes. To facilitate high-throughput genotyping of the breeding populations, SNP arrays have been developed and extensively used for genetic mapping and marker-assisted breeding programmes. The last decade witnessed complete genome sequencing and resequencing of cultivated and more than a dozen wild species of cotton. Whole cotton genome sequence data provides a major source of candidate genes with potential for genetic improvement of cotton quality and productivity. Insect- and herbicide-resistant transgenics are under cultivation across the cotton-growing countries. Genotype-dependent genetic transformation is known in cotton. Versatile and robust somatic regeneration protocol suiting to a diverse set of genotypes would facilitate transgenic development for economic traits. Precision genome editing tool CRISPR/Cas9 and further refinement in the technology has demonstrated successful simultaneous multiple gene-targeted mutagenesis in several crops including cotton. This technology holds promise to develop transgene-free edited plants for economic, quality, resistance and adaptation traits in cotton. This chapter dwells upon all broad aspects of conventional breeding and molecular tools for cotton improvement, present status and perspectives for cotton production sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdurakhmonov IY (2016) Modern high-biotechnologies for improvement of superior fibre, productive and early maturing upland cotton cultivars. Cotton Stat News 2:1–5. www.caionline.in

    Google Scholar 

  • Abdurakhmonov IY, Saha S, Jenkins JN et al (2009) Linkage disequilibrium-based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica 136(3):401–417

    PubMed  Google Scholar 

  • Abdurakhmonov IY, Abdullaev A, Buriev Z et al (2014a) Cotton germplasm collection of Uzbekistan. In: Abdurakhmonov IY (ed) World cotton germplasm resources. InTech Janeza Trdine 9, 51000 Rijeka, Croatia, pp 289–309. https://doi.org/10.5772/56978. ISBN: 978-953-51-5395-5

  • Abdurakhmonov IY, Buriev ZT, Saha S et al (2014b) Phytochrome RNAi enhances major fiber quality and agronomic traits of the cotton Gossypium hirsutum L. Nat Commun 5:3062. https://doi.org/10.1038/ncomms4062

    Article  CAS  PubMed  Google Scholar 

  • Ahmed H, Nazir MF, Pan Z et al (2020) Genotyping by sequencing revealed QTL hotspots for trichome-based plant defense in Gossypium hirsutum. Genes (Basel) 11(4):368. https://doi.org/10.3390/genes11040368

    Article  CAS  PubMed  Google Scholar 

  • Anderson DM, Rajasekar K (2016) The global importance of transgenic cotton. In: Ramawat KG, Ahuja MR (eds) Fibre plants, sustainable developments and biodiversity. Springer, Cham, pp 17–33

    Google Scholar 

  • Andrade-Sanchez P, Gore MA, Heun JT et al (2014) Development and evaluation of a field-based high-throughput phenotyping platform. Funct Plant Biol 41(1):68–79. https://doi.org/10.1071/FP13126

    Article  Google Scholar 

  • Anonymous (1954) Memoirs of the department of agriculture. Imperial Dept. of Agriculture in India, Calcutta

    Google Scholar 

  • Arya S, Ahmed S (2019) Maize-eater worm attacks cotton crop. http://timesofindia.indiatimes.com/articleshow/71301661.cms?utm_source=contentofinterest & utm_medium=text & utm_campaign=cppst

    Google Scholar 

  • Atkinson CF (1892) Some disease of cotton: 3. Frenching. Bull Alabama Agric Exp Station 41:19–29

    Google Scholar 

  • Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376. https://doi.org/10.1371/journal.pone.0003376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajwa KS, Shahid AA, Rao AQ, Ashraf MA et al (2013) Expression of Calotropis procera expansin gene CpEXPA3 enhances cotton fiber strength. Aust J Crop Sci 7(2):206–212

    CAS  Google Scholar 

  • Balls WL (1906) Studies in Egyptian cotton. In: Yearbook. Khedivial Agricultural Society, Cairo, pp 28–89

    Google Scholar 

  • Barnaud A, Lacombe T, Doligez A (2006) Linkage disequilibrium in cultivated grapevine, Vitis vinifera L. Theor Appl Genet 112:708–716

    CAS  PubMed  Google Scholar 

  • Basu AK (1999) Present scenario and future prospects of cotton seed in India. In: Sundaram V, Basu AK (eds) Handbook of cotton in India. Indian Society for Cotton Improvement, Mumbai, pp 79–103

    Google Scholar 

  • Beasley JO (1940) Production of polyploids in Gossypium. J Hered 3:39–48

    Google Scholar 

  • Benedict CR, Kohel RJ (1968) Characteristics of a virescent cotton mutant. Plant Physiol 43:1611–1616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt G, Andal R (1979) Variation in foliar anatomy of cotton. Proc Ind Acad Sci 8(b) II:451–453

    Google Scholar 

  • Bolek Y, ElZik KM, Pepper AE et al (2005) Mapping of Verticillium wilt resistance genes in cotton. Plant Sci 168:1581–1590. https://doi.org/10.1016/j.plantsci.2005.02.008

    Article  CAS  Google Scholar 

  • Bourland F, Myers GO (2015) Conventional cotton breeding. In: Fang DD, Percy RG (eds) Cotton. Agronomy monographs, vol 57, 2nd edn. American Society of Agronomy, Madison, WI. https://doi.org/10.2134/agronmonogr57.2013.0025

    Chapter  Google Scholar 

  • Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Hort Sci (USA) 21:1105–1112

    Google Scholar 

  • Butter NS, Vir BK (1989) Morphological basis of resistance in cotton to the whitefly (Bemisia tabaci). Phytoparasitica 17:251–261

    Google Scholar 

  • Byers RL, Harker DB, Yourstone SM et al (2012) Development and mapping of SNP assays in allotetraploid cotton. Theor Appl Genet 124(7):1201–1214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai C, Zhu G, Zhang T et al (2017) High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics 18:654. https://doi.org/10.1186/s12864-017-4062-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Cai X, Wang Q et al (2019) Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis. Plant Biotechnol J 18(3):814–828. https://doi.org/10.1111/pbi.13249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell B, Saha S, Percy R, Frelichowski J et al (2010) Status of the global cotton germplasm resources. Crop Sci 50(4):1161–1179

    Google Scholar 

  • Chee PW, Draye X, Jiang CX et al (2005) Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. Theor Appl Genet 111(4):772–781

    CAS  PubMed  Google Scholar 

  • Chen X, Lu X, Shu N, Wang S et al (2017) Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep 7:44304. https://doi.org/10.1038/srep44304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Sreedasyam A, Ando A et al (2020) Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat Genet 52:525–533. https://doi.org/10.1038/s41588-020-0614-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chohan S, Perveen R, Abid M, Tahir MN, Sajid M (2020) Cotton diseases and their management. In: Ahmad S, Hasanuzzaman M (eds) Cotton production and uses. Springer, Singapore

    Google Scholar 

  • CICR Annual Report (2019) ICAR-Central Institute for Cotton Research, Nagpur, India, pp 107. https://www.cicr.org.in/CropImprovement.html

