Skip to main content

Bio-Intensive Management of Fungal Diseases of Potatoes

  • Chapter
  • First Online:
Sustainable Management of Potato Pests and Diseases

Abstract

Potato is an important food crop in the world including India. Potato crop is affected by various phytopathogens, viz., fungi, bacteria, viruses, and nematodes. Among these, fungal pathogens may cause significant economic yield losses, if proper plant protection measures are not applied. Among the fungal pathogens, Phytophthora infestans, Alternaria spp., Rhizoctonia solani, Fusarium spp. are the major pathogens, while Sclerotinia sclerotiorum, Sclerotium rolfsii, Synchytrium endobioticum, Helminthosporium solani, and Spongospora subterranea f. sp. subterranea are considered as minor pathogens. For effective management of these fungal pathogens various methods, i.e., chemical control, biological control, planting resistant varieties, cultural control, and physical control are applied. Chemical management is highly effective to manage the diseases in short span; however, due to continuous and irrational use of the chemicals, pathogens may develop resistance against certain classes of fungicides. Moreover, these chemicals can lead to environmental pollution and toxicity in the crop produce. Bio-intensive management is an integrated approach, which involved biological control, cultural practices/agronomical practices and resistant varieties, etc. These approaches not only aid in managing the diseases but also increased the crop yield with sustainable approaches. In the present chapter major fungal diseases of potato, their causal organism, symptoms, losses, epidemiology, and bio-intensive approaches for management are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah MT, Ali NY, Suleman P (2008) Biological control of Sclerotinia sclerotiorum (lib.) de Bary with Trichoderma harzianum and bacillus amyloliquefaciens. Crop Prot 27:1354–1359

    Article  Google Scholar 

  • Abeer H, Makhlouf RA (2015) Biological and nanocomposite control of fusarium wilt of potato caused by fusarium oxysporum f. sp. tuberose. Global J Biol Agric Health Sci 4:151–163

    Google Scholar 

  • Adebayo OSI, Ekpo EJA (2001) Effects of organic amendments on tomato diseases caused by Ralstonia solanacearum and fusarium oxysporum f. sp. lycopersicum. In: Tanywa JS, Nampala P, Tusiime G, Osiru M African crop science conference proceeding, p 305–307

    Google Scholar 

  • Aeron A, Dubey RC, Maheshwari DK et al (2011) Multifarious activity of bioformulated Pseudomonas fluorescens PS1 and biocontrol of Sclerotinia sclerotiorum in Indian rapeseed (Brassica campestris L.). Eur J Plant Pathol 131:81–93

    Article  Google Scholar 

  • Ajrekar SL, Kamat MN (1923) The relationship of the species of fusarium causing wilt and dry rot of potatoes in Western India. Agric J India 18:515–520

    Google Scholar 

  • Alam MW, Rehman A, Malik A et al (2021) First repost of white mould of potato caused by Sclerotinia sclerotiorum in Pakistan. J Plant Pathol 103:669

    Article  Google Scholar 

  • Anahosu KH (2001) Integrated management of potato sclerotium wilt caused by Sclerotium rolfsii. Indian Phytopathol 54:158–166

    Google Scholar 

  • Angelique B, Avisa TJ, Sophie P, Russell JT (2013) Management of potato dry rot. Postharvest Biol Technol 84:99–109

    Article  Google Scholar 

  • Anonymous (2017) Annual Scientific Report. ICAR-Central Potato Research Institute, Shimla, pp 60–61

    Google Scholar 

  • Anonymous (2019) Annual Scientific Report. Central Potato Research Institute, Shimla, India, p 68

    Google Scholar 

  • Anquiz R, Martin C (1989) Anastomosis groups, pathogenecity, and other characteristics of Rhizoctonia solani isolated from potatoes in Peru. Plant Dis 77:199–201

    Article  Google Scholar 

  • Arora RK (2008) Management of black scurf of potato with the integrated use of Trichoderma viride and boric acid. Potato J 35:130–133

    Google Scholar 

  • Arora RK, Trehan SP, Sharma J, Khanna RN (1997) Soil solarization for improving potato health and production. In: Golden Jubilee International Conference on Integrated Plant Disease Management for Sustainable Agriculture Proceedings Indian Phytopathological Society, vol. II, pp 1190–1191

    Google Scholar 

  • Asghari MA, Mayee CD (1991) Comparative efficiency of management practices on stem and pod rots of groundnut. Indian Phytopathol 44:328–332

    Google Scholar 

  • Atallah Z, Johnson DA (2004) Development of Sclerotinia stem rot in potato fields in south-Central Washington. Plant Dis 88:419–423

    Article  CAS  PubMed  Google Scholar 

  • Atiq M, Karamat A, Khan NA et al (2014) Antifungal potential of plant extracts and chemicals for the management of black scurf disease of potato. Pakistan J Phytopathol 26:161–167

    Google Scholar 

  • Awad MA, Amer GA, Farag AH (2020) Control of potato tuber dry rot disease during storage. Menoufia J Plant Prot 5:169–183

    Article  Google Scholar 

  • Ayad D, Leclerc S, Hamon B et al (2017) First report of early blight caused by Alternaria protenta on potato in Algeria. Plant Dis 101:836

    Article  Google Scholar 

  • Ayd F, Dammi-Remadi M, Jabnoun-Khiareddine H, El Mahjoube M (2006) Effect of potato cultivars on incidence of fusarium oxysporum f.sp tuberosi and its transmission to progeny tubers. J Agron 5:430–434

    Article  Google Scholar 

  • Bains PS, Bisht VS (1995) Anastomosis group identity and virulence of Rhizoctonia solani isolates collected from potato plants in Alberta, Canada. Plant Dis 79:241–242

    Article  Google Scholar 

  • Baker KF (1970) Types of Rhizoctonia disease and their occurrence. In: Parmeter JR (ed) Rhizoctonia solani: biology and pathology. University of California Press, Berkeley, CA, pp 125–148

    Chapter  Google Scholar 

  • Baker KF, Cook RJ (1974) Biological control of plant pathogens. American Phytopathological Society, St. Paul, MN, pp 35–50

    Google Scholar 

  • Balali GR, Neate SM, Scott ES et al (1995) Anastomosis group and pathogenecity of isolates of Rhizoctonia solani from potato crops in south Austraila. Plant Pathol 44:1050–1057

    Article  Google Scholar 

  • Bandy BP, Leach SS, Tavantzis SM (1988) Anastomosis group 3 is the major cause of Rhizoctonia disease of potato in Maine. Plant Dis 72:596–598

    Article  Google Scholar 

  • Banville GJ (1978) Studies on the Rhizoctonia disease of potatoes. Am Potato J 55:56

