Skip to main content
Log in

Mutations of N-Methyl-D-Aspartate Receptor Subunits in Epilepsy

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Epilepsy is one of the most common neurological diseases. Of all cases, 70%–80% are considered to be due to genetic factors. In recent years, a large number of genes have been identified as being involved in epilepsy. Among them, N-methyl-D-aspartate receptor (NMDAR) subunit-encoding genes represent a large proportion, suggesting an important role for NMDARs in epilepsy. In this review, we summarize and analyze the genotypes, functional alterations, and clinical aspects of NMDAR subunit mutations/variants identified from patients with epilepsy. These data will help to throw light upon the pathogenicity of these NMDAR mutations and advance our understanding of the subtle and complicated role of NMDARs in epilepsy. It will also offer new insights into precision therapy for this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hildebrand MS, Dahl HH, Damiano JA, Smith RJ, Scheffer IE, Berkovic SF. Recent advances in the molecular genetics of epilepsy. J Med Genet 2013, 50: 271–279.

    Article  PubMed  CAS  Google Scholar 

  2. Myers CT, Mefford HC. Advancing epilepsy genetics in the genomic era. Genome Med 2015, 7: 91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Yuan H, Low CM, Moody OA, Jenkins A, Traynelis SF. Ionotropic GABA and glutamate receptor mutations and human neurologic diseases. Mol Pharmacol 2015, 88: 203–217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Wei F, Yan LM, Su T, He N, Lin ZJ, Wang J, et al. Ion channel genes and epilepsy: functional alteration, pathogenic potential, and mechanism of epilepsy. Neurosci Bull 2017, 33: 455–477.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Burnashev N, Szepetowski P. NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin Pharmacol 2015, 20: 73–82.

    Article  PubMed  CAS  Google Scholar 

  6. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010, 62: 405–496.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cull-Candy SG, Leszkiewicz DN. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE 2004, 2004: re16.

  8. Paoletti P. Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 2011, 33: 1351–1365.

    Article  PubMed  Google Scholar 

  9. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 2013, 14: 383–400.

    Article  PubMed  CAS  Google Scholar 

  10. Luo J, Wang Y, Yasuda RP, Dunah AW, Wolfe BB. The majority of N-Methyl-D-Aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Mol Pharmacol 1997, 51: 79–86.

    Article  PubMed  CAS  Google Scholar 

  11. Rauner C, Kohr G. Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-Methyl-D-Aspartate receptor population in adult hippocampal synapses. J Biol Chem 2011, 286: 7558–7566.

    Article  PubMed  CAS  Google Scholar 

  12. Tovar KR, McGinley MJ, Westbrook GL. Triheteromeric NMDA receptors at hippocampal synapses. J Neurosci 2013, 33: 9150–9160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lu W, Du J, Goehring A, Gouaux E. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science 2017, 355.

  14. Zhu S, Stein RA, Yoshioka C, Lee CH, Goehring A, McHaourab HS, et al. Mechanism of NMDA receptor inhibition and activation. Cell 2016, 165: 704–714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Laube B, Kuhse J, Betz H. Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci 1998, 18: 2954–2961.

    Article  PubMed  CAS  Google Scholar 

  16. Mayer ML. Glutamate receptors at atomic resolution. Nature 2006, 440: 456-462.

    Article  PubMed  CAS  Google Scholar 

  17. Mayer ML. Emerging models of glutamate receptor ion channel structure and function. Structure 2011, 19: 1370–1380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wenthold RJ, Prybylowski K, Standley S, Sans N, Petralia RS. Trafficking of NMDA receptors. Annu Rev Pharmacol Toxicol 2003, 43: 335–358.

    Article  PubMed  CAS  Google Scholar 

  19. Sans N, Prybylowski K, Petralia RS, Chang K, Wang YX, Racca C, et al. NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nat Cell Biol 2003, 5: 520–530.

    Article  PubMed  CAS  Google Scholar 

  20. Karakas E, Simorowski N, Furukawa H. Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J 2009, 28: 3910–3920.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bennett JA, Dingledine R. Topology profile for a glutamate receptor: three transmembrane domains and a channel-lining reentrant membrane loop. Neuron 1995, 14: 373–384.