  • Clower DF, Jones JE, Benkwith KB Jr, Sloan LW (1970) Nonpreference - a new approach to boll weevil control. La Agric 13:10–11

    Google Scholar 

  • Cohen Y, Alchanatis V, Meron M et al (2005) Estimation of leaf water potential by thermal imagery and spatial analysis. J Exp Bot 56(417):1843–1852. https://doi.org/10.1093/jxb/eri174

    Article  CAS  PubMed  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1–2):169–196

    CAS  Google Scholar 

  • Comstock RE, Robinson HF (1948) The components of genetic variance in population of biparental progenies and their use in estimating average degree of dominance. Biometrics 4:254–266

    CAS  PubMed  Google Scholar 

  • Comstock RE, Robinson HF (1952) Estimation of the average dominance of genes. In: Gowen JW (ed) Heterosis. Iowa State College Press, Ames, IA, pp 494–516

    Google Scholar 

  • Cook OF (1909) Suppressed and intensified characters in cotton hybrids. U.S. Dep. of Agric. Bureau of Plant Industry Bulletin. No. 147. U.S. Government Printing Office, Washington, DC, p 27

    Google Scholar 

  • Cook OF (1932) Cotton improvement through type selection, with special reference to the Acala variety. Technical Bulletin No. 302. USDA, Washington, DC, pp 1–89

    Google Scholar 

  • Cruz CD, Regazzi AJ, Carneiro PCS (2012) Modelos biométricos aplicados ao melhoramento genético. UFV, Viçosa, MG

    Google Scholar 

  • Cui X, Liu F, Liu Y et al (2015) Construction of cytogenetic map of Gossypium herbaceum chromosome 1 and its integration with genetic maps. Mol Cytogenet 8:2. https://doi.org/10.1186/s13039-015-0106-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Halluin K, Vanderstraeten C, Van Hulle J et al (2013) Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnol J 11(8):933–941. https://doi.org/10.1111/pbi.12085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeJoode DR, Wendel JF (1992) Genetic diversity and origin of the Hawaiian Islands cotton, Gossypium tomentosum. Am J Bot 79:1311–1319

    Google Scholar 

  • Denham HJ (1924) The cytology of the cotton plant. I. Microspore formation in Sea Island cotton. Ann Bot 38:407–432

    Google Scholar 

  • Dennehy TJ, Unnithan GC, Gopalan C et al (2002) Update on pink bollworm resistance to Bt cotton in the southwest. Arizona Cotton Research and Protection Council, Phoenix, AZ. https://cals.arizona.edu/crop/cotton/bt/6Publi cations/PBWupdate0604.pdf

    Google Scholar 

  • Dhurua S, Gujar GT (2011) Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag Sci 67(8):898–903. https://doi.org/10.1002/ps.2127

    Article  CAS  PubMed  Google Scholar 

  • Doak CC (1934) A new technique in cotton hybridizing: suggested changes in existing methods of emasculating and bagging cotton flowers. J Hered 25:187–194

    Google Scholar 

  • Doraisamy LS, Iyenger G (1948) American cottons, their cultivation and breeding in Mysore. Indian Cotton Grow Rev 2:9–16

    Google Scholar 

  • Du X, Huang G, He S, Yang Z et al (2018) Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat Genet 50:796–802

    CAS  PubMed  Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8(1):2–9

    CAS  PubMed  Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Molecular marker facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genet 116:113–125

    CAS  Google Scholar 

  • El-Adl AM, Miller PA (1971) Transgressive segregation and the nature of gene action for yield in an intervarietal cross of upland cotton. Crop Sci 11:381–384

    Google Scholar 

  • El-Esawi M, Alayafi A (2019) Overexpression of StDREB2 transcription factor enhances drought stress tolerance in cotton (Gossypium barbadense L.). Genes 10:142. https://doi.org/10.3390/genes10020142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):6:e19379. https://doi.org/10.1371/journal.pone.001937

    Article  PubMed  Google Scholar 

  • Endrizi JE (1966) Additional information on chromosomal structural changes and differentiation in Gossypium. J Ariz Acad Sci 4:28–34

    Google Scholar 

  • Endrizzi JE, Kohel RJ (1966) Use of telosomes in mapping three chromosomes in cotton. Genetics 54:535–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Endrizzi JE, Turcotte EL, Kohel RJ (1984) Qualitative genetics, cytology and cytogenetics. In: Kohel RJ, Lewis CF (eds) Cotton. Agronomy monograph No. 24. ASA-CSSA-SSSA, Inc Publishers, Madison, WI

    Google Scholar 

  • Endrizzi JE, Turcotte EL, Kohel RJ (1985) Genetics, cytology and evolution of Gossypium. Adv Genet 23:271–375

    Google Scholar 

  • Eslick FR, Hackett EA (1975) Genetic engineering as a key to water use efficiency. Agric Meteorol 14:13–22

    Google Scholar 

  • Fan L, Wang L, Wang X et al (2018) A high-density genetic map of extra-long staple cotton (Gossypium barbadense) constructed using genotyping-by-sequencing based single nucleotide polymorphic markers and identification of fiber traits-related QTL in a recombinant inbred line population. Genomics 19:489. https://doi.org/10.1186/s12864-018-4890-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang DD, Xiao J, Canci PC, Cantrell RG (2010) A new SNP haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.). Theor Appl Genet 120(5):943–953. https://doi.org/10.1007/s00122-009-1223-y

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Gong H, Hu Y et al (2017a) Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biol 18:33. https://doi.org/10.1186/s13059-017-1167-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang L, Wang Q, Hu Y et al (2017b) Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49:1089–1098. https://doi.org/10.1038/ng.3887

    Article  CAS  PubMed  Google Scholar 

  • Fiorani F, Schurr U (2013) Future Scenarios for Plant Phenotyping. Annu Rev Plant Biol 64:267–291

    CAS  PubMed  Google Scholar 

  • Fox S (1987) In search of coloured cotton. SPIN off:29–31

    Google Scholar 

  • French AN, Gore MA, Thompson A (2016) Cotton phenotyping with lidar from a track-mounted platform. Autonomous air and ground sensing systems for agricultural optimization and phenotyping. International Society for Optics and Photonics, Bellingham. https://doi.org/10.1117/12.2224423

    Book  Google Scholar 

  • Fryxell PA (1968) A redefinition of the tribe Gossypieae. Bot Gaz 129:296–308

    Google Scholar 

  • Fryxell PA (1979) The natural history of the cotton tribes (Malvaceae, Tribe Gossypieae). Texas A & M University Press, College Station, TX, p 245

    Google Scholar 

  • Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2:108–165

    Google Scholar 

  • Gallagher JP, Grover CE, Rex K et al (2017) A new species of cotton from Wake Atoll, Gossypium stephensii (Malvaceae). Syst Bot 42(1):115–123. https://doi.org/10.1600/036364417X694593

