Skip to main content

Antagonistic Fungi Against Plant Pathogens for Sustainable Agriculture

  • Chapter
  • First Online:
Fungal diversity, ecology and control management

Abstract

The demand for the reduction of chemical pesticides and the adoption of biocompatible products, following the sustainability principles, has changed food production worldwide. Biotic and abiotic stresses cause severe losses in food, fibers, and energy, and it is essential to minimize these losses with sustainable methods. Because of that, microorganisms and biocompatible products have been developed to overcome these challenges without causing adverse environmental impacts. In addition to developing biopesticides, there is a need to integrate these products with other agricultural technologies. Therefore, integrated disease management is fundamental to the path to sustainability. For that to happen, it is necessary to understand the structure and functioning of agricultural ecosystems to carry out adequate integrated management of pests and diseases. In this sense, the understanding of plant–pathogen relationships, the effects of the environment on these relationships, and the impacts of external interventions on the production system need to be understood. This understanding will lead to the rational use of inputs effectively and sustainably. Brazilian agricultural productivity is impacted by soil-borne plant pathogens, whose problems have been increased. The chemical control of these plant pathogens presents numerous problems, and the biological control associated with soil and crop management has been an adequate alternative. In this scenario, the development and use of biopesticides are vital factors for managing soil-borne fungi and nematodes. However, for its best performance, it is vital to consider the pathosystem, the biological target to be reached, the efficacy of the antagonist agents, compatibility in the integrated pest management; all these topics will be covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu ABL, Agnes DC, Costa MA et al (2017) Controle químico e biológico de Pratylenchus brachyurus na cultura da soja. In: 34o Congresso Brasileiro de Nematologia. CBN0084. http://nematologia.com.br/index.php?page=anais. Accessed 15 Apr 2020

  • Agrofit (2021) Sistema de Agrotóxicos Fitossanitários. www.agrofit.agricultura.gov.br. Accessed 11 May 2021

  • Ahman J, Johanson T, Olsson M et al (2002) Improving the pathogenicity of a nematode trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 689:3408–3415

    Article  CAS  Google Scholar 

  • Ahrén D, Tunlid A (2003) Evolution of parasitism in nematode-trapping fungi. J Nematol 35:194–197

    PubMed  PubMed Central  Google Scholar 

  • Al-Hazmi AS, Ibrahim AAM, Abdul-Raziq AT (1993) Evaluation of a nematode- encapsulating fungi complex for control of Meloidogyne javanica on potato. Pak J Nematol 11:139–149

    Google Scholar 

  • AQ10WG Biofungicide (2020). https://www.dejex.co.uk/PDFs/Dejex%20Supplies%20-%20AQ10%20fact%20sheet.pdf. Accessed 10 Dec 2020

  • Baker KF (1987) Evolving concepts of biological control of plant pathogens. Annu Rev Phytopathol 25(1):67–85. https://doi.org/10.1146/annurev.py.25.090187.000435

    Article  Google Scholar 

  • Baker KF, Snyder WC (eds) (1965) Ecology of soil-borne plant pathogens: prelude to biological control. University of California Press, p 569

    Google Scholar 

  • Bale J, van Lenteren JC, Bigler F (2008) Biological control and sustainable food production. Philos Trans Roy Soc Ser B 363(1492):761–776. https://doi.org/10.1098/rstb.2007.2182

    Article  CAS  Google Scholar 

  • Barelli L, Waller AS, Behie SW, Bidochka MJ (2020) Plant microbiome analysis after Metarhizium amendment reveals increases in abundance of plant growth-promoting organisms and maintenance of disease-suppressive soil. PLoS One 15(4):e0231150. https://doi.org/10.1371/journal.pone.0231150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baron NC, De Souza A, Rigobelo EC (2020) Purpureocillium lilacinum and Metarhizium marquandii as plant growth-promoting fungi. Peer J 27(8):e9005. https://doi.org/10.7717/peerj.9005

    Article  CAS  Google Scholar 

  • Barreto RW (2009) Controle biológico de plantas daninhas com fitopatógenos. In: Bettiol W, Morandi MAB (eds) Biocontrole de doenças de plantas: uso e perspectivas. Embrapa Meio Ambiente, Jaguariúna, pp 101–128

    Google Scholar 

  • Bettiol W (1991) Controle biológico de doenças de plantas. Embrapa-CNPDA, Jaguaríuna, p 388

    Google Scholar 

  • Bettiol W (1996) Biological control of plant pathogens in Brazil: application and current research. World J Microbiol Biotechnol 12:505–510

    Article  CAS  PubMed  Google Scholar 

  • Bettiol W, Ghini R (2003) Proteção de plantas em sistemas agrícolas alternativos. In: Campanhola C, Bettiol W (eds) Métodos alternativos de controle fitossanitário. Embrapa Meio Ambiente, Jaguariúna, pp 79–95

    Google Scholar 

  • Bettiol W, Morandi MAB (2009) Controle biológico de doenças de plantas no Brasil. In: Bettiol W, Morandi MAB (eds) Biocontrole de doenças de plantas: uso e perspectivas. Embrapa Meio Ambiente, Jaguariúna, pp 7–14

