Skip to main content

Designing, Synthesis, and Applications of Covalent Organic Frameworks (COFs) for Diverse Organic Reactions

  • Chapter
  • First Online:
Metal-Organic Frameworks (MOFs) as Catalysts

Abstract

Covalent Organic Frameworks (COFs), a new emerging class of crystalline porous materials fabricated by connecting the organic building blocks with strong covalent bonds to form extended structures. COFs are amongst the few synthetic superstructures which have a highly crystalline nature thus leading to ordered and well-arranged pores which are easy to characterize through common analytical techniques like Brunauer–Emmett–Teller (BET) and Powder X-Ray Diffraction (PXRD). COFs have emerged as an important and fascinating research topic in the last one and a half decades owing to their lower density, large surface area, versatile and robust nature due to strong and intact covalent linking, and easy-to-tune pore size. Thus, crystalline porous structures, with long-range orderliness and larger surface area, have made these functional-tailored materials attractive to the present researchers for the development of promising catalytic materials. COFs can act as nanoreactors which reduce the activation energies of the reactants by bringing them closer and providing the proper environment to react. Being light and insoluble in many solvents, they form an ideal contestant for heterogeneous catalysis. COFs are an excellent host to the metal NPs with minimum aggregation for effective cooperative catalytic activity. In the present chapter the basic concepts used in designing, the recent advancements in the field of synthesis, and the properties shown by these structures are discussed in detail. Furthermore, the applications of these highly porous catalysts in diverse organic transformations are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BDBA:

1,4-Benzenediboronic acid

BET:

Brunauer–Emmett–Teller isotherm

CFSE:

Crystal-field stabilization energy

COF:

Covalent Organic Framework

Co-TAPP:

Cobalt(II) 5,10,15,20-tetrakis(ρ-tetraphenyl amino) porphyrin

CTF:

Covalent Triazine Framework

DETH:

2,5-Diethoxy-terephthalohydrazide

DHTA:

2, 5-Dihydroxyl- terephthalaldehyde

DMTA:

2,5-Dimethoxyterephthalaldehyde

DPBIB:

(S)-4- 7-diphenyl-2-(pyrrolidin-2-yl)-1H-benzo[d]imidazole

HHTP:

Hexahydroxytriphenylene

MOF:

Metal Organic Framework

MW:

Microwave

NMO:

4-Methylmorpholine-N-oxide

NP:

Nano particles

OER:

Oxygen Evolution Reaction

ORR:

Oxygen Reduction Reaction

Pa:

p-phenylenediamine

PDA:

Palladium diacetate

PI:

Polyimide

PNP:

p-nitrophenol

POP:

Porous Organic Polymer

PSM:

Post-synthetic Modification

PXRD:

Powder X-Ray Diffraction

S-OMC:

Sulfur doped organic mesoporous carbon

TA:

Terephthalaldehyde

TAA:

1,3,5,7-Tetraaminoadamantane

TAM:

Tetrakis-(4-aminobenzyl)methane

TAPB:

1,3,5-Tri(4-aminophenyl)benzene

TAPT:

1, 3, 5- Tris-(4-aminophenyl)triazine

TBA:

Triboronic acid

TBPS:

Tetra(4-dihydroxyborylphenyl)silane

TEMPO:

2,2,6,6-Tetramethylpiperidinyloxy

TFB:

1,3,5-Triformylbenzene

TFPB:

1,3,5-Tris(4-formylphenyl)benzene

TFPT:

1,3,5-Tris-(4-formyl-phenyl)triazine

TPA:

1,3,5-Triformylphloroglucinol

References

  1. Alahakoon SB, Thompson CM, Nguyen AX et al (2016) An azine-linked hexaphenylbenzene based covalent organic framework. Chem Commun 52:2843–2845. https://doi.org/10.1039/c5cc10408d

    Article  CAS  Google Scholar 

  2. Baldwin LA, Crowe JW, Pyles DA, McGrier PL (2016) Metalation of a mesoporous three-dimensional covalent organic framework. J Am Chem Soc 138:15134–15137. https://doi.org/10.1021/jacs.6b10316

    Article  CAS  PubMed  Google Scholar 

  3. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059. https://doi.org/10.1002/adma.200904093

    Article  CAS  PubMed  Google Scholar 

  4. Bhadra M, Kandambeth S, Sahoo MK et al (2019) Triazine functionalized porous covalent organic framework for photo-organocatalytic E- Z isomerization of olefins. J Am Chem Soc 141:6152–6156. https://doi.org/10.1021/jacs.9b01891

    Article  CAS  PubMed  Google Scholar 

  5. Bhadra M, Sasmal HS, Basu A et al (2017) Predesigned metal-anchored building block for in situ generation of Pd nanoparticles in porous covalent organic framework: application in heterogeneous tandem catalysis. ACS Appl Mater Interfaces 9:13785–13792. https://doi.org/10.1021/acsami.7b02355