    Article  Google Scholar 

  • Gammie GA (1908) Work done towards improvement of cotton in Bombay Presidency. Agric J India 3:135–143

    Google Scholar 

  • Gao W, Long L, Tian X et al (2017) Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci 8:1364. https://doi.org/10.3389/fpls.2017.01364

    Article  PubMed  PubMed Central  Google Scholar 

  • Garside M (2021) Distribution of fiber consumption worldwide in 2019, by type of fiber (As on June 25, 2021). https://www.statista.com

  • Gawande SP, Raghavendra KP, Monga D et al (2019) Rapid detection of tobacco streak virus (TSV) in cotton (Gossypium hirsutum) based on reverse transcription loop mediated isothermal amplification (RT-LAMP). J Virol Methods 270:21–25

    CAS  PubMed  Google Scholar 

  • Gerstel DU (1953) Chromosome translocations in interspecific hybrids of the genus Gossypium. Evolution 7:234–244

    Google Scholar 

  • Gerstel DU, Sarvella P (1956) Additional observations on chromosome translocations in cotton hybrids. Evolution 10:408–414

    Google Scholar 

  • Gokhale VP, Moghe PG (1965) Preliminary investigations on dahiya disease of cotton caused by Ramularia areola Atk. in Vidarbha. Nagpur Agric Coll Mag 38:27–31

    Google Scholar 

  • Gore MA, Fang DD, Poland JA et al (2014) Linkage map construction and quantitative trait locus analysis of agronomic and fiber quality traits in cotton. Plant Genome 7(1):1. https://doi.org/10.3835/plantgenome2013.07.0023

    Article  Google Scholar 

  • Granier C, Aguirrezabal L, Chenu K, Cookson SJ et al (2006) PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 169:623–635

    PubMed  Google Scholar 

  • Grover CE, Zhu X, Grupp KK et al (2015) Molecular confirmation of species status for the allotetraploid cotton species Gossypium ekmanianum Wittmack. Genet Resour Crop Evol 62:103–114. https://doi.org/10.1007/s10722-014-0138-x

    Article  Google Scholar 

  • Grover CE, Arick MA II, Adam T et al (2019) Insights into the evolution of the new world diploid cottons (Gossypium, subgenus Houzingenia) based on genome sequencing. Genome Biol Evol 11(1):53–71. https://doi.org/10.1093/gbe/evy256

    Article  CAS  PubMed  Google Scholar 

  • Grover EC, Pan M, Yuan D et al (2020) The Gossypium longicalyx genome as a resource for cotton breeding and evolution. G3 10(5):1457–1467. https://doi.org/10.1534/g3.120.401050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo WT, Shen Zhang X, Yu JZ, Kohel RJ (2003) Development of SCAR marker linked to a major QTL for high fiber strength and its usage in molecular-marker assisted selection in upland cotton. Crop Sci 43(6):2252–2256

    CAS  Google Scholar 

  • Han L-B, Li Y-B, Wang H-Y, Wu X-M et al (2013) The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell Online 25:4421–4438

    CAS  Google Scholar 

  • Hansen M, Egorov A, Potapov PV et al (2014) Monitoring conterminous United States (CONUS) land cover change with web-enabled Landsat data (WELD). Remote Sens Environ 140:466–484. https://doi.org/10.1016/j.rse.2013.08.014

    Article  Google Scholar 

  • Hanson WD (1959) The breakup of initial linkage blocks under selected mating systems. Genetics 44:857–868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harland SC (1940) New allopolyploids in cotton by the use of colchicines. Trop Agric 17:53–55

    CAS  Google Scholar 

  • Harrison GJ (1950) Some effect of inbreeding cotton. In: Proc 2nd Improvement Conference USA, p 4

    Google Scholar 

  • Hasenkampf CA, Menzel MY (1980) Incipient genome differentiation in Gossypium. II. Comparison of 12 chromosomes of G. hirsutum, G. mustelinum and G. tomentosum using heterozygous translocations. Genet 95:971–983

    CAS  Google Scholar 

  • Hayman BI (1954) The analysis of variance of diallel tables. Biometrics 10:235–244

    Google Scholar 

  • He C, Yan J, Shen G, Fu L et al (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton [Gossypium] improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46(1):1848–1854. https://doi.org/10.1093/pcp/pci201

    Article  CAS  PubMed  Google Scholar 

  • Hendrix B, Stewart JMD (2005) Estimation of the nuclear DNA content of Gossypium species. Ann Bot 95:789–797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hillocks RJ (1992) Cotton diseases. Redwood Press, Melksham, pp 39–86

    Google Scholar 

  • Hu Y, Chen J, Fang L et al (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51:739–748. https://doi.org/10.1038/s41588-019-0371-5

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    CAS  PubMed  Google Scholar 

  • Huang C, Nie X, Shen C et al (2017) Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol J 15(11):1374–1386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G, Wu Z, Percy RG et al (2020) Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat Genet 52:516–524. https://doi.org/10.1038/s41588-020-0607-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson J (2000) Seed rot hits South Carolina cotton. Southeast Farm Press. http://southeastfarmpress.com/mag/farming_seed_rot_hits/

  • Hulse-Kemp AM, Lemm J, Plieske J, Ashrafi H et al (2015) Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 5(6):1187–1209. https://doi.org/10.1534/g3.115.018416

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutchinson JB, Stephens SG, Dodd KS (1945) The seed hairs of Gossypium. Ann Bot 9:361–367

    Google Scholar 

  • Hutchinson JB, Silow RA, Stephens SG (1947) The evolution of Gossypium. Oxford Univ Press, London

    Google Scholar 

  • Islam MS, Thyssen GN, Jenkins JN, Fang DD (2015) Detection, validation, and application of genotyping-by-sequencing based single nucleotide polymorphisms in upland cotton. Plant Genome 8(1):1–10. https://doi.org/10.3835/plantgenome2014.07.0034

    Article  CAS  Google Scholar 

  • Jagathesan D, Swaminathan MS, Puri RP (1963) Breeding for resistance to jassids in cotton – use of induced mutations. Indian Cotton Grow Rev 17:96–99

    Google Scholar 

  • Janga MR, Campbell LM, Rathore KS (2017) CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.). Plant Mol Biol 94:349–360. https://doi.org/10.1007/s11103-017-0599-3

    Article  CAS  PubMed  Google Scholar 

  • Jenkins N (1989) State of the art in host plant resistance in cotton. In: Green MB, Lyon DB (eds) Pest management in cotton. Ellis Horwood limited Publisher, Chichester, pp 53–69

    Google Scholar 

  • Jia Y, Sun J, Du X (2014) Cotton germplasm resources in China. World Cotton Germplasm Res 2014:35–53

    Google Scholar 

  • Jiang CX, Wright RJ, El-Zik KM et al (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci 95:4419–4424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Guo W, Zhu H, Ruan Y-L et al (2012) Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnol J 10:301–312. https://doi.org/10.1111/j.1467-7652.2011.00662.x