    Google Scholar 

  • Bettiol W, Morandi MAB, Pinto ZV et al (2012) Produtos comerciais à base de agentes de biocontrole de doenças de plantas. Embrapa Meio Ambiente, Jaguariúna, p 148

    Google Scholar 

  • Bettiol W, Rivera MC, Mondino P et al (2014a) Control biológico de enfermedades de plantas en América Latina y el Caribe. Universidade de la República, Montevideo, p 404

    Google Scholar 

  • Bettiol W, Maffia LA, Castro MLMP (2014b) Control biológico de enfermedades de plantas en Brasil. In: Bettiol W, River MC, Mondino P, Montealegre JR, Colmenárez YC (eds) Control biológico de enfermedades de plantas en América Latina y el Caribe. Universidad de la Republica, Montevidéu, Faculdad de Agronomia, pp 91–137

    Google Scholar 

  • Bettiol W, Pinto ZV, Silva JC (2019a) Uso atual e perspectivas do Trichoderma no Brasil. In: Meyer MC, Mazaro SM, Silva JC (eds) Trichoderma uso na agricultura. Embrapa, Brasília, pp 21–43

    Google Scholar 

  • Bettiol W, Pinto ZV, Silva JC et al (2019b) Produtos comerciais à base de Trichoderma. In: Meyer MC, Mazaro SM, Silva JC (eds) Trichoderma uso na agricultura. Embrapa, Brasília, pp 45–179

    Google Scholar 

  • Bettiol W, Medeiros FHV, Barros J, Mendes R (2021) Advances in screening approaches for the development of microbial bioprotectants for the control of plant diseases. In: Köhl J, Ravensberg W (eds) Microbial bioprotectants for plant disease management. Burleigh Dodds, Cambridge. https://doi.org/10.19103/AS.2021.0093.02

    Chapter  Google Scholar 

  • Bhat MS, Mahmood I (2000) Role of Glomus mosseae and Paecilomyces lilacinus in the management of root knot nematode on tomato. Arch Phytopathol Plant Protect 33:131–140

    Article  Google Scholar 

  • BioActPrime (n.d.). https://www.cropscience.bayer.es/Productos/Biologicos/BioactPrime. Accessed 19 May 2021

  • Bio-Cure Coimbatore: T. Stanes & Company (2019). http://www.tstanes.com/products-bio-cure-f.html. Accessed 3 Feb 2019

  • Bueno VHP, Parra JRP, Bettiol W et al (2020) Biological control in Brazil. In: van Lenteren JC, Bueno VHP, Luna MG, Colmenarez YC (eds) Biological control in Latin America and the Caribbean: its rich history and bright future. CABI, pp 1–20. https://doi.org/10.1079/9781789242430.0000

    Chapter  Google Scholar 

  • Cabanillas E, Barker KR, Daykin ME (1988) Histology of the interactions of Paecilomyces lilacinus with Meloidogyne incognita on tomato. J Nematol 20:362–365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cadioli MC, Santiago DC, Hoshino AT et al (2007) In vitro mycelial growth and parasitism of Paecilomyces lilacinum on Meloidogyne paranaensis eggs at different temperatures. Ciênc Agrotecnol 31:305–311

    Article  Google Scholar 

  • Campanhola C, Bettiol W (2003) Panorama sobre o uso de agrotóxicos no Brasil. In: Campanhola C, Bettiol W (eds) Métodos alternativos de controle fitossanitário. Embrapa Meio Ambiente, Jaguariúna, pp 13–51

    Google Scholar 

  • Cayrol JC, Frankowski JP (1979) Une méthode de lutte biologique contre les nématodes à galles des racines appartenant au genre Meloidogyne. Rev Hortic 193:15–23

    Google Scholar 

  • Cayrol JC, Frankowski JP, Laniece A et al (1978) Contre les nématodes en champignonniére. Mise au point d’une méthode de lutte biologique a l’aide d’un hyphomycete prédateur: Arthrobotrys robustus souche antipolis (Royal 300). Rev Hortic 184:23–30

    Google Scholar 

  • Chanu LB, Mohlial N, Shad MM (2015) Evaluation of the efficiency of some antagonistic Trichoderma spp. in the management of plant parasitic nematodes. In: Shah MM (ed) Microbiology in agriculture and human health. Rijeka, IntechOpen, pp 1–30

    Google Scholar 

  • Chaparro AP, Carvajal LH, Orduz S (2011) Fungicide tolerance of Trichoderma asperelloides and T. harzianum strains. Agric Sci 2:301–307

    CAS  Google Scholar 

  • Cock MJW, Van Lenteren JC, Brodeur J et al (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control. BioControl 55:199–218

    Article  Google Scholar 

  • Cook RJ (1985) Biological control of the pathogens: theory to application. Phytopathology 75:25–29

    Article  Google Scholar 

  • Cook RJ (2005) Kenneth Frank Baker —pioneer leader in plant pathology. Annu Rev Phytopathol 43:25–38

    Article  CAS  PubMed  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, St. Paul, p 539