    Google Scholar 

  • Bardin SD, Huang HC (2001) Research on biology and control of Sclerotinia diseases in Canada. Can J Palnt Pathol 23:88–98

    Article  Google Scholar 

  • Baswaraj R (2005) Studies on potato wilt caused by Sclerotium rolfsii Sacc., m.Sc. (Agri.) thesis, University of Agricultural Sciences, Dharwad

    Google Scholar 

  • Beukema HP, van der Zang DE (1990) Introduction to potato production, Centre for Agriculture Publishing and Documentation, The Netherlands

    Google Scholar 

  • Binyam T, Temam H, Tekalign T (2014) Efficacy of reduced dose of fungicide sprays in the management of late blight (Phytophthora infestans) disease on selected potato (Solanum tuberosum L.) varieties Haramaya, eastern Ethiopia. J Biol Agric Healthcare 4:46–52

    Google Scholar 

  • Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Antignani V, Pane C, Scala F (2007) Suppression of soilborne fungal diseases with organic amendments. J Plant Pathol 89:311–324

    Google Scholar 

  • Borrero C, Trillas MI, Ordovás J, Tello JC, Avilés M (2004) Predictive factors for the suppression of fusarium wilt of tomato in plant growth media. Phytopathology 94:1094–1101

    Article  PubMed  Google Scholar 

  • Bourke A (1993) The visitation of god? The potato and the great Irish famine. Lilliput Press, Dublin, Ireland

    Google Scholar 

  • Brewer MT, Larkin RP (2005) Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protect 24:939–950

    Article  Google Scholar 

  • Bulluck LR, Ristaino JB (2002) Effect of synthetic and organic soil fertility amendments on southern blight, soil microbial communities, and yield of processing tomatoes. Phytopathology 92:181–189

    Article  CAS  PubMed  Google Scholar 

  • Buyer JS, Roberts DP, Russeck-Cohen E (1999) Microbial community structure and function in the spermosphere as affected by soil and seed type. Can J Microbiol 45:138–144

    Article  CAS  Google Scholar 

  • Campion C, Chatot C, Perraton B, Andrivon D (2003) Anastomosis groups, pathogenicity and sensitivity to fungicides of Rhizoctonia solani isolates collected on potato crops in France. Eur J Plant Pathol 109:983–992

    Article  CAS  Google Scholar 

  • Campo Arana RO, Zambolim L, Costa LC (2007) Potato early blight epidemics and comparison of methods to determine its initial symptoms in a potato field. Rev Fac Nac Agron Medellin 60:3877–3890

    Google Scholar 

  • Carling DE, Kebler KM, Leiner RH (1986) Interactions between Rhizoctonia solani AG-3 and 27 plant species. Plant Dis 70:577–578

    Article  Google Scholar 

  • Carling DE, Leiner RH, Westphale PC (1989) Symptoms, signs and yield reduction associated with Rhizoctonia disease of potato induced by tuber-borne inoculum of Rhizoctonia solani AG-3. Am Potato J 66:693–701

    Article  Google Scholar 

  • Carter MR, Kunelius HT, Sanderson JB et al (2003) Productivity parameters and soil health dynamics under long-term 2-year potato rotations in Atlantic Canada. Soil Till Res 72:153–168

    Article  Google Scholar 

  • Casa-Coila VH, Lehner MDS, Hora Júnior BT et al (2017) First report of Phytophthora infestans self-fertile genotypes in southern Brazil. Plant Dis 101:1682–1682

    Article  Google Scholar 

  • Cattalan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Amer J 63:1670–1680

    Article  Google Scholar 

  • Cessna SG, Sears VE, Dickman MB, Low PS (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12:2191–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary S, Lal M, Sagar S et al (2020b) Genetic diversity studies based on morpho-pathological and molecular variability of the Sclerotinia sclerotiorum population infecting potato (Solanum tuberosum L.). World J Microbiol Biotechnol 36:1–15

    Article  Google Scholar 

  • Chaudhary S, Sagar S, Kumar M et al (2020c) Molecular cloning, characterization and semi-quantitative expression of endochitinase gene from the mycoparasitic isolates of Trichoderma harzianum. Res J Biotchnol 15:40–45

    Google Scholar 

  • Chaudhary S, Sagar S, Lal M et al (2020a) Biocontrol and growth enhancement potential of Trichoderma spp. against Rhizoctonia solani causing sheath blight disease in rice. J Environ Biol 41:1034–1045

    Article  CAS  Google Scholar 

  • Chet I, Benhamou N, Haran S (1998) Mycoparasitism and lytic enzymes. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis Ltd., London, pp 153–169

    Google Scholar 

  • Chowdappa P, Nirmal Kumar BJ, Madhura S et al (2015) Severe outbreaks of late blight on potato and tomato in South India caused by recent changes in the Phytophthora infestans population. Plant Pathol 64:191–199

    Article  CAS  Google Scholar 

  • Daayf F, Adam L, Fernando WGD (2003) Comparative screening of bacteria for biological control of potato late blight (strain US-8), using in-vitro, detached-leaves, and whole-plant testing systems. Can J Plant Pathol 25:276–284

    Article  Google Scholar 

  • Das S, Shah FA, Butler RC et al (2014) Genetic variability and pathogenicity of Rhizoctonia solani associated with black scurf of potato in New Zealand. Plant Pathol 63:651–666

    Article  CAS  Google Scholar 

  • Dasgupta MK, Mandal NC (1989) Postharvest pathology of perishables. Oxford and IBH Publisher, New Delhi, p 623

    Google Scholar 

  • Derbyshire MC, Denton-Giles M (2016) The control of sclerotinia stem rot on oilseed rape (Brassica napus): current practices and future opportunities. Plant Pathol 65:859–877

    Article  CAS  Google Scholar 

  • Desjardins AE (2006) Fusarium mycotoxins, chemistry, genetics, and biology. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Dijst G (1985) Investigations on the effect of haulm destruction and additional root cutting on black scurf on potatoes. Neth J Plant Pathol 91:153–162

    Article  Google Scholar 

  • Dijst G, Bouman A, Mulder A, Roosjen J (1986) Effect of haulm destruction supplemented by cutting of roots on the incidence of black scurf and skin damage, flexibility of harvest period and yield of seed potatoes in field experiments. Neth J Plant Pathol 92:287–303

    Article  Google Scholar 

  • Donn S, Wheatley RE, McKenzie BM et al (2014) Improved soil fertility from compost amendment increases root growth and reinforcement of surface soil on slope. Ecol Eng 71:458–465

    Article  Google Scholar 

  • Duarte HSS, Zambolim L, Rodrigues FA et al (2014) Field resistance of potato cultivars to foliar early blight and its relationship with foliage maturity and tuber skin types. Trop Plant Pathol 39:294–306