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Zhou H, Bi H (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):e188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Li C, Paterson AH (2016) High throughput phenotyping of cotton plant height using depth images under field conditions. Comput Electron Agric 130:57–68. https://doi.org/10.1016/j.compag.2016.09.017

    Article  Google Scholar 

  • Jin S, Mushke R, Zhu H, Tu L, Lin Z, Zhang Y, Zhang X (2008) Detection of somaclonal variation of cotton (Gossypium hirsutum) using cytogenetics, flow cytometry and molecular markers. Plant Cell Rep 27:1303–1316. https://doi.org/10.1007/s00299-008-0557-2

    Article  CAS  PubMed  Google Scholar 

  • Jones JE, Andries JA (1967) Okra leaf for boll rot control? La Agric 10:8–9

    Google Scholar 

  • Kalbande BB, Patil AS (2016) Plant tissue culture independent Agrobacterium tumefaciens mediated In-planta transformation strategy for upland cotton (Gossypium hirsutum). J Genet Eng Biotech 14(1):9–18. https://doi.org/10.1016/j.jgeb.2016.05.003

    Article  Google Scholar 

  • Kalyanaraman SM, Ramaswami V, Vaman Bhat M (1955) Acclimatisation trials with Sea Island cotton in the West Coast of Madras State. In: 6th Conf Cotton Gr Probl India ICCC, Bombay, pp 24–25

    Google Scholar 

  • Katarki BH (1972) Varalaxmi hybrid cotton - a valuable import substitute. Cotton Dev 2(3):3–11

    Google Scholar 

  • Klein TM, Wolf ED, Wu R et al (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327(6117):70–73

    CAS  Google Scholar 

  • Knight RL (1952) The genetics of jassid resistance in cotton. I. The genes H1 and H2. J Genet 51:46–66

    Google Scholar 

  • Kohel RJ (1980) Genetic studies of seed oil in cotton. Crop Sci 20:784–787

    Google Scholar 

  • Kohel RJ (1985) Genetic analysis of fibre colour variants in cotton. Crop Sci 25:793–797

    Google Scholar 

  • Kohel RJ, Quisenberry JE, Benedict CR (1974) Fibre elongation and dry weight changes in mutant lines of cotton. Crop Sci 14:471–474

    Google Scholar 

  • Konan NO, Baudoin JP, D’Hont A, Mergeai G (2009) Bridging classical and molecular cytogenetics of Gossypium. In: Paterson AH (ed) Genetics and genomics of cotton. Plant genetics and genomics: crops and models, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70810-2_11

    Chapter  Google Scholar 

  • Kushanov F, Makamov A, Darmanov M et al. (2017) New cotton varieties obtained through marker assisted selection technology, https://www.cottongen.org

  • Leake HM (1911) Studies on Indian cotton. J Genet 1:202–272

    Google Scholar 

  • Leelavathi S, Sunnichan V, Kumria R et al (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22(7):465–470

    CAS  PubMed  Google Scholar 

  • Li C, Wang X, Dong N et al (2013) QTL analysis for early-maturing traits in cotton using two upland cotton (Gossypium hirsutum L.) crosses. Breed Sci 63(2):154–163. https://doi.org/10.1270/jsbbs.63.154

    Article  PubMed  PubMed Central  Google Scholar 

  • Li FG, Fan GY, Wang KB et al (2014a) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46(6):567–572. https://doi.org/10.1038/ng.2987

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang Q, Huang D (2014b) A review of imaging techniques for plant phenotyping. Sensors 14(11):20078–20111. https://doi.org/10.3390/s141120078

    Article  PubMed  PubMed Central  Google Scholar 

  • Li F, Fan G, Lu C et al (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530. https://doi.org/10.1038/nbt.3208

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cao Z, Lu H et al (2016) In-field cotton detection via region-based semantic image segmentation. Comput Electron Agric 127:475–486. https://doi.org/10.1016/j.compag.2016.07.006

    Article  Google Scholar 

  • Li C, Unver T, Zhang B (2017) A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.). Sci Rep 7:43902. https://doi.org/10.1038/srep43902

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wang NN, Wang Y, Liu D et al (2018) The cotton XLIM protein (GhXLIM 6) is required for fiber development via maintaining dynamic F‐actin cytoskeleton and modulating cellulose biosynthesis. Plant J 96:1269–1282. https://doi.org/10.1111/tpj.14108

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhu Z, Zhang T (2013) Development of transgenic CryIA(c) + GNA cotton plants via pollen tube pathway method confers resistance to Helicoverpa armigera and Aphis gossypii Glover. Methods Mol Biol 958:199–210. https://doi.org/10.1007/978-1-62703-212-4_17

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Li X, Jin S, Liu X, Zhu L et al (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9(1):e86895. https://doi.org/10.1371/journal.pone.0086895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Song C, Ren Z et al (2020) Genome-wide association study reveals the genetic basis of fiber quality traits in upland cotton (Gossypium hirsutum L.). BMC Plant Biol 20:395. https://doi.org/10.1186/s12870-020-02611-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long L, Guo DD, Gao W et al (2018) Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods 14:85. https://doi.org/10.1186/s13007-018-0353-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukefahr MJ, Houghtalling JE, Graham HM (1971) Suppression of Heliothis populations with glabrous cotton strains. J Econ Entomol 64:486–488

    Google Scholar 

  • Lv S, Zhang K, Gao Q, Lian L (2008) Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49(8):1150–1164. https://doi.org/10.1093/pcp/pcn090

    Article  CAS  PubMed  Google Scholar 

  • Lv S, Lian LJ, Tao PL, Li Z-X et al (2009) Overexpression of Thellungiella halophila H+-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta 229:899–910

    CAS  PubMed  Google Scholar 

  • Ma Z, He S, Wang X et al (2018) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet 50(6):803–813. https://doi.org/10.1038/s41588-018-0119-7

    Article  CAS  PubMed  Google Scholar 

  • Magwanga RO, Lu P, Kirungu JN et al (2018) GBS mapping and analysis of genes conserved between Gossypium tomentosum and Gossypium hirsutum cotton cultivars that respond to drought stress at the seedling stage of the BCF generation. Int J Mol Sci 19(6):1614. https://doi.org/10.3390/ijms19061614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood T, Khalid S, Abdullah M et al (2020) Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells 9(1):105. https://doi.org/10.3390/cells9010105

    Article  CAS  Google Scholar 

  • Mao YB, Tao XY, Xue XY et al (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20:665–673

    CAS  PubMed  Google Scholar 

  • Matzinger DF (1963) Experimental estimates of genetic parameters and their applications in self-fertilizing plants. In: Hanson WD, Robinson HF (eds) Statistical genetics and plant breeding, NAS-NRC #982

    Google Scholar 

  • Mc Lendon CA (1912) Mendelian inheritance in cotton hybrids. Ga Exp Stn Bull 89:141–228

    Google Scholar 

  • Mc Michael SC (1960) Combined effects of the glandless genes gl2 and gl3 on pigment glands in the cotton plant. Agron J 46:385–386

