Skip to main content

Wear Properties of In-Situ Aluminum Matrix Composites

  • Chapter
  • First Online:
In-Situ Synthesis of Aluminum Matrix Composites
  • 205 Accesses

Abstract

As a new type of wear-resistant material, particle-reinforced aluminum matrix composites have been used in many fields requiring wear resistance, such as engine pistons, cylinder liners, rotary bearings, automobile brake systems, and oil separation caps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huo X, Zhao Y, Chen G, et al. Wear properties and mechanism of silumin and its in-situ composites in dry sliding wear. Foundry. 2007;56(4):375–9 (in Chinese).

    CAS  Google Scholar 

  2. Zhang S, Dong X, Zhao Y, et al. Preparation and wear properties of TiB2/Al-30Si composites via in situ melt reactions under high-energy ultrasonic field. Trans Nonferrous Met Soc Chin. 2014;24(12):3894–900.

    Article  CAS  Google Scholar 

  3. Chen D, Zhao Y, Zhu H, et al. Microstructures and dry sliding wear properties of ZrB2/A356 composites synthesized by magneto-chemistry in situ reaction. J Wuhan Univ Technol (Mater Sci Ed). 2013;28(2):384–8.

    Article  CAS  Google Scholar 

  4. Jiao L, Zhao Y, Zhang Z, et al. Preparation and wear properties of (Al3Zr+ZrB2)P/2124 composites material with in-situ process. Advan Mater Res. 2013;616–618:1736–40.

    Google Scholar 

  5. Dwivedi DK. Wear behaviour of cast hypereutectic aluminum silicon alloys. Mater Des. 2006;27:610–6.

    Article  CAS  Google Scholar 

  6. Erarslan Y. Wear performance of in situ aluminum matrix composite after micro-arc oxidation. Trans Nonferrous Met Soc Chin. 2013;23(2):347–52.

    Article  CAS  Google Scholar 

  7. Kumar S, Chakraborty M, Subramanya Sarma V, et al. Tensile and wear behaviour of in situ Al-7Si/TiB2 particulate composites. Wear. 2008;265(1–2):134–42.

    Article  CAS  Google Scholar 

  8. Singh J, Alpas AT. High-temperature wear and deformation processes in metal matrix composites. Metall Mater Trans A. 1996;27(10):3135–48.

    Article  Google Scholar 

  9. Zhang GD. Friction and wear behavior of aluminum allays reinforced with SiC. Tribol Lett. 2004;17:91–8.

    Article  Google Scholar 

  10. Gautam G, Mohan A. Effect of ZrB2 particles on the microstructure and mechanical properties of hybrid (ZrB2+Al3Zr)/AA5052 in situ composites. J Alloy Compd. 2015;649:174–83.

    Article  CAS  Google Scholar 

  11. Onat A. Mechanical and dry sliding wear properties of silicon carbide particulate reinforced aluminium–copper alloy matrix composites produced by direct squeeze casting method. J Alloy Compd. 2010;489(1):119–24.

    Article  CAS  Google Scholar 

  12. Toptan F, Kerti I, Rocha LA. Reciprocal dry sliding wear behaviour of B4Cp reinforced aluminium alloy matrix composites. Wear. 2012;290–291:74–85.

    Article  Google Scholar 

  13. Mazahery A, Shabani MO. Microstructural and abrasive wear properties of SiC reinforced aluminum-based composite produced by compocasting. Trans Nonferrous Met Soc Chin. 2013;23(7):1905–14.

    Article  CAS  Google Scholar 

  14. Singh M, Mondal DP, Modi OP, et al. Two-body abrasive wear behaviour of aluminium alloy-sillimanite particle reinforced composite. Wear. 2002;253(3–4):357–68.

    Article  CAS  Google Scholar 

  15. Zhu H, Jia C, Li J, et al. Microstructure and high temperature wear of the aluminum matrix composites fabricated by reaction from Al-ZrO2-B elemental powders. Powder Technol. 2012;217:401–8.

    Article  CAS  Google Scholar 

  16. Zhao Y. Microstructure and tensile property of in-situ composite synthesized by the direct melt reaction in the Al-Zr-O system. Foundry. 2002;51(3):153–6 (in Chinese).

    CAS  Google Scholar 

  17. How HC, Baker TN. Characterization of sliding friction-induced subsurface deformation of Saffil-reinforced A16061 composites. Wear. 1999;232:106–15.

    Article  CAS  Google Scholar 

  18. Diler EA, Ipek R. Main and interaction effects of matrix particle size, reinforcement particle size and volume fraction on wear characteristics of Al-SiCp composites using central composite design. Compos B Eng. 2013;50:371–80.

    Article  CAS  Google Scholar 

  19. Kumar S, Panwar RS, Pandey OP. Effect of dual reinforced ceramic particles on high temperature tribological properties of aluminum composites. Ceram Int. 2013;39(6):6333–42.

    Article  CAS  Google Scholar 

  20. Shockley JM, Descartes S, Vo P, et al. The influence of Al2O3 particle morphology on the coating formation and dry sliding wear behavior of cold sprayed Al-Al2O3 composites. Surf Coat Technol. 2015;270:324–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutao Zhao .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, Y. (2022). Wear Properties of In-Situ Aluminum Matrix Composites. In: In-Situ Synthesis of Aluminum Matrix Composites. Springer, Singapore. https://doi.org/10.1007/978-981-16-9120-1_9

Download citation

Publish with us

Policies and ethics