    Google Scholar 

  • Coppola M, Cascone P, Di Lelio I et al (2019) Trichoderma atroviride P1 colonization of tomato plants enhances both direct and indirect defense barriers against insects. Front Physiol 10:813. https://doi.org/10.3389/fphys.2019.00813

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa JCB, Bezerra JL, Santos Filho LPS et al (2009) Controle biológico da vassoura-de-bruxa do cacaueiro na Bahia, Brasil. In: Bettiol W, Morandi MAB (eds) Biocontrole de doenças de plantas: uso e perspectivas. Embrapa, Jaguariúna, pp 245–266

    Google Scholar 

  • Dalacosta NL, Furlan SH, Mazaro SM (2019) Compatibilidade de produtos à base de Trichoderma com fungicidas utilizados no tratamento de sementes. In: Meyer MC, Mazaro SM, Silva JC (eds) Trichoderma uso na agricultura. Embrapa, Brasília, pp 323–338

    Google Scholar 

  • Dallemole-Giaretta R (2008) Isolamento, identificação e avaliação de Pochonia chlamydosporia no controle de Meloidogyne javanica e na promoção de crescimento de tomateiro. Universidade Federal de Viçosa, Viçosa, p 83

    Google Scholar 

  • Dallemole-Giaretta R, Freitas LG, Lopes EA et al (2012) Screening of Pochonia chlamydosporia Brazilian isolates as biocontrol agents of Meloidogyne javanica. Crop Protect 42:102–107

    Article  Google Scholar 

  • Dallemole-Giaretta R, Freitas LG, Lopes EA et al (2015) Pochonia chlamydosporia promotes the growth of tomato and lettuce plants. Acta Sci Agron 37:417–423

    Article  Google Scholar 

  • Degenkolb T, Vilcinskas A (2016) Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Appl Microbiol Biotechnol 100:3799–3812

    Article  CAS  PubMed  Google Scholar 

  • Dias-Arieira CR, Araujo FG, Kaneko L et al (2018) Biological control of Pratylenchus brachyurus in soya bean crops. J Phytopathol 2018:1–7

    Google Scholar 

  • Dong LQ, Yang JK, Zhang KQ (2007) Cloning and phylogenetic analysis of the chitinase gene from the facultative pathogen Paecilomyces lilacinus. J Appl Microbiol 103:2476–2488

    Article  CAS  PubMed  Google Scholar 

  • Droby S, Wisniewski M, Macarisin D et al (2009) Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol 52(2):137–145

    Article  Google Scholar 

  • Droby S, Wisniewski M, Teixidó N et al (2016) The science, development, and commercialization of postharvest biocontrol products. Postharvest Biol Technol 122:22–29

    Article  Google Scholar 

  • Dutta P, Kaushik H, Bhawmick P et al (2015) Metarhizium anisopliae as endophyte has the ability of plant growth enhancement. Int J Curr Res 7:14300–14304

    Google Scholar 

  • Ecohope: agricultural chemicals. Tokyo: Kumiai (2019). https://www.kumiai-chem.co.jp/english/products/index.html. Accessed 16 Feb 2019

  • Elad Y (1996) Bacterial and fungal cell-wall hydrolytic enzymes in relation to biological control of rhizoctonia solani. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Kluwer Academic Press, Dordrecht, pp 455–462. https://doi.org/10.1007/978-94-017-2901-7

    Chapter  Google Scholar 

  • Elena GJ, Beatriz PJ, Alejandro P, Lecuona Roberto E (2011) Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Adv Biol Res 5:22–27

    Google Scholar 

  • EPA (2002). https://www3.epa.gov/pesticides/chem_search/ppls/069697-00003-20020920pdf; https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-119196_1-Sep-02.pdf. Accessed 20 May 2021.

  • Escudero N, Lopez-Llorca LV (2012) Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis 57:33–42

    Article  Google Scholar 

  • Eskes AB, Mendes MDL, Robbs CF (1991) Laboratory and field studies on parasitism of Hemileia vastatrix with Lecanicillium lecanii and V. leptobactrum. Café Cacao Thé 35:275–282

    Google Scholar 

  • Faria MR, Costa LSAS, Chiaramonte JB et al (2020) The rhizosphere microbiome: functions, dynamics, and role in plant protection. Trop Plant Pathol 46:13–25

    Article  Google Scholar 

  • Ferraz S, Freitas LG, Lopes EA et al (2010) Manejo sustentável de fitonematoides. Viçosa, Editora UFV, p 304

    Google Scholar 

  • Fukunaga K (1965) Fungicide development for blast control. In: The Rice blast disease. The International Rice Research Institute, John Hopkins, Baltimore, pp 409–414

    Google Scholar 

  • Ghahremani Z, Escudero N, Saus E et al (2019) Pochonia chlamydosporia induces plant-dependent systemic resistance to Meloidogyne incognita. Front Plant Sci 10:945. https://doi.org/10.3389/fpls.2019.00945

    Article  PubMed  PubMed Central  Google Scholar 

  • Gortari MC, Hours RA (2008) Fungal chitinases and their biological role in the antagonism onto nematode eggs. A review. Mycol Prog 7:221–238