    Article  Google Scholar 

  • Dutt BL (1979) Bacterial and fungal diseases of potato. ICAR, New Delhi

    Google Scholar 

  • Dutta S, Ghosh PP, Kuiry SP (2009) Stem rot, a new disease of potato in West Bengal, India. Aust Plant Dis Notes 4:80–81

    Google Scholar 

  • Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot 19:709–714

    Article  Google Scholar 

  • Ellis JB, Martin GB (1882) Macrosporium solani E&M. Am Nat 16:1003

    Google Scholar 

  • Elmore CL, Stapelton JJ, Bell CE, Devay JE (1997) Soil solarization: a non-pesticidal method for controlling diseases, nematodes and weeds, UC DANR pub. 21377 Oakland, pp 10–14

    Google Scholar 

  • El-Shennawy MZ, Khalifa MM, Ammar EM, Mousa Hafez SL (2012) Biological control of the disease complex on potato caused by root-knot nematode and fusarium wilt fungus. Nematol Medit 40:169–172

    Google Scholar 

  • Emmerling C, Schloter M, Hartmann A, Kandeler E (2002) Functional diversity of soil organisms- a review of recent research activities in Germany. J Plant Nutr Soil Sci 165:408–420

    Article  CAS  Google Scholar 

  • Esfahani MN (2005) Present status of fusarium dry rot of potato tubers in Isfahan (Iran). Indian Phytopath 59:142–147

    Google Scholar 

  • Etesami H, Maheshari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    Article  CAS  PubMed  Google Scholar 

  • Farrokhi-Nejad R, Cromey MG, Moosawi-Jorf SA (2007) Determonation of the anastomosis grouping and virulence of Rhizoctonia spp. associated with potato tubers grown in Lincoln, New Zealand. Pak J Biol Sci 10:3786–3793

    Article  PubMed  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y, Savchuk S (2007) Biological control of Sclerotinia sclerotiorum (lib.) de Bary by pseudomonas and bacillus species on canola petals. Crop Prot 26:100–107

    Article  Google Scholar 

  • Fiers M, Edel-Hermann V, Heraud C et al (2011) Genetic diversity of Rhizoctonia solani associated with potato tubers in France. Mycologia 103:1230–1244

    Article  CAS  PubMed  Google Scholar 

  • Fry WE, Birch PRJ, Judelson HS et al (2015) Five reasons to consider Phytophthora infestans a reemerging pathogen. Phytopathology 105:966–981

    Article  CAS  PubMed  Google Scholar 

  • Ganguly A, Paul DN (1952) Wart disease of potatoes in India. Sci Cult 18:605–606

    Google Scholar 

  • Gao XN, Han QM, Chen YF et al (2014) Biological control of oilseed rape Sclerotinia stem rot bacillus subtillis strain Em7. Biocontrol Sci Tech 24:39–52

    Article  Google Scholar 

  • Garrett KA, Dendy SP (2001) Cultural practices in potato late blight management. In: Complementing resistance to late blight in the Andes, 13-16 February 2001. International Potato Center, Cochabamba, Bolivia

    Google Scholar 

  • Geraldine AM, Lopes FAC, Carvalho DDC et al (2013) Cell wall-degrading enzymes and parasitism of sclerotia are key factors on field biocontrol of white mold by Trichoderma spp. Biol Control 67:308–316

    Article  CAS  Google Scholar 

  • Goodwin SB (1997) The population genetics of Phytophthora. Phytopathology 87:462–473

    Article  CAS  PubMed  Google Scholar 

  • Goodwin SB, Spielman LJ, Matuszak JM et al (1992) Clonal diversity and genetic differentiation of Phytophthora infestans populations in northern and Central Mexico. Phytopathology 82:955–961

    Article  CAS  Google Scholar 

  • Gorai PS, Ghosh R, Konra S, Mandal NC (2021) Biological control of early blight disease of potato caused by Alternaria alternata EBP3 by an endophytic bacterial strain bacillus velezensis SEB1. Biol Control 156:104551

    Article  CAS  Google Scholar 

  • Grau CR, Radke VL (1984) Effects of cultivars and cultural-practices on Sclerotinia stem rot of soybean. Plant Dis 68:56–58

    Article  Google Scholar 

  • Greenberger A, Yogev A, Katan J (1987) Induced suppressiveness in solarized soils. Phytopathology 77:1663–1667

    Article  Google Scholar 

  • Grogan RG, Abawi GS (1975) Influence of water potential on growth and survival of Whetzelinia sclerotiorum. Phytopathology 65:122–128

    Article  Google Scholar 

  • Gupta J (2016) Efficacy of biocontrol agents against Phytophthora infestans on potato. Int J Eng Sci Comput 6:2249–2251

    Google Scholar 

  • Gurjar RBS, Bansal RK, Gupta RBL (2004) Viability of Sclerotia of Sclerotium rolfsii at different depth and duration in soil of Northwest India. J Mycol Plant Pathol 34:558–559

    Google Scholar 

  • Gutierrez WA, Shew HD (1998) Identification and quantification of ascospores as the primary inoculum for collar rot of greenhouse-produced tobacco seedlings. Plant Dis 82:485–490

    Article  CAS  PubMed  Google Scholar 

  • Hagan A (2004) Southern blight on flowers, shrubs, and trees. Alabama Cooperative Extension System Publication, ANR-1157

    Google Scholar 

  • Hamm PB, Johnson DA, Miller JS et al (2013) Silver scurf management in potato. A Pacific northwest extension publication, PNW-596, Revised April 2013, p 1-7

    Google Scholar 

  • Haq I, Rashid A, Kahn SA (2008) Relative efficacy of various fungicides, chemicals and biochemicals against late blight of potato. J Phytopathol 21:129–133

    Google Scholar 

  • Harman GE (2007) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194

    Article  Google Scholar 

  • Harrison JG, Searle RJ, Williams NA (1997) Powdery scab disease of potato - a review. Plant Pathol 46:1–25

    Article  Google Scholar 

  • Hausladen H, Aselmeyer A (2017) Studies about infection of different Alternaria solani isolates on Solanum tuberosum, Lycopersicon esculentum and Solanum nigrum. PPO-Special Report no 18: 201

    Google Scholar 

  • Hauslanden H, Bassler E (2004) Early blight disease in potatoes. What are the causes? Kartaffelbau 6:210–212

    Google Scholar 

  • Haverkort AJ, Boonekamp PM, Hutten R et al (2016) Durable late blight resistance in potato through dynamic varieties obtained by cisgenesis: scientific and societal advances in the DuRPh project. Potato Res 59:35–66

    Article  CAS  Google Scholar 

  • Haverkort AJ, Struik PC, Visser RGF, Jacobsen E (2009) Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res 52:249–264