    Article  PubMed  CAS  Google Scholar 

  22. Lemke JR, Geider K, Helbig KL, Heyne HO, Schutz H, Hentschel J, et al. Delineating the GRIN1 phenotypic spectrum: A distinct genetic NMDA receptor encephalopathy. Neurology 2016, 86: 2171–2178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ohba C, Shiina M, Tohyama J, Haginoya K, Lerman-Sagie T, Okamoto N, et al. GRIN1 mutations cause encephalopathy with infantile-onset epilepsy, and hyperkinetic and stereotyped movement disorders. Epilepsia 2015, 56: 841–848.

    Article  PubMed  CAS  Google Scholar 

  24. Zehavi Y, Mandel H, Zehavi A, Rashid MA, Straussberg R, Jabur B, et al. de novo GRIN1 mutations: An emerging cause of severe early infantile encephalopathy. Eur J Med Genet 2017, 60: 317–320.

    Article  PubMed  Google Scholar 

  25. Hamdan FF, Gauthier J, Araki Y, Lin DT, Yoshizawa Y, Higashi K, et al. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am J Hum Genet 2011, 88: 306–316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ogden KK, Chen W, Swanger SA, McDaniel MJ, Fan LZ, Hu C, et al. Molecular mechanism of disease-associated mutations in the Pre-M1 helix of NMDA receptors and potential rescue pharmacology. PLoS Genet 2017, 13: e1006536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Epi KC, Epilepsy Phenome/Genome P, Allen AS, Berkovic SF, Cossette P, Delanty N, et al. de novo mutations in epileptic encephalopathies. Nature 2013, 501: 217–221.

    Article  CAS  Google Scholar 

  28. Martin J, Han C, Gordon LA, Terry A, Prabhakar S, She X, et al. The sequence and analysis of duplication-rich human chromosome 16. Nature 2004, 432: 988–994.

    Article  PubMed  CAS  Google Scholar 

  29. Endele S, Rosenberger G, Geider K, Popp B, Tamer C, Stefanova I, et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 2010, 42: 1021–1026.

    Article  PubMed  CAS  Google Scholar 

  30. Lemke JR, Lal D, Reinthaler EM, Steiner I, Nothnagel M, Alber M, et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 2013, 45: 1067–1072.

    Article  PubMed  CAS  Google Scholar 

  31. Reutlinger C, Helbig I, Gawelczyk B, Subero JI, Tonnies H, Muhle H, et al. Deletions in 16p13 including GRIN2A in patients with intellectual disability, various dysmorphic features, and seizure disorders of the rolandic region. Epilepsia 2010, 51: 1870–1873.

    Article  PubMed  CAS  Google Scholar 

  32. Dimassi S, Labalme A, Lesca G, Rudolf G, Bruneau N, Hirsch E,et al. A subset of genomic alterations detected in rolandic epilepsies contains candidate or known epilepsy genes including GRIN2A and PRRT2. Epilepsia 2014, 55: 370–378.

    Article  PubMed  CAS  Google Scholar 

  33. Lesca G, Rudolf G, Bruneau N, Lozovaya N, Labalme A, Boutry-Kryza N, et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet 2013, 45: 1061–1066.

    Article  PubMed  CAS  Google Scholar 

  34. DeVries SP, Patel AD. Two patients with a GRIN2A mutation and childhood-onset epilepsy. Pediatr Neurol 2013, 49: 482–485.

    Article  PubMed  Google Scholar 

  35. Tassano E, Alpigiani MG, Calcagno A, Salvati P, De Miglio L, Fiorio P, et al. Clinical and molecular delineation of a 16p13.2p13.13 microduplication. Eur J Med Genet 2015, 58: 194–198.

    Article  PubMed  CAS  Google Scholar 

  36. von Stulpnagel C, Ensslen M, Moller RS, Pal DK, Masnada S, Veggiotti P, et al. Epilepsy in patients with GRIN2A alterations: Genetics, neurodevelopment, epileptic phenotype and response to anticonvulsive drugs. Eur J Paediatr Neurol 2017, 21: 530–541.

    Article  Google Scholar 

  37. Boutry-Kryza N, Labalme A, Ville D, de Bellescize J, Touraine R, Prieur F, et al. Molecular characterization of a cohort of 73 patients with infantile spasms syndrome. Eur J Med Genet 2015, 58: 51–58.