    Article  CAS  PubMed  Google Scholar 

  6. Biswal BP, Chandra S, Kandambeth S et al (2013) Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J Am Chem Soc 135:5328–5331. https://doi.org/10.1021/ja4017842

    Article  CAS  PubMed  Google Scholar 

  7. Bottecchia C, Noël T (2019) Photocatalytic modification of amino acids, peptides, and proteins. Chem A Eur J 25:26. https://doi.org/10.1002/chem.201803074

  8. Bunck DN, Dichtel WR (2013) Postsynthetic functionalization of 3D covalent organic frameworks. Chem Commun 49:2457–2459. https://doi.org/10.1039/c3cc40358k

    Article  CAS  Google Scholar 

  9. Burns DA, Benavidez A, Buckner JL, Thoi VS (2021) Maleimide-functionalized metal-organic framework for polysulfide tethering in lithium-sulfur batteries. Mater Adv 2:2966–2970. https://doi.org/10.1039/d1ma00084e

    Article  CAS  Google Scholar 

  10. Campbell NL, Clowes R, Ritchie LK, Cooper AI (2019) Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem Mater 21:204–206. https://doi.org/10.1021/cm802981m

    Article  CAS  Google Scholar 

  11. Chandra S, Kandambeth S, Biswal BP et al (2013) Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J Am Chem Soc 135:17853–17861. https://doi.org/10.1021/ja408121p

    Article  CAS  PubMed  Google Scholar 

  12. Chen L, Wu Q, Gao J et al (2019) Applications of covalent organic frameworks in analytical chemistry. TrAC Trends Anal Chem 113:182–193. https://doi.org/10.1016/j.trac.2019.01.016

    Article  CAS  Google Scholar 

  13. Chen X, Geng K, Liu R et al (2020) Covalent organic frameworks: chemical approaches to designer structures and built-in functions. Angew Chem Int Ed 59:5050–5091. https://doi.org/10.1002/anie.201904291

  14. Cheng HY, Wang T (2021) Covalent organic frameworks in catalytic organic synthesis. Adv Synth Catal 363:144–193. https://doi.org/10.1002/adsc.202001086

    Article  CAS  Google Scholar 

  15. Cooper AI (2013) Covalent organic frameworks. CrystEngComm 15:1483–1483. https://doi.org/10.1039/c2ce90122f

    Article  CAS  Google Scholar 

  16. Côté AP, Benin AI, Ockwig NW et al (2005) Chemistry: porous, crystalline, covalent organic frameworks. Science 310:1166–1170. https://doi.org/10.1126/science.1120411

  17. Crick F, Watson J (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738. https://doi.org/10.1038/171737a0

    Article  PubMed  Google Scholar 

  18. Dai X, Xu X, Li X (2013) Applications of visible light photoredox catalysis in organic synthesis. Chin J Org Chem 33:2031–2045. https://doi.org/10.6023/cjoc201304026

    Article  CAS  Google Scholar 

  19. Dalapati S, Jin S, Gao J et al (2013) An azine-linked covalent organic framework. J Am Chem Soc 135:17310–17313. https://doi.org/10.1021/ja4103293

    Article  CAS  PubMed  Google Scholar 

  20. Dienstmaier JF, Gigler AM, Goetz AG et al (2011) Synthesis of well-Oodered COF monolayers: surface growth of nanocrystalline precursors versus direct on-surface polycondensation. ACS Nano 5:9737–9745. http://https://doi.org/10.1021/nn2032616

  21. Diercks C, Kalmutzki M, Yaghi O (2017) Covalent organic frameworks—organic chemistry beyond the molecule. Molecules 22:1575. https://doi.org/10.3390/molecules22091575

    Article  CAS  PubMed Central  Google Scholar 

  22. Diercks CS, Lin S, Kornienko N et al (2018) Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J Am Chem Soc 140:1116–1122. https://doi.org/10.1021/jacs.7b11940

    Article  CAS  PubMed  Google Scholar 

  23. Diercks CS, Yaghi OM (2017) The atom, the molecule, and the covalent organic framework. Science 355:6328. https://doi.org/10.1126/science.aal1585

    Article  CAS  Google Scholar 

  24. Ding SY, Gao J, Wang Q et al (2011) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J Am Chem Soc 133:19816–19822. https://doi.org/10.1021/ja206846p

    Article  CAS  PubMed  Google Scholar 

  25. Dong J, Han X, Liu Y et al (2020) Metal-covalent organic frameworks (MCOFs): a bridge between metal-organic frameworks and covalent organic frameworks. Angew Chem 132:13826–13837. https://doi.org/10.1002/ange.202004796

    Article  Google Scholar 

  26. Dou Z, Xu L, Zhi Y et al (2016) Metalloporphyrin-based hypercrosslinked polymers catalyze hetero-diels–alder reactions of unactivated aldehydes with simple dienes: a fascinating strategy for the construction of heterogeneous catalysts. Chem Eur J 22:9919–9922. https://doi.org/10.1002/chem.201601151