    Article  Google Scholar 

  • Hicks E, Bienkowski D, Braithwaite M et al (2014) Trichoderma strains suppress Rhizoctonia diseases and promote growth of potato. Phytopathol Mediterr 53:502–514

    CAS  Google Scholar 

  • Honeycutt CW, Clapham WM, Leach SS (1996) Crop rotation and N fertilization effects on growth, yield, and disease incidence in potato. Am Potato J 73:45–61

    Article  Google Scholar 

  • Horsfield A, Wicks T, Davies K, Wilson D, Paton S (2010) Effect of fungicide use strategies on the control of early blight (Alternaria solani) and potato yield. Australas Plant Pathol 39:368–375

    Article  CAS  Google Scholar 

  • Hou XW, Boyetchko SM, Brkic M et al (2006) Characterization of the antifungal activity of bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum. Appl Microbiol Biotechnol 72:644–653

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Roberts DP, Maul JE et al (2011) Formulation of the endophytic bacterium Bacillus subtilis Tu-100 suppresses Sclerotinia sclerotiorum on oilseed rape and improves plant vigor in field trials conducted at separate locations. Can J Microbiol 57:539–546

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Roberts DP, Xie L et al (2013) Bacillus megaterium A6 suppresses Sclerotinia sclerotiorum on oil-seed rape in the field and promotes oilseed rape growth. Crop Prot 52:151–158

    Article  Google Scholar 

  • Huang HC, Erickson RS, Chang C et al (2002) Organic soil amendments for control of apothecial production of Sclerotinia sclerotiorum. Plant Pathol Bull 11:207–214

    Google Scholar 

  • Ito M, Meguro-Maoka A, Maoka T, Akino S, Masuta C (2017) Increased susceptibility of potato to Rhizoctonia diseases in potato leafroll virus-infected plants. J Gen Plant Pathol 83:169–172

    Article  CAS  Google Scholar 

  • Jager G, Hekman W, Deenen A (1982) The occurrence of Rhizoctonia solani on subterranean parts of wild plants in potato fields. Neth J Plant Pathol 88:155–161

    Article  Google Scholar 

  • James WC, McKenzie AR (1972) The effect of tuberborne sclerotia of Rhizoctonia solani Kühn on the potato crop. Am Potato J 49:296–301

    Article  Google Scholar 

  • Jansky SHS, Simon R, Spooner DM (2008) A test of taxonomic predictivity: resistance to early blight in wild relatives of cultivated potato. Phytopathology 98:680–687

    Article  CAS  PubMed  Google Scholar 

  • Johnson DA, Atallah ZK (2014) Disease cycle, development and management of Sclerotinia stem rot of potato. Am J Plant Sci 5:3717–3726

    Article  Google Scholar 

  • Jones EE, Rabeendran N, Stewart A (2015) Biocontrol of Sclerotinia sclerotiorum infection of cabbage by Coniothyrium minitans and Trichoderma spp. Biocontrol Sci Tech 24:1363–1382

    Article  Google Scholar 

  • Jones JB, Jones JP, Stall RE, Zitter TA (1993) Compendium of tomato diseases. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Kamoun S, Furzer O, Jones JD et al (2014) The top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol 16:413–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapsa J (2007) Application of the Burkard spore trap to determine a composition of the genus Alternaria in potato crops. Biuletyn-Instytutu Hodowli-i- Aklimatyazacji-Roslin 244:223–229

    Google Scholar 

  • Kassa B, Sommartya T (2006) Effect of intercropping on potato late blight, Phytophthora infestans (Mont.) de Bary development and potato tuber yield in Ethiopia. Kasetsart J (Nat Sci) 40:914–924

    Google Scholar 

  • Kaur J, Munshi GD, Singh RS, Koch E (2005) Effect of carbon source on production of lytic enzymes by the sclerotial parasites Trichoderma atroviride and Coniothyrium minitans. J Phytopathol 153:274–279

    Article  CAS  Google Scholar 

  • Keijer J, Houterman PM, Dullemans AM, Korsman MG (1996) Heterogeneity in electrophoretic karyotype within and between anastomosis groups of Rhizoctonia solani. Mycol Res 100:789–797

    Article  Google Scholar 

  • Kerkeni A, Daami-Remadi M, Khedher MB (2013) In vivo evaluation of compost extracts for the control of the potato fusarium wilt caused by fusarium oxysporum f. sp. tuberosi. Afr J Plant Sci Biotechnol 7:36–41

    Google Scholar 

  • Khan I, Alam S, Hussain H et al (2016) Study on the management of potato black scurf disease by using biocontrol agents and phytobiocides. J Entomol Zool Stud 4:471–475

    Google Scholar 

  • Khedher SB, Kilani-Feki O, Dammak M et al (2015) Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. C R Biol 338:784–792

    Article  PubMed  Google Scholar 

  • Knaus BJ, Tabima JF, Davis CE et al (2016) Genomic analyses of dominant US clonal lineages of Phytophthora infestans reveals a shared common ancestry for clonal lineages US11 and US18 and a lack of recently shared ancestry among all other US lineages. Phytopathology 106:1393–1403

    Article  CAS  PubMed  Google Scholar 

  • Kokalis-Burelle N, Rodriquez-Kabana R (1994) Effects of pine bark extracts and pine bark powder on fungal pathogens, soil enzymatic activity, and microbial populations. Biol Control 4:269–276

    Article  Google Scholar 

  • Kumar M, Kumar A (2018) Evaluation of efficacy of different organic amendments against Rhizoctonia solani under the screen house condition. J Pharma Phytochem 7:191–194

    CAS  Google Scholar 

  • Kumar S, Sekhon PS, Kaur J (2016) Status and etiology of potato dry rot in Punjab under cold store conditions. Potato J 43:182–192

    Google Scholar 

  • Kumar S, Singh SP, Singh A (2021) Incidence of potato diseases in cold storage and performance of seed lots under field conditions. J Pharma Phytochem 10:477–482

    Google Scholar 

  • Kumar SS, Rao MRK, Kumar RD et al (2012) Biocontrol by plant growth promoting rhizobacteria against black scurf and stem canker disease of potato caused by Rhizoctonia solani. Arch Phytopathol Plant Protect 46:487–502

    Article  Google Scholar 

  • Kumar V, Chaudhary VP, Kumar D et al (2017) Efficacy of botanicals and fungicides against Rhizoctonia solani inciting sheath blight disease on Rice (Oryza sativa L.). J Appl Nat Sci 9:1916–1920

    Article  CAS  Google Scholar 

  • Lal M, Chaudhary S, Rawal S et al (2021) Evaluation of bio-agents and neem based products against late blight disease (Phytopthora infestans) of potato. Indian Phytopathol 74:181–187