    Google Scholar 

  • McCarthy C, Hancock N, Raine S (2010) Apparatus and infield evaluations of a prototype machine vision system for cotton plant internode length measurement. J Cotton Sci 14(4):221–232

    CAS  Google Scholar 

  • Mell PH (1894) Experiments in crossing for the purpose of improving the cotton fiber. Ala Agri Exp Sta Bull 56:18–20

    Google Scholar 

  • Menon M, Uzramma (2017) A frayed history: the journey of Cotton in India. Oxford University Press, New Delhi, p 29

    Google Scholar 

  • Menzel MY, Brown MS (1954) The significance of multivalent formation in three species Gossypium hybrids. Genetics 39:546–557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith WR, Bridge RR (1971) Breakup of linkage blocks in cotton, Gossypium hirsutum L. Crop Sci 11:695–698

    Google Scholar 

  • Meredith WR Jr, Bridge RR (1973) Recurrent selection for lint percent within a cultivar of cotton (G. hirsutum L.). Crop Sci 13(6):698–701

    Google Scholar 

  • Meshram LD, Ghongade RA, Marawar MW (1994) Development of male sterility systems from various sources in cotton. PKV Res J 18(1):83–86

    Google Scholar 

  • Meyer VG (1971) Some effects of G. harkenessi cytoplasm on the number and fertility of cotton anthers. Agron Abst 12:28–32

    Google Scholar 

  • Meyer VG (1975) Male sterility from Gossypium harknessii. J Hered 66:23–27

    Google Scholar 

  • Miller PA, Rawlings JO (1967a) Breakage of initial linkage blocks through intermating in a cotton breeding program. Crop Sci 7:199–204

    Google Scholar 

  • Miller PA, Rawlings JO (1967b) Selection for increased lint yield and correlated response in upland cotton. Crop Sci 7:673–640

    Google Scholar 

  • Mohan P, Mukewar PM, Singh VV, Singh P et al (2006) Identification of sources of resistance to grey mildew disease (Ramularia areola) in diploid cotton (Gossypium arboreum). ICAR-CICR Tech Bull 34:1–26

    Google Scholar 

  • Nagrale DT, Gawande SP, Gokte-Narkhedkar N, Waghmare VN (2020) Association of phytopathogenic Pantoea dispersa inner boll rot of cotton (Gossypium hirsutum L.) in Maharashtra state. India Eur J Plant Pathol 158:251–260

    Google Scholar 

  • Nagrare VS, Fand BB, Kumar R et al (2022) Arthropod pests and their natural enemies associated with cotton in India: a review. Indian J Entomol, (Online published Ref. No. e21162). https://doi.org/10.5958/IJE.2022.167

  • Naik VCB, Kumbare S, Kranthi S et al (2018) Field-evolved resistance of Pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) to transgenic Bt‐cotton expressing Cry1Ac and Cry2Ab in India. Pest Manag Sci 74(11):2544. https://doi.org/10.1002/ps.5038

    Article  CAS  PubMed  Google Scholar 

  • Naoumkina M, Bechere E, Fang DD, Thyssen GN et al (2014) Genome-wide analysis of gene expression of EMS-induced short fiber mutant Ligon lintless-y (liy) in cotton (Gossypium hirsutum L.). Genomics 109(3–4):320–329

    Google Scholar 

  • Nikolajeva A (1923) A hybrid between Asiatic and American cotton plant Gossypium herbaceum L. and Gossypium hirsutum L. Bull Appl Bot Plant Breed 13:117–134

    Google Scholar 

  • Niles GA (1980) Plant breeding and improvement of the cotton plant. Outlook Agric 10:152–158

    Google Scholar 

  • Palve SM, Mandhyan PK, Waghmare VN, Kate N (2020) Evaluation of breeding potential of introgression lines developed from inter-specific crossing between upland cotton (Gossypium hirsutum) and Gossypium barbadense. Ind J Genet Plant Breed 80(3):343–346

    Google Scholar 

  • Pan Y, Meng F, Wang X (2020) Sequencing multiple cotton genomes reveals complex structures and lays foundation for breeding. Front Plant Sci 11:560096. https://doi.org/10.3389/fpls.2020.560096

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkhi V, Kumar V, Sunilkumar G et al (2009) Expression of apoplastically secreted tobacco osmotin in cotton confers drought tolerance. Mol Breed 23:625–639

    CAS  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J et al (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9(1):88–99. https://doi.org/10.1111/j.1467-7652.2010.00535.x

    Article  CAS  PubMed  Google Scholar 

  • Patel CT (1971) Hybrid-4: a new hope towards self-sufficiency in cotton in India. Cotton Dev 1(2):1

    Google Scholar 

  • Patel RK, Sandipan PB, Desai HR, Patel AD (2019) Screening of Gossypium hirsutum varieties/breeding materials for resistance to Alternaria leaf spot and Bacterial leaf blight diseases under natural and rainfed conditions. Int J Chem Stud 7(6):1847–1850

    Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492(7429):423–427

    CAS  PubMed  Google Scholar 

  • Percy R, Frelichowski J, Arnold M, Campbell B et al (2014) The US National cotton germplasm collection - its contents, preservation, characterization, and evaluation. World cotton germplasm resources. InTech, Rijeka, pp 167–201

    Google Scholar 

  • Percy R, Hendon B, Bechere E, Auld D (2015) Qualitative genetics and utilization of mutants. In: Cotton. Agronomy monograph, vol 57, 2nd edn. ASA, CSSA, and SSSA, Madison, WI, pp 155–186. https://doi.org/10.2134/agronmonogr57.2013.0042

    Chapter  Google Scholar 

  • Pfeffer W (1887) Bezugsquelle und Preise einiger Apparate. Botansche Zeitung 45:27–31

    Google Scholar 

  • Phillips LL (1963) The cytogenetics of Gossypium and the origin of new world cotton. Evolution 17:460–469

    Google Scholar 

  • Poland JA, Trevor WR (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5(3):92–102. https://doi.org/10.3835/plantgenome2012.05.0005

    Article  CAS  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME et al (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7(2):e32253. https://doi.org/10.1371/journal.pone.0032253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price HJ, Stelly DM, McKnight TD et al (1990) Molecular cytogenetic mapping of a nucleolar organizer region in cotton. J Hered 81(5):365–370. https://doi.org/10.1093/oxfordjournals.jhered.a111003

    Article  CAS  Google Scholar 

  • Puri SN, Murthy KS, Sharma OP (1999) Integrated pest management for sustainable cotton production. In: Basu AK, Narayanan SS, Krishna Iyer KR, Rajendran TP (eds) Handbook of cotton in India. Indian Society for Cotton Improvement, Mumbai, pp 223–255

    Google Scholar 

  • Qin H, Guo W, Zhang YM, Zhang T (2008) QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet 117(6):883–894

    PubMed  Google Scholar 

  • Qin L, Li J, Wang Q, Xu Z et al (2020) High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol J 18(1):45–56. https://doi.org/10.1111/pbi.13168