    Article  CAS  PubMed  Google Scholar 

  27. Du Y, Mao K, Kamakoti P et al (2012) Experimental and computational studies of pyridine-assisted post-synthesis modified air stable covalent-organic frameworks. Chem Commun 48:4606–4608. https://doi.org/10.1039/c2cc30781b

    Article  CAS  Google Scholar 

  28. Du Y, Yang H, Whiteley JM et al (2015) Ionic covalent organic frameworks with spiroborate linkage. Angew Chem Int Ed 55:1737–1741. https://doi.org/10.1002/anie.201509014

    Article  CAS  Google Scholar 

  29. El-Kaderi HM, Hunt JR, Mendoza-Cortés JL et al (2007) Designed synthesis of 3D covalent organic frameworks. Science 316:268–272. https://doi.org/10.1126/science.1139915

    Article  CAS  PubMed  Google Scholar 

  30. Fang Q, Gu S, Zheng J et al (2014) 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew Chem 126:2922–2926. https://doi.org/10.1002/ange.201310500

    Article  Google Scholar 

  31. Fang Q, Gu S, Zheng J et al (2020) Chemistry of covalent organic frameworks. J Mater Chem A 48:3053–3063. https://doi.org/10.1021/acs.accounts.5b00369

    Article  CAS  Google Scholar 

  32. Fang Q, Zhuang Z, Gu S et al (2014) Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat Commun 5:1–8. https://doi.org/10.1038/ncomms5503

    Article  CAS  Google Scholar 

  33. Feng X, Chen L, Honsho Y et al (2012) An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor-acceptor ordering. Adv Mater 24:3026–3031. https://doi.org/10.1002/adma.201201185

    Article  CAS  PubMed  Google Scholar 

  34. Freund R, Canossa S, Cohen SM et al (2021) 25 Years of reticular chemistry. Angew Chem Int Ed. https://doi.org/10.1002/anie.202101644

    Article  Google Scholar 

  35. Fu Y, Zhu X, Huang L et al (2018) Azine-based covalent organic frameworks as metal-free visible light photocatalysts for CO2 reduction with H2O. Appl Catal B 239:46–51. https://doi.org/10.1016/j.apcatb.2018.08.004

    Article  CAS  Google Scholar 

  36. Fukui T, Kawai S, Fujinuma S et al (2017) Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nat Chem 9:493–499. https://doi.org/10.1038/nchem.2684

    Article  CAS  PubMed  Google Scholar 

  37. Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131:4570–4571. https://doi.org/10.1021/ja9015765

    Article  CAS  PubMed  Google Scholar 

  38. Gardel ML (2013) Synthetic polymers with biological rigidity hidden is more. Nature 493(7434):618–619. https://doi.org/10.1038/nature11855

    Article  CAS  PubMed  Google Scholar 

  39. Geng K, He T, Liu R et al (2020) Covalent organic frameworks: design, synthesis, and functions. Chem Rev 120:8814–8933. https://doi.org/10.1021/acs.chemrev.9b00550

    Article  CAS  PubMed  Google Scholar 

  40. Gonçalves RSB, Deoliveira ABV, Sindra HC et al (2016) Heterogeneous catalysis by covalent organic frameworks (COF): Pd(OAc)2@COF-300 in cross-coupling reactions. ChemCatChem 8:743–750. https://doi.org/10.1002/cctc.201500926

    Article  CAS  Google Scholar 

  41. Guo J, Xu Y, Jin S et al (2013) Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat Commun 4:2736. https://doi.org/10.1038/ncomms3736

    Article  CAS  PubMed  Google Scholar 

  42. Han Y, Zhang M, Zhang YQ, Zhang ZH (2018) Copper immobilized at a covalent organic framework: an efficient and recyclable heterogeneous catalyst for the Chan-Lam coupling reaction of aryl boronic acids and amines. Green Chem 20:4891–4900. https://doi.org/10.1039/c8gc02611d

    Article  CAS  Google Scholar 

  43. Hinman JJ, Suslick KS (2017) Nanostructured materials synthesis using ultrasound. Top Curr Chem 375:12. https://doi.org/10.1007/s41061-016-0100-9

    Article  CAS  Google Scholar 

  44. Hoffmann R (1993) How should chemists think? Sci Am 268:66−73

    Google Scholar 

  45. Huang N, Chen X, Krishna R, Jiang D (2015) Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angew Chem 127:3029–3033. https://doi.org/10.1002/ange.201411262

  46. Huang N, Krishna R, Jiang D (2015) Tailor-made pore surface engineering in covalent organic frameworks: systematic functionalization for performance screening. J Am Chem Soc 137:7079–7082. https://doi.org/10.1021/jacs.5b04300

    Article  CAS  PubMed  Google Scholar 

  47. Huang N, Wang P, Jiang D (2016) Covalent organic frameworks: a materials platform for structural and functional designs. Nat Rev Mater 1:16068. https://doi.org/10.1038/natrevmats.2016.68