    Article  Google Scholar 

  • Lal M, Chaudhary S, Yadav S et al (2019) Development of spray schedules for management of late blight of potato using new chemicals. J Mycol Plant Pathol 49:405–412

    Google Scholar 

  • Lal M, Yadav S, Chand S et al (2015) Evaluation of fungicides against late blight (Phytophthora infestans) on susceptible and moderately resistant potato cultivars. Indian Phytopathol 68:345–347

    Google Scholar 

  • Lal M, Yadav S, Sharma S et al (2017) Integrated management of late blight of potato. J Appl Nat Sci 9:1821–1824

    Article  CAS  Google Scholar 

  • Lambert DH, Powelson ML, Stevenson WR (2005) Nutritional interactions influencing diseases of potato. Am J Potato Res 82:309–319

    Article  CAS  Google Scholar 

  • Landschoot S, Carrette J, Vandecasteele M et al (2017) Identification of a. arborescens, A. grandis, and A. protenta as new members of the European Alternaria population on potato. Fungal Biol 121:172–188

    Article  CAS  PubMed  Google Scholar 

  • Larkin RP, Griffin TS (2007) Control of soil-borne potato diseases using brassica green manures. Crop Protect 26:1067–1077

    Article  Google Scholar 

  • Larkin RP, Griffin TS, Honeycutt CW (2010) Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities. Plant Dis 94:1491–1502

    Article  PubMed  Google Scholar 

  • Lehtonen MJ, Ahvenniemi P, Wilson PS et al (2008) Biological diversity of Rhizoctonia solani (AG-3) in a northern potato-cultivation environment in Finland. Plant Pathol 57:141–151

    CAS  Google Scholar 

  • Li Y, Shen H, Zhou Q, Qian K et al (2017) Changing ploidy as a strategy: the Irish potato famine pathogen shifts ploidy in relation to its sexuality. Mol Plant-Microbe Interact 30:45–52

    Article  CAS  PubMed  Google Scholar 

  • Liljeroth E, Lankinen Ã…, Wiik L et al (2016) Potassium phosphite combined with reduced doses of fungicides provides efficient protection against potato late blight in large-scale field trials. Crop Prot 86:42–55

    Article  CAS  Google Scholar 

  • Little SA, Hocking PJ, Greene RSB (2004) A preliminary study of the role of cover crops in improving soil fertility and yield for potato production. Commun Soil Sci Plant Anal 35:471–494

    Article  CAS  Google Scholar 

  • Lootsma M, Scholte K (1996) Effects of soil disinfection and potato harvesting methods on stem infection by Rhizoctonia solani Kühn in the following year. Potato Res 39:15–22

    Article  Google Scholar 

  • Lopez-Mondejar R, Ros M, Pascual JA (2011) Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficiency as biological control agents. Biol Control 56:59–66

    Article  CAS  Google Scholar 

  • Lysøe E, Dees MW, May BB (2017) A three-way transcriptomic interaction study of a biocontrol agent (Clonostachys rosea), a fungal pathogen (Helminthosporium solani), and a potato host (Solanum tuberosum). Mol Plant-Microbe Interact 30:646–655

    Article  PubMed  Google Scholar 

  • Mac Donald W, Peters R, Coffin R, Lacroix C (2007) Effect of strobilurin fungicides on control of early blight (Alternaria solani) and yield of potatoes grown under two N fertility regimes. Phytoprotection 88:9–15

    Article  CAS  Google Scholar 

  • Mane MM, Lal AA, Zghair QN, Simon S (2014) Efficacy of certain bio agents and fungicides against early blight of potato (Solanum tuberosum L.). Int J Plant Protect 7:433–436

    Article  Google Scholar 

  • Manici LM, Caputo F (2009) Fungal community diversity and soil health in intensive potato cropping systems of the East Po valley, northern Italy. Ann Appl Biol 155:245–258

    Article  Google Scholar 

  • Mckay R (1955) Potato diseases. At the sign of the three candles, Fleet Street, Dublin

    Google Scholar 

  • McLaren DL, Huang HC, Rimmer SR (1996) Control of apothecial production of Sclerotinia sclerotiorum by Coniothyrium minitans and Talaromyces flavus. Plant Dis 80:1373–1378

    Article  Google Scholar 

  • McQuilken MP, Mitchell SJ, Budge SP et al (1995) Effect of Coniothyrium minitans on sclerotial survival and apothecial production of Sclerotinia sclerotiorum in field grown oilseed rape. Plant Pathol 44:883–896

    Article  Google Scholar 

  • Medina MV, Platt HW (1999) Viability of oospores of Phytophthora infestans under field conditions in north eastern North America. Can J Plant Pathol 21:137–143

    Article  Google Scholar 

  • Meena MC, Meena AK, Meena PN, Meena RR (2018) Management of stem rot of groundnut incited by S. rolfsii through important bioagents. Chem Sci Rev Lett 7:1012–1017

    CAS  Google Scholar 

  • Montes MS, Nielsen BJ, Schmidt SG et al (2016) Population genetics of Phytophthora infestans in Denmark reveals dominantly clonal populations and specific alleles linked to metalaxyl-M resistance. Plant Pathol 65:744–753

    Article  CAS  Google Scholar 

  • Mrabet M, Djebali N, Elkahouri S et al (2013) Efficacy of selected pseudomonas strains for biocontrol of Rhizoctonia solani in potato. Phytopathol Medeterr 52:449–456

    Google Scholar 

  • Mueller DS, Dorrance AE, Derksen RC et al (2002) Efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of sclerotinia stem rot on soybean. Plant Dis 86:26–31

    Article  CAS  PubMed  Google Scholar 

  • Mulder A, Turkensteen LJ, Bouman A (1992) Perspectives of green-crop-harvesting to control soil-borne and storage diseases of seed potatoes. Eur J Plant Pathol 98:103–114

    Google Scholar 

  • Mullen J (2001) Southern blight, southern stem blight, white mold the plant health instructor DOI:https://doi.org/10.1094/PHI-I-2001-0104-01

  • Muzhinji N, Truter M, Woodhall JW, van der Waals JE (2015) Anastomosis groups and pathogenecity of Rhizoctonia solani and Binucleate Rhizoctonia from potato in South Africa. Plant Dis 99:1790–1802

    Article  CAS  PubMed  Google Scholar 

  • Muzhinji N, Woodhall JW, Truter M, van der Waals JE (2014) Elephant hide and growth cracking on potato tubers caused by Rhizoctonia solani AG 3-PT in South Africa. Plant Dis 98:570

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T (2021) Biocontrol of powdery scab of potato by seed tuber application of an antagonistic fungus, aspergillus versicolor, isolated from potato roots. J Gen Plant Pathol 83:253–263