    Article  Google Scholar 

  • Gouveia AS, Monteiro TSA, Valadares SV et al (2019) Understanding how Pochonia chlamydosporia increases phosphorus availability. Geomicrobiol J 36:747–751

    Article  CAS  Google Scholar 

  • Grondona I, Rodríguez A, Gómez MI et al (2004) TUSAL®, a commercial biocontrol formulation based on Trichoderma. IOBC/WPRS Bull 27(8):285–288

    Google Scholar 

  • Harman GE, Taylor AG, Stasz TE (1989) Combining effective strains of Trichoderma harzianum and solid matrix priming to provide improved biological seed treatment systems. Plant Dis 72:631–637

    Article  Google Scholar 

  • Harman GE, Howell CR, Viteberbo A et al (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hermosa MR, Grondona I, Díaz-Mínguez JM et al (2001) Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological control agent against soilborne fungal plant pathogens. Curr Genet 38:343–350

    Article  CAS  PubMed  Google Scholar 

  • Huang XW, Zhao NH, Zhang KQ (2004) Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Res Microbiol 115:811–816

    Article  CAS  Google Scholar 

  • Instituto Colombiano Agropecuario (2018) Productos registrados bioinsumos: diciembre 30 de 2018. https://www.ica.gov.co/getdoc/2ad9e987-8f69-4358-b8a9-e6ee6dcc8132/productos-bioinsumos-mayo-13-de-2008.aspx. Accessed 1 Mar 2019

  • Jaffee BA, Zehr EI (1985) Parasitic and saprophytic abilities of the nematode-attacking fungus Hirsutella rhossiliensis. J Nematol 17:341–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang JA, Choi YH, Shin TS et al (2016) Biological control of Meloidogyne incognita by Aspergillus niger F22 producing oxalic acid. Plos One 11:e0156230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jatala P (1996) Biological control of plant-parasitic nematodes. Annu Rev Phytopathol 24:453–489

    Article  Google Scholar 

  • Junqueira NTV, Gasparatto L (1991) Controle biológico de fungos estromáticos causadores de doenças de foliares em seringueira. In: Bettiol W (ed) Controle biológico de doenças de plantas. Embrapa/CNPDA, Jaguariúna, pp 307–331

    Google Scholar 

  • Junqueira NTV, Gasparatto L, Lima MIPM et al (1989) Potential do fungo Hansfordia pulvinata no controle biológico do mal das folhas da seringueira. Fitopatol Bras 14:158

    Google Scholar 

  • Jyoti S, Singh DP (2016) Fungi as biocontrol agents in sustainable agriculture. Microbes Environ Manage 8:172–194

    Google Scholar 

  • Kath J, Dias-Arieira CR, Ferreira JCA et al (2017) Control of Pratylenchus brachyurus in soybean with Trichoderma spp. J Phytopathol 165:1–9

    Article  CAS  Google Scholar 

  • Kerry BR, Jaffee BA (1997) Fungi as biological control agents for plant parasitic nemato- des. In: Wicklow DT, Söderström B (eds) The mycota IV. Springer-Verlag, Berlin, pp 203–218

    Google Scholar 

  • Khambay BPS, Bourne JM, Cameron S et al (2000) Communication to the editor a nematicidal metabolite from Verticillium chlamydosporium. Pest Manag Sci 56:1098–1099

    Article  CAS  Google Scholar 

  • Khan MO, Shahzad S (2007) Screening of Trichoderma species for tolerance to fungicides. Pak J Bot 39:945–951

    Google Scholar 

  • Khan A, Williams KL, Nevalainen HKM (2006) Infection of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum. BioControl 51:659–678

    Article  Google Scholar 

  • Khan AL, Hamayun M, Kang SM et al (2012a) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AL, Hamayun M, Khan SA et al (2012b) Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World J Microbiol Bio-technol 28:1483–1494. https://doi.org/10.1007/s11274-011-0950-9

    Article  CAS  Google Scholar 

  • Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012c) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: An example of Paecilomyces formosus LHL10. BMC Microbiol 12:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TY, Jang JY, Jeon SJ, Lee HW, Bae CH, Yeo JH et al (2016) Nematicidal activity of kojic acid produced by Aspergillus oryzae against Meloidogyne incognita. J Microbiol Biotechnol 26:1383–1391

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Nakahara S, Fujioka S (1996) Aspyrone, a nematicidal compound isolated from the fungus, Aspergillus melleus. Biosci Biotechnol Biochem 60:1375–1376

    Article  CAS  Google Scholar 

  • Konstantinidou-Doltsinis S, Markellou E, Kasselaki AM et al (2007) Control of powdery mildew of grape in Greece using Sporodex® L and Milsana®. J Plant Dis Prot 114:256–262

    Article  Google Scholar 

  • Lacatena F, Marra R, Mazzei P et al (2019) Chlamyphilone, a novel Pochonia chlamydosporia metabolite with insecticidal activity. Molecules 24:1–11

    Article  CAS  Google Scholar 

  • Larriba E, Jaime MDLA, Carbonell-Caballero J et al (2014) Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genet Biol 65:69–80