    Article  CAS  Google Scholar 

  48. Huggins ML (1954) The structure of collagen. J Am Chem Soc 76:4045–4046. https://doi.org/10.1021/ja01644a065

    Article  CAS  Google Scholar 

  49. Hughes BK, Braunecker WA, Bobela DC et al (2016) Covalently bound nitroxyl radicals in an organic framework. J Phys Chem Lett 7:3660–3665. https://doi.org/10.1021/acs.jpclett.6b01711

    Article  CAS  PubMed  Google Scholar 

  50. Hunt JR, Doonan CJ, LeVangie JD et al (2008) Reticular synthesis of covalent organic borosilicate frameworks. J Am Chem Soc 130:11872–11873. https://doi.org/10.1021/ja805064f

    Article  CAS  PubMed  Google Scholar 

  51. Jackson KT, Reich TE, El-Kaderi HM (2012) Targeted synthesis of a porous borazine-linked covalent organic framework. Chem Commun 48:8823–8825. https://doi.org/10.1039/c2cc33583b

    Article  CAS  Google Scholar 

  52. Jiang D, Science M, Science N et al (2020) Donglin Jiang answers questions about 15 years of research on covalent organic frameworks. Nat Commun 11:10–11. https://doi.org/10.1038/s41467-020-19302-x

    Article  CAS  Google Scholar 

  53. Kalidindi SB, Yusenko K, Fischer RA (2011) Metallocenes@COF-102: organometallic host-guest chemistry of porous crystalline organic frameworks. Chem Commun 47:8506–8508. https://doi.org/10.1039/c1cc11450f

    Article  CAS  Google Scholar 

  54. Kandambeth S, Dey K, Banerjee R (2019) Covalent organic frameworks: chemistry beyond the structure. J Am Chem Soc 141:1807–1822. https://doi.org/10.1021/jacs.8b10334

    Article  CAS  PubMed  Google Scholar 

  55. Kandambeth S, Mallick A, Lukose B et al (2012) Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc 134:19524–19527. https://doi.org/10.1021/ja308278w

    Article  CAS  PubMed  Google Scholar 

  56. Karak S, Kandambeth S, Biswal BP et al (2017) Constructing ultraporous covalent organic frameworks in seconds via an organic terracotta process. J Am Chem Soc 139:1856–1862. https://doi.org/10.1021/jacs.6b08815

    Article  CAS  PubMed  Google Scholar 

  57. Khayum MA, Kandambeth S, Mitra S et al (2016) Chemically delaminated free-standing ultrathin covalent organic nanosheets. Angew Chem 128:15833–15837. https://doi.org/10.1002/ange.201607812

    Article  Google Scholar 

  58. Kim S, Choi HC (2019) Light-promoted synthesis of highly-conjugated crystalline covalent organic framework. Commun Chem 2:60. https://doi.org/10.1038/s42004-019-0162-z

    Article  Google Scholar 

  59. Kim S, Park C, Lee M, et al (2017) Rapid photochemical synthesis of sea-urchin-shaped hierarchical porous COF-5 and its lithography-free patterned growth. Adv Funct Mater 27. https://doi.org/10.1002/adfm.201700925

  60. Kouwer PHJ, Koepf M, le Sage VAA et al (2013) Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 493:651–655. https://doi.org/10.1038/nature11839

    Article  CAS  PubMed  Google Scholar 

  61. Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 47:3450–3453. https://doi.org/10.1002/anie.200705710

    Article  CAS  Google Scholar 

  62. Leng W, Peng Y, Zhang J et al (2016) Sophisticated design of covalent organic frameworks with controllable bimetallic docking for a cascade reaction. Chem Eur J 22:9087–9091. https://doi.org/10.1002/chem.201601334

    Article  CAS  PubMed  Google Scholar 

  63. Leonardi M, Villacampa M, Menéndez JC (2018) Multicomponent mechanochemical synthesis. Chem Sci 9:2042–2064. https://doi.org/10.1039/C7SC05370C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38:762–785. https://doi.org/10.1021/ja02261a002

    Article  CAS  Google Scholar 

  65. Li Z, Feng X, Zou Y et al (2014) A 2D azine-linked covalent organic framework for gas storage applications. Chem Commun 50:13825–13828. https://doi.org/10.1039/c4cc05665e

    Article  CAS  Google Scholar 

  66. Li Z, Han S, Li C et al (2020) Screening metal-free photocatalysts from isomorphic covalent organic frameworks for the C-3 functionalization of indoles. J Mater Chem A 8:8706–8715. https://doi.org/10.1039/d0ta02164d

    Article  CAS  Google Scholar 

  67. Li W, Wu X, Li S et al (2018) Magnetic porous Fe3O4/carbon octahedra derived from iron-based metal-organic framework as heterogeneous Fenton-like catalyst. Appl Surf Sci 436:252–262. https://doi.org/10.1016/J.APSUSC.2017.11.151