    Article  Google Scholar 

  • Nowicki M, Foolad MR, Nowakowska M, Kozik EU (2012) Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Dis 96:4–17

    Article  PubMed  Google Scholar 

  • O’Brien PA, Milroy SP (2017) Towards biological control of Spongospora subterranea f. sp. subterranea, the causal agent of powdery scab in potato. Australas Plant Pathol 46:1–10

    Article  Google Scholar 

  • Ojaghian MR, Zhang J, Zhang F et al (2016) Early detection of white mold caused by Sclerotinia sclerotiorum in potato fields using real-time PCR. Mycol Prog 15:959–965

    Article  Google Scholar 

  • Padwick GW (1943) Notes on Indian fungi. III Mycol Pap Mycop Inst 12:15

    Google Scholar 

  • Paik SB (1989) Screening for antagonistic plants for control of Phytophthora spp. in soil. Korean J Mycol 17:39–47

    Google Scholar 

  • Patel VM, Singh N (2020) Management of black scurf (Rhizoctonia solani) of potato through organic approaches. Indian J Agri Res 55:157–162

    Google Scholar 

  • Pedersen EA, Hughes GR (1992) The effect of crop rotation on development of the septoria disease complex on spring wheat in Saskatchewan. Can J Plant Pathol 14:152–158

    Article  Google Scholar 

  • Perez W, Forbes G (2010) Potato late blight: technical manual. International Potato Center (CIP), Lima. http://www.cipotato.org/publications/pdf/005446.pdf

  • Peters RD, Platt HW, Drake KA et al (2008) First report of fludioxonil-resistant isolates of fusarium spp. causing potato seed-piece decay. Plant Dis 92:172

    Article  CAS  PubMed  Google Scholar 

  • Peters RD, Sturz AV, Carter MR, Sanderson JB (2004) Influence of crop rotation and conservation tillage practices on the severity of soil-borne potato diseases in temperate humid agriculture. Can J Soil Sci 84:397–402

    Article  Google Scholar 

  • Platt HW, Canale F, Gimenez G (1993) Effect of tuber-borne inoculum of Rhizoctonia solani and fungicidal seed potato treatment of plant growth and Rhizoctonia disease in Canada and Uruguay. Am Potato J 70:553–559

    Article  CAS  Google Scholar 

  • Prabhakaran N, Prameeladevi T, Sathiyabama M, Kamil D (2015) Screening of different Trichoderma species against agriculturally important foliar pathogens. J Environ Biol 36:191–198

    PubMed  Google Scholar 

  • Punja ZK (1985) The biology, ecology, and control of Sclerotium rolfsii. Annu Rev Phytopathol 23:97–127

    Article  CAS  Google Scholar 

  • Quentin U (2004) Sclerotinia sclerotiorum, occurrence and control. Kartoffelbau 8:318–319

    Google Scholar 

  • Rafiq M, Javaid A, Shoaib A (2021) Antifungal activity of methanolic leaf extract of Carthamus oxycantha against Rhizoctonia solani. Pak J Bot 53:1133–1139

    Article  CAS  Google Scholar 

  • Rahman M, Ali MA, Dey TP et al (2014) Evolution of disease and potential biocontrol activity of Trichoderma spp. against Rhizoctonia solani on potato. Biosci J 30:1108–1117

    Google Scholar 

  • Read PJ, Hide GA (1984) Effects of silver scurf (Helminthosporium solani) on seed potatoes. Potato Res 27:145–154

    Article  Google Scholar 

  • Rekad FZ, Cooke DEL, Puglisi I et al (2017) Characterization of Phytophthora infestans populations in northwestern Algeria during 2008-2014. Fungal Biol 121:467–477

    Article  PubMed  Google Scholar 

  • Remade K (2006) Compost and disease suppression, Organics Factsheet, Scotland, UK

    Google Scholar 

  • Rodrigues TTMS, Berbee ML, Simmons EG et al (2010) First report of Alternaria tomatophila and A. grandis causing early blight on tomato and potato in Brazil. New Dis Rep 22:28–28

    Article  Google Scholar 

  • Rodriguez-Kabana R, Kokalis-Burelle N, Robertson DG et al (1994) Rotations with coastal Bermuda grass, cotton, and bahiagrass for management of Meloidogyne arenaria and southern blight in peanut. J Nematol 26:665–668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas A, Kirk WW (2016) Phenotypic and genotypic variation in Michigan populations of Phytophthora infestans from 2008 to 2010. Plant Pathol 65:1022–1033

    Article  Google Scholar 

  • Roy SK, Sharma RC, Trehan SP (2001) Integrated nutrient management by using farmyard manure and fertilizers in potato-sunflower-paddy rice rotation in the Punjab. J Agric Sci 137:271–278

    Article  Google Scholar 

  • Rubayet MT, Bhuiyan MKA, Hossain MM (2017) Effect of soil solarization and biofumigation of stem rot disease of potato caused by Sclerotium rolfsii. Ann Bangladesh Agric 21:49–59

    Google Scholar 

  • Runno-Paurson E, Loit K et al (2015) Erly blight destroys potato foliage in the northern Baltic region. Acta Agric Scand 65:422–432

    CAS  Google Scholar 

  • Saccardo PA (1882) Sylloge fungorum omnium hucusque congitorum, vol 1. Edwards Brothers, Ann Arbor, MI

    Book  Google Scholar 

  • Sagar V, Sharma S, Jeevalatha A et al (2011) First report of fusarium sambucinum causing dry rot of potato in India. New Dis Rep 24:5

    Article  Google Scholar 

  • Saremi H, Okhovvat SM, Ashrafi SJ (2011) Fusarium diseases as the main soil borne fungal pathogen on plants and their control management with soil solarization in Iran. Afr J Biotechnol 10:18391–18398

    Article  Google Scholar 

  • Saville AC, Martin MD, Ristaino JB (2016) Historic late blight outbreaks caused by a widespread dominant lineage of Phytophthora infestans (Mont.) de Bary. PLoS One 11:e0168381

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiberszky K (1896) Ein neuer Schorfparasit der Kartoffelknollen. Ber Deut Bot Ges 14:36–37

    Google Scholar 

  • Scholte K (1992) Effect of crop rotation on the incidence of soil-borne fungal diseases of potato. Neth J Plant Pathol 98:93–101

    Article  Google Scholar 

  • Scholte K, Lootsma M (1998) Effect of farmyard manure and green manure crops on populations of mycophagous soil fauna and Rhizoctonia stem canker of potato. Pedobiologia 42:223–231

    Google Scholar 

  • Scotti R, D’Ascoli R, Caceres MG et al (2015) Combined use of compost and wood scraps to increase carbon stock and improve soil quality in intensive farming systems. Eur J Soil Sci 66:463–475