    Article  PubMed  Google Scholar 

  38. Pierson TM, Yuan H, Marsh ED, Fuentes-Fajardo K, Adams DR, Markello T, et al. GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol 2014, 1: 190–198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Addis L, Virdee JK, Vidler LR, Collier DA, Pal DK, Ursu D. Epilepsy-associated GRIN2A mutations reduce NMDA receptor trafficking and agonist potency–molecular profiling and functional rescue. Sci Rep 2017, 7: 66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lal D, Steinbrucker S, Schubert J, Sander T, Becker F, Weber Y, et al. Investigation of GRIN2A in common epilepsy phenotypes. Epilepsy Res 2015, 115: 95–99.

    Article  PubMed  CAS  Google Scholar 

  41. Sibarov DA, Bruneau N, Antonov SM, Szepetowski P, Burnashev N, Giniatullin R. Functional properties of human NMDA receptors associated with epilepsy-related mutations of GluN2A subunit. Front Cell Neurosci 2017, 11: 155.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Swanger SA, Chen W, Wells G, Burger PB, Tankovic A, Bhattacharya S, et al. Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. Am J Hum Genet 2016, 99: 1261–1280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tarabeux J, Kebir O, Gauthier J, Hamdan FF, Xiong L, Piton A, et al. Rare mutations in N-Methyl-D-Aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl Psychiatry 2011, 1: e55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Singh D, Lau M, Ayers T, Singh Y, Akingbola O, Barbiero L, et al. de novo heterogeneous mutations in SCN2A and GRIN2A genes and seizures with ictal vocalizations. Clin Pediatr (Phila) 2016, 55: 867–870.

    Article  Google Scholar 

  45. Conroy J, McGettigan PA, McCreary D, Shah N, Collins K, Parry-Fielder B, et al. Towards the identification of a genetic basis for Landau-Kleffner syndrome. Epilepsia 2014, 55: 858–865.

    Article  PubMed  CAS  Google Scholar 

  46. Carvill GL, Regan BM, Yendle SC, O’Roak BJ, Lozovaya N, Bruneau N, et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet 2013, 45: 1073–1076.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 2012, 367: 1921–1929.

    Article  PubMed  CAS  Google Scholar 

  48. Marwick KFM, Parker P, Skehel P, Hardingham G, Wyllie DJA. Functional assessment of the NMDA receptor variant GluN2A R586K. Wellcome Open Res 2017, 2: 20.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marwick K, Skehel P, Hardingham G, Wyllie D. Effect of a GRIN2A de novo mutation associated with epilepsy and intellectual disability on NMDA receptor currents and Mg(2+) block in cultured primary cortical neurons. Lancet 2015, 385 Suppl 1: S65.

    Article  PubMed  Google Scholar 

  50. Fainberg N, Harper A, Tchapyjnikov D, Mikati MA. Response to immunotherapy in a patient with Landau-Kleffner syndrome and GRIN2A mutation. Epileptic Disord 2016, 18: 97–100.

    PubMed  Google Scholar 

  51. Gao K, Tankovic A, Zhang Y, Kusumoto H, Zhang J, Chen W, et al. A de novo loss-of-function GRIN2A mutation associated with childhood focal epilepsy and acquired epileptic aphasia. PLoS One 2017, 12: e0170818.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Dyment DA, Tetreault M, Beaulieu CL, Hartley T, Ferreira P, Chardon JW, et al. Whole-exome sequencing broadens the phenotypic spectrum of rare pediatric epilepsy: a retrospective study. Clin Genet 2015, 88: 34–40.

    Article  PubMed  CAS  Google Scholar 

  53. Venkateswaran S, Myers KA, Smith AC, Beaulieu CL, Schwartzentruber JA, Consortium FC, et al. Whole-exome sequencing in an individual with severe global developmental delay and intractable epilepsy identifies a novel, de novo GRIN2A mutation. Epilepsia 2014, 55: e75–79.

  54. Chen W, Tankovic A, Burger PB, Kusumoto H, Traynelis SF, Yuan H. Functional Evaluation of a de novo GRIN2A mutation identified in a patient with profound global developmental delay and refractory epilepsy. Mol Pharmacol 2017, 91: 317–330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Dimassi S, Andrieux J, Labalme A, Lesca G, Cordier MP, Boute O, et al. Interstitial 12p13.1 deletion involving GRIN2B in three patients with intellectual disability. Am J Med Genet A 2013, 161A: 2564–2569.

