Skip to main content

Machine Learning and Epilepsy

  • Chapter
  • First Online:
Machine Learning in Biological Sciences

Abstract

Epilepsy is a neurological disorder of the brain affecting both children and adult, due to excessive electrical discharges by some brain cells at different sites. Antiepileptic drugs and surgery are the available forms of treatment but seizure free life is the ultimate goal of therapy. Machine learning is enabling early, better and accurate diagnosis and hence enabling decision making in therapy and holds great promise in this field of biomedical research. We discuss in this chapter the different applications of machine learning in understanding the biomedical aspects of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADNFLE:

Autosomal dominant nocturnal frontal lobe epilepsy

AED:

Antiepileptic disease

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

CAE:

Childhood absence epilepsy

CHD:

Chromodomain helicase DNA-binding

CNS:

Central nervous system

CV:

Cardiovascular disease

DEE:

Developmental epileptic encephalopathy

DRE:

Drug-resistant epilepsy

DS:

Dravet syndrome

ECoG:

Electrocorticography

EEG:

Electroencephalography

EHR:

Electronic health record

EIMFS:

Epilepsy of infancy with migrating focal seizures

EKG:

Electrocardiography

fALFF:

Fractional amplitude of low-frequency fluctuation

FIRES:

Febrile infection-related epilepsy syndrome

FLE:

Frontal lobe epilepsy

fMRI:

Functional MRI

FS:

Febrile seizures

GABAR:

Gamma amino butyric acid

GAD:

Glutamic acid decarboxylase

GCPRs:

G protein coupled receptors

GEFS+:

Generalized epilepsy with febrile seizures plus

GM:

Gray matter

GTCS:

Generalized tonic-clonic seizures

HFO:

High frequency oscillations

ILAE:

The International League Against Epilepsy

JME:

Juvenile myoclonic epilepsy

kSVM:

Kernel support vector machine

MAE:

Myoclonic-astatic epilepsy

MCD:

Malformations of cortical development

mTOR:

Mammalian target of rapamycin pathway (mTOR) pathway

NLP:

Natural Language processing

rsfMRI:

Resting-state fMRI

SMEI:

Severe myoclonic epilepsy in infancy

T solium :

Taenia solium

TLE:

Temporal lobe epilepsy

VGKC:

Voltage-gated potassium channel

WHO:

World Health Organization

References

  • Abbasi B, Goldenholz DM (2019) Machine learning applications in epilepsy. Epilepsia 60(10):2037–2047

    Article  PubMed  Google Scholar 

  • Acharya UR, Hagiwara Y, Adeli H (2018) Automated seizure prediction. Epilepsy Behav 88:251–261

    Article  PubMed  Google Scholar 

  • An S, Malhotra K, Dilley C et al (2018) Predicting drug-resistant epilepsy - a machine learning approach based on administrative claims data. Epilepsy Behav 89:118–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Anwar A, Saleem S, Patel UK, Arumaithurai K, Malik P (2019) Dravet syndrome: an overview. Cureus 11(6):e5006

    PubMed  PubMed Central  Google Scholar 

  • Armañanzas R, Alonso-Nanclares L, Defelipe-Oroquieta J et al (2013) Machine learning approach for the outcome prediction of temporal lobe epilepsy surgery. PLoS One 8(4):e62819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beghi E, Giussani G, Sander JW (2015) The natural history and prognosis of epilepsy. Epileptic Disord 17(3):243–253

    Article  PubMed  Google Scholar 

  • Bharath RD, Panda R, Raj J et al (2019) Machine learning identifies “rsfMRI epilepsy networks” in temporal lobe epilepsy. Eur Radiol 29(7):3496–3505

    Article  PubMed  Google Scholar 

  • Bien CG, Scheffer IE (2011) Autoantibodies and epilepsy. Epilepsia 52(suppl 3):18–22

    Article  PubMed  Google Scholar 

  • Cohen KB, Glass B, Greiner HM et al (2016) Methodological issues in predicting pediatric epilepsy surgery candidates through natural language processing and machine learning. Biomed Inform Insights 8:11–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Crino PB (2015) mTOR signaling in epilepsy: insights from malformations of cortical development. Cold Spring Harb Perspect Med 5(4):a022442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dewar SR, Pieters HC (2015) Perceptions of epilepsy surgery: a systematic review and an explanatory model of decision-making. Epilepsy Behav 44:171–178

    Article  PubMed  Google Scholar 

  • Dubey D, Alqallaf A, Hays R et al (2017) Neurological autoantibody prevalence in epilepsy of unknown etiology. JAMA Neurol 74(4):397–402