    Article  CAS  Google Scholar 

  68. Li X, Yang C, Sun B et al (2020) Expeditious synthesis of covalent organic frameworks: a review. J Mater Chem A 8:16045–16060. https://doi.org/10.1039/d0ta05894g

    Article  CAS  Google Scholar 

  69. Li G, Ye J, Fang Q, Liu F (2019) Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (II). Chem Eng J 370:822–830. https://doi.org/10.1016/j.cej.2019.03.260

    Article  CAS  Google Scholar 

  70. Lin CY, Zhang L, Zhao Z, Xia Z (2017) Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production. Adv Mater 29:1606635. https://doi.org/10.1002/adma.201606635

    Article  CAS  Google Scholar 

  71. Liu L, Meng WK, Li L et al (2019) Facile room-temperature synthesis of a spherical mesoporous covalent organic framework for ultrasensitive solid-phase microextraction of phenols prior to gas chromatography-tandem mass spectrometry. Chem Eng J 369:920–927. https://doi.org/10.1016/j.cej.2019.03.148

    Article  CAS  Google Scholar 

  72. Liu J, Wang N, Ma L (2020) Recent advances in covalent organic frameworks for catalysis. Chem Asian J 15:338–351. https://doi.org/10.1002/asia.201901527

    Article  CAS  PubMed  Google Scholar 

  73. Liu S, Lai C, Li B, et al (2020) Role of radical and non-radical pathway in activating persulfate for degradation of p-nitrophenol by sulfur-doped ordered mesoporous carbon. Chem Eng J 384:123304. https://doi.org/10.1016/j.cej.2019.123304

  74. Lohse MS, Bein T (2018) Covalent organic frameworks: structures, synthesis, and applications. Adv Func Mater 28:1705553. https://doi.org/10.1002/adfm.201705553

    Article  CAS  Google Scholar 

  75. Lohse MS, Stassin T, Naudin G et al (2016) Sequential pore wall modification in a covalent organic framework for application in lactic acid adsorption. Chem Mater 28:626–631. https://doi.org/10.1021/acs.chemmater.5b04388

    Article  CAS  Google Scholar 

  76. Lopez-Magano A, Jiménez-Almarza A, Aleman J, Mas-Ballesté R (2020) Metal–organic frameworks (MOFS) and covalent organic frameworks (COFS) applied to photocatalytic organic transformations. Catalysts 10:720. https://doi.org/10.1021/acs.chemmater.5b04388

    Article  CAS  Google Scholar 

  77. Lu S, Hu Y, Wan S, McCaffrey R, Jin Y, Gu H, Zhang W (2017) Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications. J Am Chem Soc 139(47):17082–17088. https://doi.org/10.1021/jacs.7b07918

  78. Lv H, Zhao X, Niu H et al (2019) Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. J Hazard Mater 369:494–502. https://doi.org/10.1016/j.jhazmat.2019.02.046

    Article  CAS  PubMed  Google Scholar 

  79. Lyle SJ, Waller PJ, Yaghi OM (2019) Covalent organic frameworks: organic chemistry extended into two and three dimensions. Trends Chem 1:172–184. https://doi.org/10.1016/j.trechm.2019.03.001

    Article  CAS  Google Scholar 

  80. Lyu H, Diercks CS, Zhu C, Yaghi OM (2019) Porous crystalline olefin-linked covalent organic frameworks. J Am Chem Soc 141:6848–6852. https://doi.org/10.1021/jacs.9b02848

    Article  CAS  PubMed  Google Scholar 

  81. Ma HC, Kan JL, Chen GJ et al (2017) Pd NPs-loaded homochiral covalent organic framework for heterogeneous asymmetric catalysis. Chem Mater 29:6518–6524. https://doi.org/10.1021/acs.chemmater.7b02131

    Article  CAS  Google Scholar 

  82. Ma T, Kapustin EA, Yin SX et al (2018) Single-crystal x-ray diffraction structures of covalent organic frameworks. Science 361:48–52. https://doi.org/10.1126/science.aat7679

    Article  CAS  PubMed  Google Scholar 

  83. Ma YX, Li ZJ, Wei L et al (2017) A dynamic three-dimensional covalent organic framework. J Am Chem Soc 139:4995–4998. https://doi.org/10.1021/jacs.7b01097

    Article  CAS  PubMed  Google Scholar 

  84. Ma DL, Qian C, Qi QY et al (2021) Effects of connecting sequences of building blocks on reticular synthesis of covalent organic frameworks. Nano Res 14:381–386. https://doi.org/10.1007/s12274-020-2723-y

    Article  Google Scholar 

  85. Ma L, Wang X, Deng D et al (2015) Five porous zinc(II) coordination polymers functionalized with amide groups: cooperative and size-selective catalysis. J Mater Chem A 3:20210–20217. https://doi.org/10.1039/c5ta06248a