    Article  CAS  Google Scholar 

  • Selin C, Habibian R, Poritsanos N et al (2010) Phenasines are not essential for pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation. FEMS Microbiol Ecol 71:73–83

    Article  CAS  PubMed  Google Scholar 

  • Sennoi R, Singkham N, Jogloy S et al (2013) Biological control of southern stem rot caused by Sclerotium rolfsii using Trichoderma harzianum and arbuscular mycorrhizal fungi on Jerusalem artichoke (Helianthus tuberosus L.). Crop Protect 54:148–153

    Article  Google Scholar 

  • Shanthiyaa V, Saravanakumar D, Rajendran L et al (2013) Use of Chaetomium globosum for biocontrol of potato late blight disease. Crop Prot 52:33–38

    Article  Google Scholar 

  • Sharma S (2015) Black scurf. In: Singh BP, Nagesh M, Sharma S et al (eds) A manual on diseases and pest of potato, Tech Bull No. 101. ICAR-Central Potato Research Institute, Shimla, India, pp 11–13

    Google Scholar 

  • Sharma S, Lal M (2015) Dry rot. In: Singh BP, Nagesh M, Sharma S et al (eds) A manual on diseases and pest of potato-Technical Bulletin No. 101. ICAR-Central Potato Research Institute, Shimla, India, pp 17–19

    Google Scholar 

  • Shtienberg D, Blachinsky D, Ben-Hador G, Dinoor A (1996) Effects of growing season and fungicide type on the development of Alternaria solani and on potato yield. Plant Dis 80:994–998

    Article  CAS  Google Scholar 

  • Shtienberg D, Raposo R, Bergerson SN et al (1994) Inoculation of cultivar resistance reduced spray strategy to suppress early and late blight on potato. Plant Dis 78:23–26

    Article  Google Scholar 

  • Singh BP, Bhattacharya SK, Saxena SK, Nagaich BB (1990) Managing fusarium wilt of potato by adjusting date of planting. J Indian Potato Assoc 17:75–77

    Google Scholar 

  • Singh BP, Nagaich BB, Saxena SK (1987) Fungi associated with dry rot of potatoes, their frequency and distribution. Indian J Plant Pathol 5:142–145

    Google Scholar 

  • Singh BP, Nagaich BB, Saxena SK (1988) Studies on the effect of organic amendments on fusarium wilt of potato. J Indian potato Assoc 15:60–67

    Google Scholar 

  • Singh PH (2002) Training course on research methodology in potato: In: Identification and management of fungal diseases. p 146

    Google Scholar 

  • Smolinska U, Kowalska B, Kowalczyk W et al (2016) Eradication of Sclerotinia sclerotiorum sclerotia from soil using organic waste materials as Trichoderma fungi carriers. J Horticultural Res 24:101–110

    Article  CAS  Google Scholar 

  • Sneh B, Burpee L, Ogoshi A (1991) Identification of Rhizoctonia species. The American Phytopathological Society, St Paul, MN

    Google Scholar 

  • Sreenivasaprasad S, Manibhusanrao K (1990) Biocontrol potential of the fungus antagonist Gliocladium wrens and Trichoderma longibrachiatum. Zeitschrift fur Plazenkrankheiten und Plazenschutz 97:570–579

    Google Scholar 

  • Srivastva SNS (1965) The occurrence of silver scurf of potato in India and its control. Sci Cult 31:537–538

    Google Scholar 

  • Steadman JR (1979) Control of plant diseases caused by Sclerotinia species. Phytopathology 69:904–907

    Article  CAS  Google Scholar 

  • Stevens JJ, Jones RK, Shew HD, Carling DE (1993) Characterization of populations of Rhizoctonia solani AG-3 from potato and tobacco. Phytopathology 83:854–858

    Article  Google Scholar 

  • Stevenson WR, Loria R, Franc GD, Weingartner DP (2001) Compendium of potato diseases, 2nd edn. The American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Szczech M, SmoliÅ„ska U (2001) Comparison of suppressiveness of vermicomposts produced from animal manures and sewage sludge against Phytophthora nicotianae Breda de Haan var. nicotianae. J Phytopathol 149:77–82

    Article  Google Scholar 

  • Tabassum B, Khan A, Tariq M et al (2017) Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol 121:102–117

    Article  Google Scholar 

  • Tariq M, Yasmin S, Hafeez (2010) Biological control of potato black scurf by rhizosphere associated bacteria. Braz J Microbiol 41:439–451

    Article  PubMed  PubMed Central  Google Scholar 

  • Thaning C, Welch CJ, Borowicz JJ et al (2001) Suppression of Sclerotinia sclerotiorum apothecial formation by the soil bacterium Serratia plymuthica: identification of a chlorinated macrolide as one of the causal agents. Soil Biol Biochem 33:1817–1826

    Article  CAS  Google Scholar 

  • Tomar S, Khan MA, Lal M, Singh BP (2019a) Efficacy of biosurfactant producing bacteria (Pseudomonas aeruginosa) against black scurf (Rhizoctonia solani) of potato. Pesticides Res J 31:126–128

    Article  CAS  Google Scholar 

  • Tomar S, Lal M, Khan MA, Singh BP, Sharma S (2019b) Characterization of glycolipid biosurfactant from Pseudomonas aeruginosa PA 1 and its efficacy against P. infestans. J Envin Biol 40:725–730

    Article  CAS  Google Scholar 

  • Trabelsi BM, Abdallah RAB, Kthiri Z et al (2016) Assessment of the antifungal activity of non-pathogenic potato-associated fungi toward fusarium species causing tuber dry rot disease. J Plant Pathol Microbiol 7:343

    Google Scholar 

  • Troian RF, Steindorff AS, Ramada MHS et al (2014) Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes. Biotechnol Lett 36:2095–2101

    Article  CAS  PubMed  Google Scholar 

  • Tsahouridou PC, Thanassoulopoulos CC (2002) Proliferation of Trichoderma koningii in the tomato rhizosphere and the suppression of damping off by Sclerotium rolfsii. Soil Biol Biochem 34:767–776

    Article  CAS  Google Scholar 

  • Tsror L (2010) Biology, epidemiology and management of Rhizoctonia solani on potato. J Phytopathol 158:649–658

    Article  Google Scholar 

  • Tsror L, Barak R, Sneh B (2001) Biological control of black scurf on potato under organic management. Crop Prot 20:145–150

    Article  Google Scholar 

  • Tsror L, Lebiush S, Hazanovsky M, Erlich O (2020) Control of potato powdery scab caused by Spongospora subterranea by foliage cover and soil application of chemicals under field conditions with naturally infested soil. Plant Pathol 69:1070–1082

    Article  CAS  Google Scholar 

  • Turkensteen LJ, Mulder A (1999) The potato disease Phytophthora infestans. Gewasbescherming 30:106–112