    PubMed  Google Scholar 

  56. Lemke JR, Hendrickx R, Geider K, Laube B, Schwake M, Harvey RJ, et al. GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy. Ann Neurol 2014, 75: 147–154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 2012, 149: 525–537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Smigiel R, Kostrzewa G, Kosinska J, Pollak A, Stawinski P, Szmida E, et al. Further evidence for GRIN2B mutation as the cause of severe epileptic encephalopathy. Am J Med Genet A 2016, 170: 3265–3270.

    Article  PubMed  CAS  Google Scholar 

  59. Hildebrand MS, Myers CT, Carvill GL, Regan BM, Damiano JA, Mullen SA, et al. A targeted resequencing gene panel for focal epilepsy. Neurology 2016, 86: 1605–1612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Mullier B, Wolff C, Sands ZA, Ghisdal P, Muglia P, Kaminski RM, et al. GRIN2B gain of function mutations are sensitive to radiprodil, a negative allosteric modulator of GluN2B-containing NMDA receptors. Neuropharmacology 2017, 123: 322–331.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang Y, Kong W, Gao Y, Liu X, Gao K, Xie H, et al. Gene mutation analysis in 253 Chinese children with unexplained epilepsy and intellectual/developmental disabilities. PLoS One 2015, 10: e0141782.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zhu X, Petrovski S, Xie P, Ruzzo EK, Lu YF, McSweeney KM, et al. Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios. Genet Med 2015, 17: 774–781.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Li D, Yuan H, Ortiz-Gonzalez XR, Marsh ED, Tian L, McCormick EM, et al. GRIN2D recurrent de novo dominant mutation causes a severe epileptic encephalopathy treatable with NMDA receptor channel blockers. Am J Hum Genet 2016, 99: 802–816.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Myers KA, Scheffer IE. GRIN2A-related speech disorders and epilepsy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mefford HC, et al. (Eds). GeneReviews®[Internet]. Seattle, WA: University of Washington, Seattle; 1993–2017.

  65. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 1994, 368: 144–147.

    Article  PubMed  CAS  Google Scholar 

  66. Zhang XM, Luo JH. GluN2A versus GluN2B: twins, but quite different. Neurosci Bull 2013, 29: 761–772.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hansen KB, Ogden KK, Yuan H, Traynelis SF. Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 2014, 81: 1084–1096.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Wang CC, Held RG, Chang SC, Yang L, Delpire E, Ghosh A, et al. A critical role for GluN2B-containing NMDA receptors in cortical development and function. Neuron 2011, 72: 789–805.

    Article  PubMed  CAS  Google Scholar 

  69. Watanabe M, Inoue Y, Sakimura K, Mishina M. Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 1992, 3: 1138–1140.

    Article  PubMed  CAS  Google Scholar 

  70. Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N. Differential expression of five N-Methyl-D-Aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol 1994, 347: 150–160.

    Article  PubMed  CAS  Google Scholar 

  71. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994, 12: 529–540.

    Article  PubMed  CAS  Google Scholar 

  72. Yuan H, Hansen KB, Zhang J, Pierson TM, Markello TC, Fajardo KV, et al. Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun 2014, 5: 3251.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kinney JW, Davis CN, Tabarean I, Conti B, Bartfai T, Behrens MM. A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. J Neurosci 2006, 26: 1604–1615.

    Article  PubMed  CAS  Google Scholar 

  74. Vicini S, Wang JF, Li JH, Zhu WJ, Wang YH, Luo JH, et al. Functional and pharmacological differences between recombinant N-Methyl-D-Aspartate receptors. J Neurophysiol 1998, 79: 555–566.

    Article  PubMed  CAS  Google Scholar 

  75. Ghasemi M, Schachter SC. The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav 2011, 22: 617–640.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant of the National Basic Research Program of China (2014CB910300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Hong Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, XX., Luo, JH. Mutations of N-Methyl-D-Aspartate Receptor Subunits in Epilepsy. Neurosci. Bull. 34, 549–565 (2018). https://doi.org/10.1007/s12264-017-0191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-017-0191-5

Keywords

Navigation