    Article  CAS  Google Scholar 

  86. Ma W, Yu P, Ohsaka T, Mao L (2015) An efficient electrocatalyst for oxygen reduction reaction derived from a co-porphyrin-based covalent organic framework. Electrochem Commun 52:53–57. https://doi.org/10.1016/j.elecom.2015.01.021

    Article  CAS  Google Scholar 

  87. Medina DD, Sick T, Bein T (2017) Photoactive and conducting covalent organic frameworks. Adv Energy Mater 7:1700387. https://doi.org/10.1002/aenm.201700387

    Article  CAS  Google Scholar 

  88. Mu M, Wang Y, Qin Y et al (2017) Two-dimensional imine-linked covalent organic frameworks as a platform for selective oxidation of olefins. ACS Appl Mater Interfaces 9:22856–22863. https://doi.org/10.1021/acsami.7b05870

    Article  CAS  PubMed  Google Scholar 

  89. Nagai A, Chen X, Feng X et al (2013) A squaraine-linked mesoporous covalent organic framework. Angew Chem Int Ed 52:3858–3862. https://doi.org/10.1002/anie.201300256

    Article  CAS  Google Scholar 

  90. Nagai A, Guo Z, Feng X et al (2011) Pore surface engineering in covalent organic frameworks. Nat Commun 2:1–8. https://doi.org/10.1038/ncomms1542

    Article  CAS  Google Scholar 

  91. Nandi S, Singh SK, Mullangi D et al (2016) Low band gap benzimidazole COF supported Ni3N as highly active OER catalyst. Adv Energy Mater 6:1601189. https://doi.org/10.1002/aenm.201601189

    Article  CAS  Google Scholar 

  92. Narayanam JMR, Stephenson CRJ (2011) Visible light photoredox catalysis: applications in organic synthesis. Chem Soc Rev 40:102–113. https://doi.org/10.1039/b913880n

    Article  CAS  PubMed  Google Scholar 

  93. Pachfule P, Acharjya A, Roeser J et al (2019) Donor-acceptor covalent organic frameworks for visible light induced free radical polymerization. Chem Sci 10:8316–8322. https://doi.org/10.1039/c9sc02601k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pachfule P, Kandambeth S, Díaz Díaz D, Banerjee R (2014) Highly stable covalent organic framework-Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chem Commun 50:3169–3172. https://doi.org/10.1039/c3cc49176e

    Article  CAS  Google Scholar 

  95. Philp D, Fraser Stoddart J (1996) Self-assembly in natural and unnatural systems. Angew Chem (Int Ed Engl) 35:1154–1196. https://doi.org/10.1002/anie.199611541

    Article  Google Scholar 

  96. Preet K, Gupta G, Kotal M et al (2019) Mechanochemical synthesis of a new triptycene-based imine-linked covalent organic polymer for degradation of organic dye. Cryst Growth Des 19:2525–2530. https://doi.org/10.1021/acs.cgd.9b00166

    Article  CAS  Google Scholar 

  97. Pyles DA, Crowe JW, Baldwin LA, McGrier PL (2016) Synthesis of benzobisoxazole-linked two-dimensional covalent organic frameworks and their carbon dioxide capture properties. ACS Macro Lett 5:1055–1058. https://doi.org/10.1021/acsmacrolett.6b00486

    Article  CAS  Google Scholar 

  98. Rao MR, Fang Y, de Feyter S, Perepichka DF (2017) Conjugated covalent organic frameworks via michael addition-elimination. J Am Chem Soc 139:2421–2427. https://doi.org/10.1021/jacs.6b12005

    Article  CAS  PubMed  Google Scholar 

  99. Ren S, Bojdys MJ, Dawson R et al (2012) Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv Mater 24:2357–2361. https://doi.org/10.1002/adma.201200751

    Article  CAS  PubMed  Google Scholar 

  100. Ritchie LK, Trewin A, Reguera-galan A et al (2010) microporous and mesoporous materials synthesis of COF-5 using microwave irradiation and conventional solvothermal routes. Microporous Mesoporous Mater 132:132–136. https://doi.org/10.1016/j.micromeso.2010.02.010

    Article  CAS  Google Scholar 

  101. Rogge SMJ, Bavykina A, Hajek J et al (2017) Metal-organic and covalent organic frameworks as single-site catalysts. Chem Soc Rev 46:3134–3184. https://doi.org/10.1039/c7cs00033b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ross GJ, Watts JF, Hill MP, Morrissey P (2000) Surface modification of poly(vinylidene fluoride) by alkaline treatment: 1. The degradation mechanism. Polymer 41:1685–1696. https://doi.org/10.1016/S0032-3861(99)00343-2

    Article  CAS  Google Scholar 

  103. Ross GJ, Watts JF, Hill MP, Morrissey P (2001) Surface modification of poly(vinylidene fluoride) by alkaline treatment Part 2. Process modification by the use of phase transfer catalysts. Polymer 42:403–413. https://doi.org/10.1016/S0032-3861(00)00328-1