    Article  PubMed  Google Scholar 

  • Fox K, Wells ME, Tennison M, Vaughn B (2017) Febrile infection-related epilepsy syndrome (FIRES): a literature review and case study. Neurodiagn J 57(3):224–233

    Article  PubMed  Google Scholar 

  • Frank B, Hurley L, Scott TM, Olsen P, Dugan P, Barr WB (2018) Machine learning as a new paradigm for characterizing localization and lateralization of neuropsychological test data in temporal lobe epilepsy. Epilepsy Behav 86:58–65

    Article  PubMed  Google Scholar 

  • Gertler T, Bearden D, Bhattacharjee A et al (1993–2020) KCNT1-related epilepsy, 20 Sept 2018. In: Adam MP, Ardinger HH, Pagon RA, et al. (eds) GeneReviews® [Internet]. University of Washington, Seattle. https://www.ncbi.nlm.nih.gov/books/NBK525917

  • Glauser T, Santel D, DelBello M et al (2020) Identifying epilepsy psychiatric comorbidities with machine learning. Acta Neurol Scand 141(5):388–396

    Article  PubMed  PubMed Central  Google Scholar 

  • Gold JA, Sher Y, Maldonado JR (2016) Frontal lobe epilepsy: a primer for psychiatrists and a systematic review of psychiatric manifestations. Psychosomatics 57(5):445–464

    Article  PubMed  Google Scholar 

  • Guerreiro CA (2016) Epilepsy: is there hope? Indian J Med Res 144(5):657–660

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang G, Nair VA, Mathis J et al (2019) Using low-frequency oscillations to detect temporal lobe epilepsy with machine learning. Brain Connect 9(2):184–193

    Article  PubMed  PubMed Central  Google Scholar 

  • Kassahun Y, Perrone R, De Momi E et al (2014) Automatic classification of epilepsy types using ontology-based and genetics-based machine learning. Artif Intell Med 61(2):79–88

    Article  PubMed  Google Scholar 

  • Kini LG, Gee JC, Litt B (2016) Computational analysis in epilepsy neuroimaging: a survey of features and methods. Neuroimage Clin 11:515–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiran Raj V, Rajagopalan SS, Bhardwaj S et al (2018) Machine learning detects EEG microstate alterations in patients living with temporal lobe epilepsy. Seizure 61:8–13

    Article  Google Scholar 

  • Köhling R, Wolfart J (2016) Potassium channels in epilepsy. Cold Spring Harb Perspect Med 6(5):a022871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamar KJ, Carvill GL (2018) Chromatin remodeling proteins in epilepsy: lessons from CHD2-associated epilepsy. Front Mol Neurosci 11:208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu CY, Zhu J, Zheng XY, Ma C, Wang X (2017) Anti-N-methyl-D-aspartate receptor encephalitis: a severe, potentially reversible autoimmune encephalitis. Mediat Inflamm 2017:6361479

    Google Scholar 

  • Macdonald RL, Kang JQ, Gallagher MJ (2010) Mutations in GABAA receptor subunits associated with genetic epilepsies. J Physiol 588(Pt 11):1861–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manford M (2017) Recent advances in epilepsy. J Neurol 264(8):1811–1824

    Article  PubMed  PubMed Central  Google Scholar 

  • Meisel C, Bailey KA (2019) Identifying signal-dependent information about the preictal state: a comparison across ECoG, EEG and EKG using deep learning. EBioMedicine 45:422–431

    Article  PubMed  PubMed Central  Google Scholar 

  • Mewara A, Goyal K, Sehgal R (2013) Neurocysticercosis: a disease of neglect. Trop Parasitol 3(2):106–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Nissen IA, Stam CJ, van Straaten ECW et al (2018) Localization of the epileptogenic zone using interictal MEG and machine learning in a large cohort of drug-resistant epilepsy patients. Front Neurol 9:647

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowell M, Miserocchi A, McEvoy AW (2015) Tumors in epilepsy. Semin Neurol 35(3):209–217

    Article  PubMed  Google Scholar 

  • Pack AM (2019) Epilepsy overview and revised classification of seizures and epilepsies. Continuum (Minneap Minn) 25(2):306–321

    Google Scholar 

  • Park SC, Chung CK (2018) Postoperative seizure outcome-guided machine learning for interictal electrocorticography in neocortical epilepsy. J Neurophysiol 119(6):2265–2275

    Article  PubMed  Google Scholar 

  • Perucca P, Scheffer IE, Kiley M (2018) The management of epilepsy in children and adults. Med J Aust 208(5):226–233