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan PA, Naik A, Katturi P et al (2012) Dominance of resistance-breaking cotton leaf curl Burewala virus (CLCuBuV) in northwestern India. Arch Virol 157:855–868

    CAS  PubMed  Google Scholar 

  • Rakshit A, Rakshit S, Singh J et al (2010) Association of AFLP and SSR markers with agronomic and fibre quality traits in Gossypium hirsutum L. J Genet 89(2):155–162

    PubMed  Google Scholar 

  • Ramadan M, Alariqi M, Ma Y, Li Y, Liu Z (2021) Efficient CRISPR/Cas9 mediated pooled-sgRNAs assembly accelerates targeting multiple genes related to male sterility in cotton. Plant Methods 17:16. https://doi.org/10.1186/s13007-021-00712-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaih K, Bholanath (1946) X-ray treatment of cotton seed. Proc 33rd Indian Sci Congr Banglore Part 3:164–165

    Google Scholar 

  • Rana MK, Singh S, Bhat KV (2007) RAPD, STMS and ISSR markers for genetic diversity and hybrid seed purity testing in cotton. Seed Sci Technol 35(3):709–721

    Google Scholar 

  • Rane MS, Patel MK (1956) Diseases of cotton in Bombay I. Alternaria leaf spot. Ind Phytopathol 9:106–113

    Google Scholar 

  • Rao AQ, Irfan M, Saleem Z, Nasir IA et al (2011) Overexpression of the phytochrome B gene from Arabidopsis thaliana increases plant growth and yield of cotton (Gossypium hirsutum). J Zhejiang Univ Sci B 12(4):326–334. https://doi.org/10.1631/jzus.B1000168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathore KS, Pandeya D, Campbell LM, Wedegaertner TC et al (2020) Ultra-low gossypol cottonseed: selective gene silencing opens up a vast resource of plant-based protein to improve human nutrition. Crit Rev Plant Sci 39(1):1–29. https://doi.org/10.1080/07352689.2020.1724433

    Article  CAS  Google Scholar 

  • Reinisch AJ, Dong JM, Brubaker CL et al (1994) A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genet 138:829–847

    CAS  Google Scholar 

  • Revathi P, Hemalatha M (2012) Advance computing enrichment evaluation of cotton leaf spot disease detection using image edge detection. In: Third International Conf Comput, Commun Networking Technol (ICCCNT’12). Coimbatore: IEEE-20180. https://doi.org/10.1109/ICCCNT.2012.6395903

    Chapter  Google Scholar 

  • Rhyne CL (1971) Indehiscent anther in cotton. Cotton Grow Rev 48:194–199

    Google Scholar 

  • Richmond TR (1951) Procedures and methods of cotton breeding with special reference to American cultivated species. Adv Genet 4:213–245

    CAS  PubMed  Google Scholar 

  • Ritchie G, Bednarz C (2005) Estimating defoliation of two distinct cotton types using reflectance data. J Cotton Sci 9:182–189

    Google Scholar 

  • Rong J, Abbey C, Bowers JE et al (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genet 166:389–417

    CAS  Google Scholar 

  • Rong J, Feltus FA, Waghmare VN, Pierce GJ (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genet 176:2577–2588

    CAS  Google Scholar 

  • Rothrock CS (1996) Cotton diseases incited by Rhizoctonia solani. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology, and disease control. Kluwer Academic Publishers, Boston, MA, pp 269–277

    Google Scholar 

  • Ruiz L (2019) Global textile fibre demand: trends and forecast. ICAC, Washington, DC. https://icac.org/

    Google Scholar 

  • Saha S, Karaca M, Jenkins JN, Zipf AE (2003) Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica 130(3):355–364

    CAS  Google Scholar 

  • Salunkhe VN, Gawande SP, Nagrale DT et al (2019) First report of Corynespora leaf spot of cotton caused by Corynespora cassiicola in Central India. Plant Dis 103(7):1785. https://doi.org/10.1094/PDIS-05-18-0823-PDN

    Article  Google Scholar 

  • Sapkal DR, Sutar SR, Thakre PB, Patil BR et al (2011) Genetic diversity analysis of maintainer and restorer accessions in upland cotton (Gossypium hirsutum L). J Plant Biochem Biotechnol 20(1):20–28

    Google Scholar 

  • Sappenfield WP, Baldwin CH, Wrather JA, Bugbee WM (1980) Breeding multiple disease resistant cottons for the North Delta. In: Proc. Beltwide Cotton Prod. Res. Conf., St. Louis, Missouri. National Cotton Council of America, Memphis, TN

    Google Scholar 

  • Saranga Y, Menz M, Jiang CX, Wright RJ, Yakir D, Paterson AH (2001) Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions. Genome Res 11(12):1988–1995

    CAS  PubMed  Google Scholar 

  • Schnable PS, Liu S, Wu W (2013) Genotyping by next-generation sequencing. US Patent Appl No 13/739, 874

    Google Scholar 

  • Selvakumar P, Ravikesavan R, Goplakrishnan A et al (2010) Genetic purity analysis of cotton (Gossypium spp.) hybrids using SSR markers. Seed Sci Technol 38:358–366

    Google Scholar 

  • Selvaraj AJ (1976) MCU-7 –A radiation induced early maturing cotton. Cotton Dev 3(1):9–14

    Google Scholar 

  • Sethi BL (1960) History of cotton. In: Sethi BL, Sikka SM, Dastur RH et al (eds) Cotton in India: a monograph I. Indian Central Cotton Committee, Bombay

    Google Scholar 

  • Shappley ZW, Jenkins JN, Meredith WR et al (1998) An RFLP linkage map of upland cotton, Gossypium hirsutum L. Theor Appl Genet 97:756–761

    CAS  Google Scholar 

  • Sharma B, Ritchie GL (2015) High-throughput phenotyping of cotton in multiple irrigation environments. Crop Sci 55(2):958–969. https://doi.org/10.2135/cropsci2014.04.0310

    Article  Google Scholar 

  • Shen X, Guo W, Zhu X et al (2005) Molecular mapping of QTLs for fibre qualities in three diverse lines in Upland cotton using SSR markers. Mol Breed 15(2):169–181

    CAS  Google Scholar 

  • Shoemaker DN (1908) A study of leaf characters in cotton hybrids. Rep AM Breed Assoc 5:116–119

    Google Scholar 

  • Shroff VN (1980) Cytoplasmic male sterility in cotton. ISCI J 5(1):41–42

    Google Scholar 

  • Shukla AK, Upadhyay SK, Mishra M et al (2016) Expression of an insecticidal fern protein in cotton protects against whitefly. Nat Biotechnol 34(10):1046–1051. https://doi.org/10.1038/nbt.3665

    Article  CAS  PubMed  Google Scholar 

  • Sikka SM, Joshi AB (1960) Cotton in India. In: Sethi BL, Sikka SM, Dastur RH et al (eds) Cotton in India: a monograph I. Indian Central Cotton Committee, Bombay