    Article  CAS  Google Scholar 

  104. Segura JL, Mancheño MJ, Zamora F (2016) Covalent organic frameworks based on Schiff-base chemistry: Synthesis, properties and potential applications. Chem Soc Rev 45:5635–5671. https://doi.org/10.1039/C5CS00878F

    Article  CAS  PubMed  Google Scholar 

  105. Segura JL, Royuela S, Mar Ramos M (2019) Post-synthetic modification of covalent organic frameworks. Chem Soc Rev 48:3903–3945. https://doi.org/10.1039/c8cs00978c

    Article  CAS  PubMed  Google Scholar 

  106. Seo W, White DL, Star A (2017) Fabrication of holey graphene: catalytic oxidation by metalloporphyrin-based covalent organic framework immobilized on highly ordered pyrolytic graphite. Chem Eur J 23:5652–5657. https://doi.org/10.1002/chem.201605488

    Article  CAS  PubMed  Google Scholar 

  107. Sharma RK, Yadav P, Yadav M et al (2020) Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater Horiz 7:411–454. https://doi.org/10.1039/c9mh00856j

    Article  CAS  Google Scholar 

  108. Shunmughanathan M, Puthiaraj P, Pitchumani K (2015) Melamine-based microporous network polymer supported palladium nanoparticles: a stable and efficient catalyst for the Sonogashira coupling reaction in water. ChemCatChem 7:666–673. https://doi.org/10.1002/cctc.201402844

    Article  CAS  Google Scholar 

  109. Stegbauer L, Schwinghammer K, Lotsch B, v. (2014) A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem Sci 5:2789–2793. https://doi.org/10.1039/c4sc00016a

    Article  CAS  Google Scholar 

  110. Stegbauer L, Zech S, Savasci G et al (2018) Tailor-made photoconductive pyrene-based covalent organic frameworks for visible-light driven hydrogen generation. Adv Energy Mater 8:1703278. https://doi.org/10.1002/aenm.201703278

    Article  CAS  Google Scholar 

  111. Stoddart JF (2009) Thither supramolecular chemistry? Nat Chem 1:14–15. https://doi.org/10.1038/nchem.142

    Article  CAS  PubMed  Google Scholar 

  112. Sun Q, Aguila B, Perman J et al (2017) postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J Am Chem Soc 139:2786–2793. https://doi.org/10.1021/jacs.6b12885

    Article  CAS  PubMed  Google Scholar 

  113. Szczesniak B, Borysiuk S, Choma J, Jaroniec M (2020) Mechanochemical synthesis of highly porous materials. Mater Horiz 7:1457–1473. https://doi.org/10.1039/D0MH00081G

    Article  CAS  Google Scholar 

  114. Tilford RW, Gemmil RW et al (2006) Facile synthesis of a highly crystalline, covalently linked porous boronate network. Chem Mater 18:5296–5301. https://doi.org/10.1021/cm061177g

    Article  CAS  Google Scholar 

  115. Uribe-Romo FJ, Hunt JR, Furukawa H et al (2009) A crystalline imine-linked 3-D porous covalent organic framework. J Am Chem Soc 131:4570–4571. https://doi.org/10.1021/ja8096256

    Article  CAS  PubMed  Google Scholar 

  116. Uribe-Romo FJ, Doonan CJ, Furukawa H, et al (2011) Crystalline covalent organic frameworks with hydrazone linkages. J Am Chem Soc 133:11478–611481. https://doi.org/10.1021/ja204728y

  117. Vardhan H, Hou L, Yee E et al (2019) Vanadium docked covalent-organic frameworks: an effective heterogeneous catalyst for modified Mannich-type reaction. ACS Sustainable Chemistry and Engineering 7:4878–4888. https://doi.org/10.1021/acssuschemeng.8b05373

    Article  CAS  Google Scholar 

  118. Wang X, Ma R, Hao L et al (2018) Mechanochemical synthesis of covalent organic framework for the efficient extraction of benzoylurea insecticides. J Chromatogr A 1551:1–9. https://doi.org/10.1016/j.chroma.2018.03.053

    Article  CAS  PubMed  Google Scholar 

  119. Wang H, Zeng Z, Xu P et al (2019) Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem Soc Rev 48:488–516. https://doi.org/10.1039/c8cs00376a

    Article  CAS  PubMed  Google Scholar 

  120. Wei H, Chai S, Hu N et al (2015) The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem Commun 51:12178–12181. https://doi.org/10.1039/c5cc04680g

    Article  CAS  Google Scholar 

  121. Wei PF, Qi MZ, Wang ZP et al (2018) Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J Am Chem Soc 140:4623–4631. https://doi.org/10.1021/jacs.8b00571

    Article  CAS  PubMed  Google Scholar 

  122. Xiong C, Ning H, Jia G et al (2014) Towards covalent organic frameworks with predesignable and aligned open docking sites. Chem Commun 50:6161–6163. https://doi.org/10.1039/c4cc01825g