    Article  CAS  PubMed  Google Scholar 

  • van Lenteren JC, Bolckmans K, Köhl J et al (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63:39–59. https://doi.org/10.1007/s10526-017-9801-4

    Article  Google Scholar 

  • van Lenteren JC, Bueno VHP, Luna MG et al (2020) Biological control in Latin America and the Caribbean: information sources, organizations, types and approaches in biological control. In: van Lenteren JC, Bueno VHP, Luna MG, Colmenarez YC (eds) Biological control in Latin America and the Caribbean: its rich history and bright future. CAB, pp 1–20

    Google Scholar 

  • Li GH, Zhang KQ (2014) Nematode-toxic fungi and their nematicidal metabolites. In: Zhang KQ, Hyde KD (eds) Nematode-trapping fungi. Springer, Dordrecht, pp 313–375

    Chapter  Google Scholar 

  • Li G, Zhang K, Xu J et al (2007) Nematicidal substances from fungi. Recent Pat Biotechnol 1:212–233

    Article  CAS  PubMed  Google Scholar 

  • Li XQ, Xu K, Liu XM et al (2020) A systematic review on secondary metabolites of Paecilomyces species: chemical diversity and biological activity. Planta Med 86:805–821

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Xiang M, Che Y (2009) The living strategy of nematophagous fungi. Mycoscience 50:20–25

    Article  Google Scholar 

  • Liu SF, Wang GJ, Nong XQ et al (2017) Entomopathogen Metarhizium anisopliae promotes the early development of peanut root. Plant Prot Sci 53:101–107

    Article  CAS  Google Scholar 

  • Lopez-Llorca V, Olivares-Bernabeu C, Salinas J et al (2002) Pre-penetration events in fungal parasitism of nematode eggs. Mycol Res 106:499–506

    Article  CAS  Google Scholar 

  • Manzanilla-López RH, Esteves I, Finetti-Sialer MM et al (2013) Pochonia chlamydosporia: advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. J Nematol 45:1–7

    PubMed  PubMed Central  Google Scholar 

  • Markets and Markets (2020) Biopesticides market by type (bioinsecticides, biofungicides, bionematicides, and bioherbicides), source (microbials, biochemicals, and beneficial insects), mode of application, formulation, crop application, and region—global forecast to 2025. https://www.marketsandmarkets.com/Market-Reports/biopesticides-267.html?gclid=CjwKCAiA17P9BRB2EiwAMvwNyN1J3lIIag6ewvyHPSndQLQhV5r5rkpbhZIGCAR6Ju61h366uRJ0EhoCov0QAvD_BwE. Accessed 12 Nov 2020

  • Mauchline TH, Kerry BR, Hirsch PR (2004) The biocontrol fungus Pochonia chlamydosporia shows nematode host preference at the intraspecific level. Mycol Res 108:161–169

    Article  PubMed  Google Scholar 

  • Medeiros HA, Resende RS, Ferreira FC et al (2015) Induction of resistance in tomato against Meloidogyne javanica by Pochonia chlamydosporia. Nematoda 2015:e10015

    Google Scholar 

  • Medeiros HA, Araujo Filho JV, Freitas LG et al (2017) Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Sci Rep 7:e40216

    Article  CAS  Google Scholar 

  • Medeiros FHV, Guimarães RA, Silva JPC et al (2019) Trichoderma: interações e estratégias. In: Meyer MC, Mazaro SM, Silva JC (eds) Trichoderma uso na agricultura. Embrapa, Brasília, pp 219–234

    Google Scholar 

  • Meyer SLF, Huettel RN, Liu XZ et al (2004) Activity of fungal culture filtrates against soybean cyst nematode and root-knot nematode egg hatch and juvenile motility. Nematology 6:23–32

    Article  Google Scholar 

  • Meyer MC, Campos HD, Godoy CV, Utiamada CM (eds) (2016) Ensaios cooperativos de controle biológico de mofo-branco na cultura da soja - safras 2012 a 2015, vol 368. Embrapa Soja, Documentos, Londrina, p 46

    Google Scholar 

  • Meyer MC, Campos HD, Godoy CV et al (2019) Mofo-branco em soja - ensaios cooperativos. In: Meyer MC, Mazaro SM, Silva JC (eds) Trichoderma uso na agricultura. Embrapa, Brasília, pp 417–432

    Google Scholar 

  • Monfort E, Lopez-Lorca LV, Jansson HB et al (2005) Colonization of seminal roots of wheat and barley by egg- parasitic nematophogous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root-rot. Soil Biol Biochem 37:1229–1235

    Article  CAS  Google Scholar 

  • Monte E, Bettiol W, Hermosa R (2019) Trichoderma e seus mecanismos de ação para o controle de doenças de plantas. In: Meyer MC, Mazaro SM, Silva JC (eds) Trichoderma uso na agricultura. Embrapa, Brasília, pp 181–199

    Google Scholar 

  • Monteiro TS, Valadares SV, Mello INK et al (2018) Nematophagus fungi incresing phosphorus uptake and promoting plant growth. Biol Control 123:71–75