    Google Scholar 

  • Van der Waals JE, Korsten L, Aveling TAS (2001) A review of early blight of potato. African Plant Protect 7:91–102

    Google Scholar 

  • Virgen-Calleros G, Olalde-Portugal V, Carling DE (2000) Anastomosis groups of Rhizoctonia solani on potato in Central Mexico and potential for biological and chemical control. Am J Potato Res 77:219–224

    Article  CAS  Google Scholar 

  • Volz A, Tongle H, Hausladen H (2013) An integrated concept for early blight control in potatoes. PPO special report 14:12–15

    Google Scholar 

  • Wale S, Platt HW, Cattlin N (2008) Diseases, pests and disorders of potatoes-a color handbook. Manson Publishing, London

    Book  Google Scholar 

  • Wan MG, Li GQ, Zhang JB et al (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control 46:552–559

    Article  Google Scholar 

  • Wang H, Ren Y, Zhou J et al (2017) The cell death triggered by the nuclear localized RxLR effector PITG_22798 from Phytophthora infestans is suppressed by the effector AVR3b. Int J Mol Sci 18(2):409

    Article  PubMed Central  Google Scholar 

  • Wharton P, Kirk W (2007) Fusarium dry rot. www.potatodiseases.org/dryrot.html

  • Wharton P, Kirk W, Berry D, Snapp S (2007) Rhizoctonia stem canker and black scurf of potato. Michigan potato diseases series, MSU extension bulletin E-2994, Michigan State University, Lansing, MI

    Google Scholar 

  • Whisson SC, Boevink PC, Wang S, Birch PRJ (2016) The cell biology of late blight disease. Curr Opin Microbiol 34:127–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson PS, Ketola EO, Ahvenniemi PM et al (2008) Dynamics of soilborne Rhizoctonia solani in the presence of Trichoderma harzianum: effects on stem canker, black scurf and progeny tubers of potato. Plant Pathol 57:152–161

    Google Scholar 

  • Woodhall JW, Belcher AR, Peters JC et al (2012) First report of Rhizoctonia solani AG2-2IIIB infecting potato stem and stolon in the united sates. Plant Dis 96:460

    Article  CAS  PubMed  Google Scholar 

  • Woodhall JW, Lees AK, Edwards SG, Jenkinson P (2007) Characterization of Rhizoctonia solani from potato in Great Britain. Plant Pathol 56:286–295

    Article  CAS  Google Scholar 

  • Woodhall JW, Lees AK, Edwards SG, Jenkinson P (2008) Infection of potato by Rhizoctonia solani: effect of anastomosis group. Plant Pathol 57:697–905

    Article  Google Scholar 

  • Woudenberg JHC, Truter M, Groenewald JZ, Crous PW (2014) Large-spored Alternaria pathogens in section Porri disentangled. Stud Mycol 79:1–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YC, Yuan J, Raza W et al (2014) Biocontrol traits and antagonistic potential of bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot. J Microbiol Biotechnol 24:1327–1336

    Article  PubMed  Google Scholar 

  • Xue W, Haynes KG, Qu X (2019) Characterization of early blight resistance in potato cultivars. Plant Dis 104:629–637

    Article  Google Scholar 

  • Yadav R, Pathak SP (2011) Management of early blight of potato through fungicides and botanical and bioagents. Plant Arch 11:1143–1145

    Google Scholar 

  • Yadessa GB, van Bruggen A, Ocho FL (2010) Effects of different soil amendments on bacterial wilt caused by Ralstonia solanacearum and on the yield of tomato. J Plant Pathol 92:439–450

    CAS  Google Scholar 

  • Yanar Y, Yilmaz G, Cesmeli I, Coskum S (2005) Characterization of Rhizoctonia solani isolates from potatoes in Turkey and screening potato cultivars for resistance to AG-3 isolates. Phytoparasitica 33:370–376

    Article  Google Scholar 

  • Yang L, Li GQ, Jiang DH, Huang HC (2009) Water assists dissemination of conidia of the mycoparasite Coniothyrium minitans in soil. Biocontrol Sci Tech 19:779–796

    Article  CAS  Google Scholar 

  • Yanga R, Hana Y, Hana Z et al (2020) Hot water dipping stimulated wound healing of potato tubers. Postharvest Biol Tech 167:111245

    Article  Google Scholar 

  • Yao Y, Li Y, Chen Z et al (2016) Biological control of potato late blight using isolates of Trichoderma. Am J Potato Res 93:33–42

    Article  CAS  Google Scholar 

  • Yenter Sonja L, Steyn PJ (1998) Correlation between fusaric acid production and virulence of isolates of fusarium oxysporum that causes potato dry rot in South Africa. Potato Res 41:289–294

    Article  Google Scholar 

  • Zaker M (2014) Antifungal evaluation of some plant extracts in controlling fusarium solani, the causal agent of potato dry rot in vitro and in vivo. Int J Agric Biosci 3:190–195

    Google Scholar 

  • Zegeye ED, Santhanam A, Gorfu D et al (2011) Biocontrol activity of Trichoderma viride and Pseudomonas fluorescens against Phytophthora infestans under greenhouse conditions. J Agric Technol 7:1589–1602

    Google Scholar 

  • Zeng W, Kirk W, Hao J (2012a) Field management of Sclerotinia stem rot of soybean using biological control agents. Biol Control 60:141–147

    Article  Google Scholar 

  • Zeng WT, Wang DC, Kirk W, Hao JJ (2012b) Use of Coniothyrium minitans and other microorganisms for reducing Sclerotinia sclerotiorum. Biol Control 60:225–232

    Article  Google Scholar 

  • Zhang D, Yu S, Yang Y et al (2020) Antifungal effects of volatiles produced by Bacillus subtilis against Alternaria solani in potato. Front Microbiol 11:1196

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Shen L, Fang Z et al (2016) Increased frequency of self-fertile isolates in Phytophthora infestans may attribute to their higher fitness relative to the A1 isolates. Sci Rep 6:29428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Yang LN, Wu EJ et al (2015) Limited sexual reproduction and quick turnover in the population genetic structure of Phytophthora infestans in Fujian, China. Sci Rep 5:10094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimudzi J, Coutinho TA, van der Waals JE (2017) Pathogenecity of fungi isolated from atypical skin blemishes on potatoes in South Africa and Zimbabwe. Potato Res 60:119–144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lal, M., Chaudhary, S., Sharma, S., Subhash, S., Kumar, M. (2022). Bio-Intensive Management of Fungal Diseases of Potatoes. In: Chakrabarti, S.K., Sharma, S., Shah, M.A. (eds) Sustainable Management of Potato Pests and Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-16-7695-6_19

Download citation

Publish with us

Policies and ethics