    Google Scholar 

  • Singh DP, Kumar R (1993) Male genetic sterility in Asiatic cotton. Indian J Genet 53(1):99–100

    Google Scholar 

  • Singh M, Raut RN (1983) Genetic research in cotton and jute. In: Pal BP (ed) Genetical research in India. ICAR, New Delhi, pp 154–171

    Google Scholar 

  • Singh D, Sahay RK (1989) Effect of pi and kaolin on growth and yield of upland cotton (Gossypium hirsutum). Indian J Agric Sci 54:2247–2250

    Google Scholar 

  • Singh M, Singh VP, Pal K, Lal CB (1989) Improvement of yield through increased boll weight in upland cotton (G. hirsutum). Indian J Agric Sci 54:141–144

    Google Scholar 

  • Skovsted A (1934) Cytological studies in cotton. II. Two interspecific hybrids between Asiatic and New World cottons. J Genet 28:407–424

    Google Scholar 

  • Sprague GF, Tatum LA (1942) General vs. specific combining ability in single crosses of corn. J Am Soc Agron 34:923–932

    Google Scholar 

  • Stephens SG (1944a) Phenogenetic evidence for amphidiploids origin of New World cottons. Nature 153:53–54

    Google Scholar 

  • Stephens SG (1944b) The genetic organization of leaf shape development in the genus Gossypium. J Genet 46:28–51

    Google Scholar 

  • Stewart JMD, Craven LA, Brubaker CL, Wendel JF (2008) Gossypium anapoides (Malvaceae), a new species of Gossypium. Novon J Bot Nomencl 23(4):447–451

    Google Scholar 

  • Sun S, Li C, Paterson A (2017a) In-field high-throughput phenotyping of cotton plant height using LiDAR. Remote Sens 9(4):377. https://doi.org/10.3389/fpls.2018.00016

    Article  Google Scholar 

  • Sun Z, Wang X, Liu Z, Gu Q et al (2017b) Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnol J 15(8):982–996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Li C, Paterson AH et al (2018) In-field high throughput phenotyping and cotton plant growth analysis using LiDAR. Front Plant Sci 9:16. https://doi.org/10.3389/fpls.2018.00016

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunilkumar G, Campbell LM, Puckhaber L et al (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci 103:18054–18059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabashnik BE, Wu K, Wu Y (2012) Early detection of field-evolved resistance to Bt cotton in China: cotton bollworm and pink bollworm. J Invertebr Pathol 110:301–306

    PubMed  Google Scholar 

  • Tafvizei F, Sheidai M, Nourmohammadi Z (2010) Cytogenetic and RAPD analysis of cotton cultivars and their F1 progenies. Caryologia 63(1):73–81

    Google Scholar 

  • Tatineni V, Cantrell RG, Davis DD (1996) Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Sci 36:186–192

    Google Scholar 

  • Tayiab MA (1983) Mechanism of male sterility in Asiatic cotton. In: National Seminar on Cotton. Haryana Agril Univ Hissar, Nov 3-5, 1983

    Google Scholar 

  • Udall JA et al (2019) The genome sequence of Gossypioides kirkii illustrates a descending dysploidy in plants. Front Plant Sci 10:1541. https://doi.org/10.3389/fpls.2019.01541

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullah A, Sun H, Yang X, Zhang X (2017) Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J 15:271–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa M, Meredith WR Jr, Shappley ZW, Kahler AL (2002) RFLP genetic linkage maps from four F2.3 populations and a join map of Gossypium hirsutum L. Theor Appl Genet 104(2–3):200–208

    CAS  PubMed  Google Scholar 

  • USDA (2021) United States Department of Agriculture Foreign Agricultural Service Cotton: world market and trade, pp 1–29. https://apps.fas.usda.gov/psdonline/circulars/cotton.pdf

  • Vajhala CSK, Sadumpati VK, Nunna HR et al (2013) Development of transgenic cotton lines expressing Allium sativum Agglutinin (ASAL) for enhanced resistance against major sap-sucking pests. PLoS One 8(9):e72542. https://doi.org/10.1371/journal.pone.0072542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Deynze A, Stoffel K, Lee M et al (2009) Sampling nucleotide diversity in cotton. BMC Plant Biol 9:125. https://doi.org/10.1186/1471-2229-9-125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss-Fels K, Snowdon RJ (2015) Understanding and utilizing crop genome diversity via high‐ resolution genotyping. Plant Biotechnol J 14(4):1086–1094. https://doi.org/10.1111/pbi.12456

    Article  CAS  PubMed  Google Scholar 

  • Vroh Bi I, Maquet A, Baudoin JP et al (1999) Breeding for low-gossypol seed and high-gossypol plants in upland cotton. Analysis of tri-species hybrids and backcross progenies using AFLPs and mapped RFLPs. Theor Appl Genet 99:1233–1244. https://doi.org/10.1007/s001220051329

    Article  Google Scholar 

  • Waghmare VN, Koranne KD (1998) Coloured cotton: present status, problems and future potentials. Ind J Genet Plant Breed 58:1–15

    Google Scholar 

  • Waghmare VN, Rong J, Rogers CJ, Pierce GJ et al (2005) Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum. Theor Appl Genet 111:665–676

    CAS  PubMed  Google Scholar 

  • Wang BH, Wu YT, Huang NT et al (2006) QTL mapping for plant architecture traits in upland cotton using RILs and SSR markers. Acta Genet Sin 33(2):161–170

    CAS  PubMed  Google Scholar 

  • Wang HY, Wang J, Gao P, Jiao GL et al (2009) Down regulation of GhADF1 gene expression affects cotton fiber properties. Plant Biotechnol J 7:13–23

    PubMed  Google Scholar 

  • Wang K, Wang Z, Li F et al (2012a) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103. https://doi.org/10.1038/ng.2371

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Meyer E, McKay JK, Matz MV (2012b) 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods 9:808–810. https://doi.org/10.1038/nmeth.2023

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu H, Li X, Xiao X et al (2014) Genetic mapping of fiber color genes on two brown cotton cultivars in Xinjiang. Springerplus 3:480. https://doi.org/10.1186/2193-1801-3-480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Chen J, Zhang W, Hu Y, Chang L et al (2015) Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol 16:108. https://doi.org/10.1186/s1305901506781

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Meng Z, Liang C et al (2017) Increased lateral root formation by CRISPR/Cas9 mediated editing of arginase genes in cotton. Sci China Life Sci 60:524–527. https://doi.org/10.1007/s11427-017-9031-y

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Zhang J, Sun L, Ma Y et al (2018) Highly efficient multisite genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J 16(1):137–150. https://doi.org/10.1111/pbi.12755

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Tu L, Yuan D, Zhu D et al (2019) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51:224–229. https://doi.org/10.1038/s41588-018-0282-x

    Article  CAS  PubMed  Google Scholar 

  • Watson S (1989) Recent progress in breeding for insect resistance in tree cotton. In: Green MB, Lyon DB (eds) Pest management in cotton. Ellis Horwood limited Publisher, Chichester, pp 44–52