    Article  CAS  Google Scholar 

  • Monteiro TS, Gouveia AS, Balbino HM et al (2020) Duddingtonia. In: Amaresan N, Kumar MS, Annapurna K, Kumar K, Sankaranarayanan A (eds) Beneficial microbes in agro-ecology. Academic Press, New York, pp 683–694

    Chapter  Google Scholar 

  • Moosavi MR, Zare R (2020) Fungi as biological control agents of plant-parasitic nematodes. In: Mérillon JM, Ramawat KG (eds) Plant defence: biological control, Progress in biological control, vol 12. Springer, Dordrecht, p 67

    Google Scholar 

  • Moral J, Garcia-Lopez MT, Camiletti BX et al (2020) Present status and perspective on the future use of aflatoxin biocontrol products. Agronomy 10:491

    Article  CAS  Google Scholar 

  • Moreno-Gavíra A, Huertas V, Dianez F et al (2020) Paecilomyces and its importance in the biological control of agricultural pests and diseases. Plan Theory 9:1746

    Google Scholar 

  • Mukherjee PK, Haware MP, Raghu K (1997) Induction and evaluation of benomyl-tolerant mutants of Trichoderma viride for biological control of Botrytis grey mould of chickpea. Indian Phytopathol 50:485–489

    Google Scholar 

  • Mutawila C, Halleen F, Mostert L (2015) Development of benzimidazole resistant Trichoderma strains for the integration of chemical and biocontrol methods of grapevine pruning wound protection. BioControl 60:387–399

    Article  CAS  Google Scholar 

  • Nakahara S, Kusano M, Fujioka S et al (2004) Penipratynolene, a novel nematicide from Penicillium bilaiae Chalabuda. Biosci Biotechnol Biochem 68:257–259

    Article  CAS  PubMed  Google Scholar 

  • Nordbring-Hertz B (2004) Morphogenesis in the nematode trapping fungus Arthrobotrys oligospora—an extensive plasticity of infection structures. Mycologist 18:125–133

    Article  Google Scholar 

  • Obregón M (2012) Application of Trichoderma asperellum in the control of pineapple caused by Fusarium oxysporum in the field in Costa Rica. In: 12th international Trichoderma and Gliocladium workshop. Abstract. New Zealand, pp 65

    Google Scholar 

  • Obregón-Gómez M (2010) Trichoderma a beneficial microorganism used in integrated production systems of Costa Rica. Book of Abstracts: Trichoderma: molecular mechanisms and application of biocontrol in agriculture. Haifa, pp 54

    Google Scholar 

  • Ons L, Bylemans D, Thevissen K et al (2020) Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorgisms 8:1930. https://doi.org/10.3390/microorganisms8121930

    Article  CAS  Google Scholar 

  • Ou SH (1965) Rice diseases. Commonwealth Mycological Institute, London, p 380

    Google Scholar 

  • Ownley BH, Griffin MR, Klingeman WE et al (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invert Pathol 98:267–270

    Article  CAS  Google Scholar 

  • Ownley BH, Gwinn KD, Veja FE (2010) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl 55:113–128

    Article  Google Scholar 

  • Patents (1996) WO/1996/021358—fungus isolate, preparation for combatting plant-pathogenic fungi. Process for producing it and its use. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO1996021358. Accessed 10 Dec 2020

  • Pimentel D, Acquay H, Biltonen M et al (1992) Environmental and economic costs of pesticide use. Bioscience 42(10):750–760. https://doi.org/10.2307/1311994

    Article  Google Scholar 

  • Pimentel D, McLaughlin L, Zepp A et al (1993) Environmental and economic impacts of reducing U.S. In: Agricultural pesticide use the pesticide question. Springer US, pp 223–278. https://doi.org/10.1007/978-0-585-36973-0_10

  • Polyversum (2021). https://biopreparaty.eu/polyversum. Accessed 19 May 2021

  • Raad M, Glare TR, Brochero HL et al (2019) Transcriptional reprogramming of Arabidopsis thaliana defence pathways by the entomopathogen Beauveria bassiana correlates with resistance against a fungal pathogen but not against insects. Front Microbiol 10:615. https://doi.org/10.3389/fmicb.2019.00615

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravindran K, Chitra S, Wilson A et al (2014) Evaluation of antifungal activity of Metarhizium anisopliae against plant phytopathogenic fungi. In: Krarwar RN, Upadhyay RS, Dubey NK, Raghuwasnshi R (eds) Microbial diversity and biotechnology in food security. Springer, Madurai, pp 251–255

    Google Scholar 

  • Rodríguez-Gonzáles A, Carro-Huerga G, Mayo-Prieto S et al (2018) Investigations of Trichoderma spp. and Beauveria bassiana as biological control agent for Xylotrechus arvicola, a major insect pest in Spanish vineyards. J Econ Entomol 111:2585–2591. https://doi.org/10.1093/jee/toy256

    Article  CAS  Google Scholar 

  • Rotstop (2021). https://www.lallemandplantcare.com/en/suisse/products/product-details/rotstop/?type=plant-protection. Accessed 19 May 2021

  • Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE et al (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26

    Article  CAS  Google Scholar 

  • Santiago DC, Homechin M, Silva JFV et al (2006) Seleção de isolados de Paecilomyces lilacinus (Thom) Samson para controle de Meloidogyne paranaensis em tomateiro. Ciênc Rural 36:1055–1064