    Article  PubMed  Google Scholar 

  • Rudie JD, Colby JB, Salamon N (2015) Machine learning classification of mesial temporal sclerosis in epilepsy patients. Epilepsy Res 117:63–69

    Article  PubMed  Google Scholar 

  • Sakai K, Yamada K (2019) Machine learning studies on major brain diseases: 5-year trends of 2014-2018. Jpn J Radiol 37(1):34–72

    Article  PubMed  Google Scholar 

  • Senders JT, Staples PC, Karhade AV et al (2018a) Machine learning and neurosurgical outcome prediction: a systematic review. World Neurosurg 109:476–486.e1

    Article  PubMed  Google Scholar 

  • Senders JT, Zaki MM, Karhade AV et al (2018b) An introduction and overview of machine learning in neurosurgical care. Acta Neurochir 160(1):29–38

    Article  PubMed  Google Scholar 

  • Shmuely S, van der Lende M, Lamberts RJ, Sander JW, Thijs RD (2017) The heart of epilepsy: current views and future concepts. Seizure 44:176–183

    Article  CAS  PubMed  Google Scholar 

  • Sidhu MK, Duncan JS, Sander JW (2018) Neuroimaging in epilepsy. Curr Opin Neurol 31(4):371–378

    Article  PubMed  Google Scholar 

  • Steinlein OK (2008) Genetics and epilepsy. Dialogues Clin Neurosci 10(1):29–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Struck AF, Rodriguez-Ruiz AA, Osman G et al (2019) Comparison of machine learning models for seizure prediction in hospitalized patients. Ann Clin Transl Neurol 6(7):1239–1247

    Article  PubMed  PubMed Central  Google Scholar 

  • Symonds JD, Zuberi SM, Johnson MR (2017) Advances in epilepsy gene discovery and implications for epilepsy diagnosis and treatment. Curr Opin Neurol 30(2):193–199

    Article  PubMed  Google Scholar 

  • Thijs RD, Surges R, O’Brien TJ, Sander JW (2019) Epilepsy in adults. Lancet 393(10172):689–701

    Article  PubMed  Google Scholar 

  • Torlay L, Perrone-Bertolotti M, Thomas E, Baciu M (2017) Machine learning-XGBoost analysis of language networks to classify patients with epilepsy. Brain Inform 4(3):159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usman SM, Usman M, Fong S (2017) Epileptic seizures prediction using machine learning methods. Comput Math Methods Med 2017:9074759

    Article  PubMed  PubMed Central  Google Scholar 

  • Varadkar S, Bien CG, Kruse CA et al (2014) Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurol 13(2):195–205

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li Z, Feng L, Zheng C, Zhang W (2017) Automatic detection of epilepsy and seizure using multiclass sparse extreme learning machine classification. Comput Math Methods Med 2017:6849360

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Li Y, Wang Y, Huang W (2018) Multimodal data and machine learning for detecting specific biomarkers in pediatric epilepsy patients with generalized tonic-clonic seizures. Front Neurol 9:1038

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber YG, Biskup S, Helbig KL, Von Spiczak S, Lerche H (2017) The role of genetic testing in epilepsy diagnosis and management. Expert Rev Mol Diagn 17(8):739–750

    Article  CAS  PubMed  Google Scholar 

  • Weiss SA, Waldman Z, Raimondo F et al (2019) Localizing epileptogenic regions using high-frequency oscillations and machine learning. Biomark Med 13(5):409–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wissel BD, Greiner HM, Glauser TA et al (2019) Investigation of bias in an epilepsy machine learning algorithm trained on physician notes. Epilepsia 60(9):e93–e98

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu XX, Luo JH (2018) Mutations of N-methyl-D-aspartate receptor subunits in epilepsy. Neurosci Bull 34(3):549–565

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Cai M, Chen Y, Shen C, Shi L, Guo Y (2019) Prediction of antiepileptic drug treatment outcomes of patients with newly diagnosed epilepsy by machine learning. Epilepsy Behav 96:92–97

    Article  PubMed  Google Scholar 

  • Yeshokumar AK, Pardo CA (2017) Autoimmune epilepsies. Semin Pediatr Neurol 24(3):161–167

    Article  PubMed  Google Scholar 

  • Yu Y, Nguyen DT, Jiang J (2019) G protein-coupled receptors in acquired epilepsy: druggability and translatability. Prog Neurobiol 183:101682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Dasgupta, R. (2022). Machine Learning and Epilepsy. In: Machine Learning in Biological Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-16-8881-2_15

Download citation

Publish with us

Policies and ethics