    Google Scholar 

  • Weaver DB, Weaver JB Jr (1977) Inheritance of pollen fertility restoration in cytoplasmic male-sterile upland cotton. Crop Sci 17:497–499. https://doi.org/10.2135/cropsci1977.0011183X001700040003x

    Article  Google Scholar 

  • Wendel JF (1989) New world tetraploid cottons contain old world cytoplasm. Proc Natl Acad Sci U S A 86(11):4132–4136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Google Scholar 

  • Wendel JF, Grover CE (2015) Taxonomy and evolution of the cotton genus Gossypium. Cotton 57:25–44

    Google Scholar 

  • Wendel JF, Rowley R, Stewart JMD (1994) Genetic diversity in and phylogenetic relationships of the Brazilian endemic cotton, Gossypium mustelinum (Malvaceae). Plant Syst Evol 192:49–59

    Google Scholar 

  • Wilson CD (1986) Pink bollworm resistance, lint yield and lint yield components of okra leaf cotton in different genetic backgrounds. Crop Sci 26:1164–1167

    Google Scholar 

  • Wilson CD, George BW (1982) Effect of okra leaf, frego bract and smooth leaf mutants on pink bollworm damage and agronomic properties of cotton crop. Crop Sci 22:797–801

    Google Scholar 

  • Wright RJ, Thaxton PM, El-Zik KM, Paterson AH (1998) Molecular mapping of genes affecting pubescence of cotton. J Hered 90(1):215–219

    Google Scholar 

  • Wu J, Luo X, Guo H, Xiao J, Tian Y (2006) Transgenic cotton, expressing Amaranthus caudatus agglutinin, confers enhanced resistance to aphids. Plant Breed 125:390–394

    CAS  Google Scholar 

  • Wu Y-x, Chen J-h, He Q-l, Zhu S-j (2013) Parental origin and genomic evolution of tetraploid Gossypium species by molecular marker and GISH analyses. Caryologia 66(4):368–374. https://doi.org/10.1080/00087114.2013.857830

    Article  Google Scholar 

  • Wu M, Yang C, Song X et al (2018) Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion. Sci Rep 8(1):2016. https://doi.org/10.3390/rs70810400

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu S, Brill E, Llewellyn D, Furbank RT et al (2012) Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion and enhances fiber production. Mol Plant 5:430–441

    CAS  PubMed  Google Scholar 

  • Xu R, Li C, Paterson AH et al (2018a) Aerial images and convolutional neural network for cotton bloom detection. Front Plant Sci 8:2235. https://doi.org/10.3389/fpls.2017.02235

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu R, Li C, Velni JM (2018b) Development of an autonomous ground robot for field high throughput phenotyping. IFAC Papers Online 51(17):70–74. https://doi.org/10.1016/j.ifacol.2018.08.063

    Article  Google Scholar 

  • Xu R, Li C, Paterson AH (2019) Multispectral imaging and unmanned aerial systems for cotton plant phenotyping. PLoS One 14(2):e0205083. https://doi.org/10.1371/journal.pone.0205083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Zhang D, Li XS et al (2016) Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions. Mol Breed 36:34. https://doi.org/10.1007/s11032-015-0422-2

    Article  CAS  Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    CAS  PubMed  Google Scholar 

  • Yu JZ, Kohel RJ, Fang DD et al (2012) A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome. G3 2(1):43–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JW, Zhang K, Li SY et al (2013) Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theor Appl Genet 126:275–287. https://doi.org/10.1007/s00122-012-1980-x

    Article  PubMed  Google Scholar 

  • Yu J, Jung S, Cheng C-H et al (2014) Cotton Gen: a genomics, genetics and breeding database for cotton research. Nucleic Acids Res 42(D1):1229–1236. https://doi.org/10.1093/nar/gkt1064

    Article  CAS  Google Scholar 

  • Yu LH, Wu SJ, Peng YS et al (2016) Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J 14(1):72–84. https://doi.org/10.1111/pbi.12358

    Article  CAS  PubMed  Google Scholar 

  • Yuan D, Tang Z, Wang M et al (2016) The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep 5:17662. https://doi.org/10.1038/srep17662

    Article  CAS  Google Scholar 

  • Zhang J, Guo W, Zhang T (2002) Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–1174

    CAS  PubMed  Google Scholar 

  • Zhang T, Yuan Y, Yu J, Guo W, Kohel RJ (2003) Molecular tagging of a major QTL for fiber strength in upland cotton and its marker-assisted selection. Theor Appl Genet 106(2):262–268

    CAS  PubMed  Google Scholar 

  • Zhang M, Zheng X, Song S et al (2011) Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29:453–458. https://doi.org/10.1038/nbt.1843

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhang G, Wang Y et al (2013) Effect of soil salinity on physiological characteristics of functional leaves of cotton plants. J Plant Res 126:293–304

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhai C, He L, Guo Q et al (2014) Morphological, cytological and molecular analyses of a synthetic hexaploid derived from an interspecific hybrid between Gossypium hirsutum and Gossypium anomalum. Crop J 2:272–2277

    Google Scholar 

  • Zhang T, Hu Y, Jiang W, Fang L, Guan X et al (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotech 33(5):531–537

    CAS  Google Scholar 

  • Zhang Y, Feng C, Bie S, Wang X et al (2018a) Analysis of short fruiting branch gene and marker-assisted selection with SNP linked to its trait in upland cotton. J Cotton Res 1:5. https://doi.org/10.1186/s42397-018-0001-2

    Article  CAS  Google Scholar 

  • Zhang Z, Ge X, Luo X, Wang P, Fan Q et al (2018b) Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Front Plant Sci 9:842. https://doi.org/10.3389/fpls.2018.00842

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Cai Y, Guo J, Li K, Peng R et al (2019) Genotyping-by-Sequencing of Gossypium hirsutum races and cultivars uncovers novel patterns of genetic relationships and domestication footprints. Evol Bioinformatics Online 15:1–11. https://doi.org/10.1177/1176934319889948

    Article  Google Scholar 

  • Zhao XP, Si Y, Hanson RE, Crane CF et al (1998) Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res 8:479–492. https://doi.org/10.1101/gr.8.5.479

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Yu X, Li Y, Sun Y, Zhu Q (2018) Highly efficient targeted gene editing in upland cotton using the CRISPR/Cas9 system. Int J Mol Sci 19(10):3000. https://doi.org/10.3390/ijms19103000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo KJ, Sun JZ, Zhang XL et al (2000) Constructing a linkage map of upland cotton (Gossypium hirsutum L.) using RFLP, RAPD and SSR markers. J Huazhong Agric Univ 19(3):190193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay N. Waghmare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waghmare, V.N. (2022). Cotton Breeding. In: Yadava, D.K., Dikshit, H.K., Mishra, G.P., Tripathi, S. (eds) Fundamentals of Field Crop Breeding. Springer, Singapore. https://doi.org/10.1007/978-981-16-9257-4_11

Download citation

Publish with us

Policies and ethics