    Article  Google Scholar 

  • Sarven MS, Hao Q, Deng J et al (2020) Biological control of tomato grey mould caused by Botrytis cinerea with entomopathogenic fungus Metarhizium anisopliae. Pathogens 9:213

    Article  CAS  PubMed Central  Google Scholar 

  • Sasan RK, Bidochka MJ (2012) The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am J Bot 99:101–107. https://doi.org/10.3732/ajb.1100136

    Article  PubMed  Google Scholar 

  • Sasan RK, Bidochka MJ (2013) Antagonism of the endophytic insect pathogenic fungus Metarhizium robertsii against the bean plant pathogen Fusarium solani f. sp. phaseoli. Can J Plant Pathol 35:288–293. https://doi.org/10.1080/07060661.2013.823114

    Article  CAS  Google Scholar 

  • Sharma A, Sharma S, Dalela M (2014) Nematicidal activity of Paecilomyces lilacinus 6029 cultured on Karanja cake medium. Microb Pathog 75:16–20

    Article  PubMed  Google Scholar 

  • Silva MAF, Moura KE, Salomão D et al (2018) Compatibility of Trichoderma isolates with pesticides used in lettuce crop. Summa Phytopathol 44:137–142

    Article  Google Scholar 

  • Soares P, Campanhola C, Bettiol W et al (2003) Proposta para o programa nacional de racionalização do uso de agrotóxicos. In: Campanhola C, Bettiol W (eds) Métodos alternativos de controle fitossanitário. Embrapa Meio Ambiente, Jaguariúna, pp 53–77

    Google Scholar 

  • Soilgard. Microbial Fungicide. Guilfor Road: Certis USA (2019) Disponível em: http://certisusa.com/pest_management_pro-ducts/biofungicides/soilgard_12g_microbial_fungicide.htm. Accessed 5 Mar 2019

  • Stefanova M (2007) Introducción y eficacia técnica del biocontrol de fitopatógenos con Trichoderma spp. en Cuba. Fitosanidad 11(3):75–79

    Google Scholar 

  • Stefanova M, Villegas MED, Campos JM (2014) Control biológico de enfermedades de plantas en Cuba. In: Bettiol W, Rivera MC, Mondino P et al (eds) Control biológico de enfermedades de plantas en América Latina y el Caribe. Unviersidad de la Republica, Montevideo, pp 201–218

    Google Scholar 

  • Stirling GR (1991) Biological control of plant parasitic nematodes. CAB International, Wallingford, p 282

    Google Scholar 

  • Stirling M, Stirling G (1997) Disease management: biological Control. In: Brown J, Ogle H (eds) Plant pathogens and plant diseases, pp 427–439

    Google Scholar 

  • Sudo S (1989) Biocontrole de Catacauma torrendiella e Coccostroma palmicola, agentes causadores da lixa-preta do coqueiro. In: Anais, 3. Reunião Brasileira sobre controle biológico de doenças de plantas. USP/EMBRAPA, Piracicaba, pp 57–59

    Google Scholar 

  • Szabó M, Csepregi K, Gálber M et al (2012) Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol Control 63:121–128

    Article  Google Scholar 

  • Tenet, Bio-Fungicide Granule. Lincoln: Agrimm (2013) http://agrimm.co.nz/wp/wp-content/uploads/Tenet-Label.pdf. Accessed 14 Feb 2019

    Google Scholar 

  • Thambugala KM, Daranagama DA, Phillips AJL et al (2020) Fungi vs. fungi in biocontrol: an overview of fungal antagonists applied against fungal plant pathogens. Front Cell Infect Microbiol 10:604923. https://doi.org/10.3389/fcimb.2020.604923

  • Tomilova OG, Shaldyaeva EM, Kryukova NA et al (2020) Entomopathogenic fungi decrease Rhizoctonia disease in potato in field conditions. Peer J 8:e9895. https://doi.org/10.7717/peerj.9895

    Article  PubMed  PubMed Central  Google Scholar 

  • Trichoplus. Durban: BASF South Africa (2018) https://www.agro.basf.co.za/af/Produkte/Overview/TrichoPlus%-C2%AE.html. África do Sul. Accessed 15 Dec 2018

    Google Scholar 

  • Tronsmo A (1991) Biological and integrated controls of Botrytis cinerea on apple with Trichoderma harzianum. Biol Control 1:59–62

    Article  Google Scholar 

  • Trutmann P, Keang PJ, Merriman PR (1980) Reduction of sclerotial inoculum of Sclerotinia sclerotiorum with Coniothyrium minitans. Soil Biol Biochem 12:461–465

    Article  Google Scholar 

  • Ulzurrun GVD, Hsueh UP (2018) Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin. Appl Microbiol Biotechnol 102:3939–3949

    Article  CAS  Google Scholar 

  • Umezawa H, Okami Y, Suhara Y et al (1965) A new antibiotic, kasugamici. J Antibiot 18:101–103

    CAS  Google Scholar 

  • Utkhede RS, Rahe JE (1980) Biological control of onion white rot. Soil Biol Biochem 12:101–104