    Article  CAS  Google Scholar 

  123. Xu H, Chen X, Gao J et al (2014) Catalytic covalent organic frameworks via pore surface engineering. Chem Commun 50:1292–1294. https://doi.org/10.1039/c3cc48813f

    Article  CAS  Google Scholar 

  124. Xu H, Gao J, Jiang D (2015) Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat Chem 7:905–912. https://doi.org/10.1038/nchem.2352

    Article  CAS  PubMed  Google Scholar 

  125. Xue R, Gou H, Zheng Y et al (2020) A new squaraine-linked triazinyl-based covalent organic frameworks: preparation, characterization and application for sensitive and selective determination of Fe3+ cations. ChemistrySelect 5:10632–10636. https://doi.org/10.1002/slct.202002232

    Article  CAS  Google Scholar 

  126. Yaghi OM (2019) Reticular chemistry in all dimensions. ACS Cent Sci 5:1295–1300. https://doi.org/10.1021/acscentsci.9b00750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yaghi OM, O’Keeffe M, Ockwig NW et al (2003) Reticular synthesis and the design of new materials. Nature 423:705–714. https://doi.org/10.1038/nature01650

    Article  CAS  PubMed  Google Scholar 

  128. Yu W, Gu S, Fu Y et al (2018) Carbazole-decorated covalent triazine frameworks: novel nonmetal catalysts for carbon dioxide fixation and oxygen reduction reaction. J Catal 362:1–9. https://doi.org/10.1016/j.jcat.2018.03.021

    Article  CAS  Google Scholar 

  129. Yusran Y, Fang Q, Valtchev V (2020) Electroactive covalent organic frameworks: design, synthesis, and applications. Adv Mater 32:2002038. https://doi.org/10.1002/adma.202002038

    Article  CAS  Google Scholar 

  130. Yusran Y, Li H, Guan X et al (2020) Covalent organic frameworks for catalysis. EnergyChem 2. https://doi.org/10.1016/j.enchem.2020.100035

  131. Zhang P, Dai S (2017) Mechanochemical synthesis of porous organic materials. Journal of Materials Chemistry A 5:16118–16127. https://doi.org/10.1039/C7TA04829G

    Article  CAS  Google Scholar 

  132. Zhang W, Jiang P, Wang Y et al (2015) Bottom-up approach to engineer two covalent porphyrinic frameworks as effective catalysts for selective oxidation. Catal Sci Technol 5:101–104. https://doi.org/10.1039/c4cy00969j

    Article  CAS  Google Scholar 

  133. Zhang FM, Sheng JL, di Yang Z et al (2018) Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew Chem Int Ed 57:12106–12110. https://doi.org/10.1002/anie.201806862

    Article  CAS  Google Scholar 

  134. Zhang M, Zhang M, Zhang M et al (2020) electron beam irradiation as a general approach for the rapid synthesis of covalent organic frameworks under ambient conditions. J Am Chem Soc 142:9169–9174. https://doi.org/10.1021/jacs.0c03941

    Article  CAS  PubMed  Google Scholar 

  135. Zhang M, Lu M, Lang ZL, et al (2020a) Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis. Angew Chemie Int Ed 59:12106–12110. https://doi.org/10.1002/anie.202000929

  136. Zhao S, Dong B, Ge R et al (2016) Channel-wall functionalization in covalent organic frameworks for the enhancement of CO2 uptake and CO2/N2 selectivity. RSC Adv 6:38774–38781. https://doi.org/10.1039/c6ra04859e

    Article  CAS  Google Scholar 

  137. Zhao F, Liu H, Mathe SDR et al (2018) Covalent organic frameworks: from materials design to biomedical application. Nanomaterials 8:15. https://doi.org/10.3390/nano8010015

    Article  CAS  Google Scholar 

  138. Zhi Y, Li Z, Feng X et al (2017) Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. J Mater Chem A 5:22933–22938. https://doi.org/10.1039/c7ta07691f

    Article  CAS  Google Scholar 

  139. Zhu J, Yang C, Lu C et al (2018) Two-dimensional porous polymers: from sandwich-like structure to layered skeleton. Acc Chem Res 51:3191–3202. https://doi.org/10.1021/acs.accounts.8b00444

    Article  CAS  PubMed  Google Scholar 

  140. Zhu D, Zhang Z, Alemany LB et al (2021) Rapid, ambient temperature synthesis of imine covalent organic frameworks catalyzed by transition-metal nitrates. Chem Mater 33:3394–3400. https://doi.org/10.1021/acs.chemmater.1c00737

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, S., Gaur, A., Gulati, S. (2022). Designing, Synthesis, and Applications of Covalent Organic Frameworks (COFs) for Diverse Organic Reactions. In: Gulati, S. (eds) Metal-Organic Frameworks (MOFs) as Catalysts. Springer, Singapore. https://doi.org/10.1007/978-981-16-7959-9_12

Download citation

Publish with us

Policies and ethics