    Article  Google Scholar 

  • Utkhede RS, Rahe JE (1983) Interactions of antagonist and pathogen in biological control os onion white rot. Phytopathology 73:890–893

    Article  Google Scholar 

  • Valdebenito-Sanhueza RM (1991) Possibilidades do controle biológico de Phytophthora em macieira. In: Bettiol W (ed) Controle biológico de doenças de plantas. Embrapa CNPDA, Jaguariúna, pp 303–305

    Google Scholar 

  • Van Den Boogert PHJF (1996) Mycoparasitism and biocontrol. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds), Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease, pp 485–493. https://doi.org/10.1007/978-94-017-2901-7

  • Vectorite (2020). https://www.vectoritebvt.com/wp-content/uploads/2020/08/BVT-Vectorite-with-CR-7-Technical-Data-Sheet-for-Berries-20200826-General-Contact.pdf. Accessed 16 Dec 2020

  • Vladimirovna TT (2016) Strains of nematophage fungus Arthrobotrys oligospora infecting eggs and larvae of cyst-forming golden nematode Globodera rostochiensis in cysts. Abstract of Invention, Russian Federation. https://patentimages.storage.googleapis.com/2d/9e/64/bd74e21b3e221b/RU2634390C1.pdf

  • Wachira P, Mibey R, Okoth S et al (2009) Diversity of nematode destroying fungi in Taita Taveta, Kenya. Fungal Ecol 2:60–65

    Article  Google Scholar 

  • Wang YL, Li LF, Li DX et al (2015) Yellow pigment Aurovertins mediate interactions between the pathogenic fungus Pochonia chlamydosporia and its nematode host. J Agric Food Chem 63:6577–6587

    Article  CAS  PubMed  Google Scholar 

  • Weeks ENI, Machtinger ET, Leemon D et al (2018) Biological control of livestock pests: entomopathogens. In: Garros C, Bouyer J, Takken W, Smallegange RC (eds) Pests and vector-borne diseases in the livestock industry. Wageningen Academic Publishers, Wageningen, pp 337–387. https://doi.org/10.3920/978-90-8686-863-6_12

    Chapter  Google Scholar 

  • Woo SL, Ruocco M, Vinale F et al (2014) Trichoderma-based products and their widespread. Open Mycol J 8(1):71–126

    Article  Google Scholar 

  • Yang J, Zhao X, Liang L et al (2011) Overexpression of a cuticle-degrading protease Ver112 increases the nematicidal activity of Paecilomyces lilacinus. Appl Microbiol Biotechnol 89:1895–1903

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Abdelnabby H, Xiao Y (2015) The role of a phospholipase (PLD) in virulence of Purpureocillium lilacinum (Paecilomyces lilacinum). Microb Pathog 85:11–20

    Article  CAS  PubMed  Google Scholar 

  • Yildirim E., Özdemir IO, Türkkan M et al (2020) Determination of effects of some fungicides used in hazelnut growing areas against Trichoderma species. Mediterranean Agr Sci 33:335–340. 10.29136/mediterranean.714929

    Google Scholar 

  • Zareen A, Siddiqui IA, Aleem F et al (2001) Observation on the nematicidal effect of Fusarium solani on the root-knot nematode, Meloidogyne javanica. J Plant Pathol 83:207–214

    Google Scholar 

  • Zhang S, Gan Y, Xu B et al (2014) The parasitic and lethal effects of Trichoderma longibrachiatum against Heterodera avenae. Biol Control 72:1–8

    Article  Google Scholar 

  • Zhang S, Gan Y, Xu B (2015) Biocontrol potential of a native species of Trichoderma longibrachiatum against Meloidogyne incognita. Appl Soil Ecol 94:21–29

    Article  Google Scholar 

  • Zhang S, Gan Y, Ji W et al (2017) Mechanisms and characterization of Trichoderma longibrachiatum T6 in suppressing nematodes (Heterodera avenae) in wheat. Front Plant Sci 8:1491. https://doi.org/10.3389/fpls.2017.01491

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Fu B, Lin Q et al (2020a) Colonization of Beauveria bassiana 08F04 in root-zone soil and its biocontrol of cereal cyst nematode (Heterodera filipjevi). PLoS One 15(5):e0232770. https://doi.org/10.1371/journal.pone.0232770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li S, Li H et al (2020b) Fungi-nematode interactions: diversity, ecology, and biocontrol prospects in agriculture. J Fungi 6:206

    Article  Google Scholar 

Download references

Acknowledgments

Wagner Bettiol (CNPq 307855/2019-8) and Claudia R. Dias-Arieira (CNPq 303269/2020-0) acknowledge Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq for the productivity fellowship CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Miguel Mazaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazaro, S.M., Meyer, M.C., Dias-Arieira, C.R., dos Reis, E.F., Bettiol, W. (2022). Antagonistic Fungi Against Plant Pathogens for Sustainable Agriculture. In: Rajpal, V.R., Singh, I., Navi, S.S. (eds) Fungal diversity, ecology and control management. Fungal Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8877-5_29

Download citation

Publish with us

Policies and ethics